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Abstract: The explicit kernel transformation of input data vectors to their distributed high-
dimensional representations has recently been receiving increasing attention in the field
of hyperdimensional computing (HDC). The main argument is that such representations
endow simpler last-leg classification models, often referred to as HDC classifiers. HDC
models have obvious advantages over resource-intensive deep learning models for use
cases requiring fast, energy-efficient computations both for model training and deploying.
Recent approaches to training HDC classifiers have primarily focused on various methods
for selecting individual learning rates for incorrectly classified samples. In contrast to
these methods, we propose an alternative strategy where the decision to learn is based
on a margin applied to the classifier scores. This approach ensures that even correctly
classified samples within the specified margin are utilized in training the model. This leads
to improved test performances while maintaining a basic learning rule with a fixed (unit)
learning rate. We propose and empirically evaluate two such strategies, incorporating
either an additive or multiplicative margin, on the standard subset of the UCI collection,
consisting of 121 datasets. Our approach demonstrates superior mean accuracy compared
to other HDC classifiers with iterative error-correcting training.

Keywords: hyperdimensional computing; HDC classifier; compositional representation;
hypervector; margin classifier; confidence

1. Introduction
Simple linear classifiers are receiving increased attention for use cases requiring fast

and energy-efficient computations. The co-design of linear classifiers and hardware, in-
tensively researched within the framework of hyperdimensional computing (HDC), has
already demonstrated promising results in this direction [1,2].

The basic HDC classifier is a simple classical prototype/centroid model [3,4]. In
these prototype models, per-class data vectors of the training set are averaged to obtain
a single prototype per class, possibly followed by a prototype quantization step. While
this is a computationally efficient approach in terms of training and predicting [5–9],
the classification results are modest, since the features (i.e., the individual components of
data vectors) are not weighted to reflect the actual structure (e.g., covariance) of the classes.

HDC adds to the picture the non-linear transformation of vector data to a high-
dimensional vector space, resulting in hypervectors. This is beneficial for linear classifica-
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tion of input data with classes that are not linearly separable in the input space, as well as
for other similarity-based tasks/applications. To improve performance, HDC classifiers
are commonly trained using misclassified training samples [10–16]. The landscape of
HDC applications for solving classification tasks is broad, starting from language detection
with HDC-represented N-grams [17] to classification of arrhythmia types [6], time series
classification [18,19], classification of medical data [20–22], and others [23] (see also [24–27]
for a comprehensive overview).

Recent approaches to training HDC classifiers often involve various approaches to
selecting the individual learning rate for only incorrectly classified samples. Unlike these
approaches, we propose alternative strategies to make a decision about classification error
using a margin on the classifier scores to improve test performance while using a basic
learning rule with a fixed (and unit) learning rate. Class prototypes are thus adjusted to
better classify not only wrongly classified samples but also correctly classified samples
within the margin, so that a better classification performance is expected. Our contributions
are as follows:

1. Establishment of criteria and decision rules to trigger the refinement of HDC classi-
fiers, based on the confidence levels of individual sample classifications.

2. Development of HDC classifiers trained using either a multiplicative or additive
margin applied to confidence scores, which operate on quantized class prototypes,
and a comparative analysis of these methods.

3. Configuration and enhancement of margin-based HDC classifiers for scalability,
enabling effective operation on larger and more diverse datasets, exemplified by
experimentation on 121 UCI datasets.

4. Comprehensive experimental evaluation across 121 UCI datasets, demonstrating im-
proved mean accuracy of the proposed HDC classifiers compared to other HDC models.

5. Assessment of the impact of design choices on the classification performance of the
proposed HDC classifiers.

The paper is organized as follows. Section 2 provides background on HDC. Related
works are presented and discussed in Section 3. The article continues by describing the
methods and experiments in Sections 4 and 5, respectively. The results are presented in
Section 6. Finally, Section 7 concludes this article.

2. Background on HDC and Basic HDC Classifiers
2.1. Formation of HDC Representations

In HDC, input data are transformed into a hyperdimensional vector (hypervector; HV)
representation space in which the number of components of the HVs (i.e., the dimensional-
ity) ranges from hundreds to tens of thousands. The key task in applications of HDC is
to transform instances of the various fundamental data types of computer science, such
as scalars, vectors, sequences, graphs, into HV representations. To be useful in various
similarity-based tasks, the similarity of the obtained HVs should reflect the similarity of
the input data objects (see Section 2.3).

These hypervectors could be real-valued, as in holographic reduced representations
(HRRs) [28]; complex-valued, as in Fourier HRR [29]; bipolar vectors, as in multiply–add–
permute (MAP) [30]; dense binary vectors, as in binary spatter code (BSC) [31,32]; or
sparse binary vectors, as in sparse binary distributed representations (SBDRs) [33]. Each
of these HDC frameworks has its own basic operations of binding and superposition; see,
e.g., Section 2.2. Despite the heterogeneity of data transformation approaches, they can all
be used in similar applications, such as solving classification tasks.
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In this paper, we consider only dense binary HV representations, i.e., with vector
components of either 0 or 1, and about half of the components are 1. This is the most
commonly used variant because of its efficiency of working with binary vectors.

2.2. HDC Operations

Compositional HDC representations are produced using two fundamental HDC
operations, superposition and binding, which are mathematical operators on the vector space.
These operations do not change the dimensionality D of their input HVs.

The superposition operation combines several HVs into a single HV, which is used
to represent (multi)sets. It is commonly implemented via component-wise addition. For
dense binary HVs, component-wise addition is used to superimpose vectors followed
by a majority vote (denoted as [.]) to binarize the vector components and where ties are
broken pseudo-randomly. The binding operation associates HVs with each other. HDC
allows considerable latitude in the details of binding implementation. For dense binary
representations, the component-wise XOR operation (denoted as ⊕) is the common choice
that we use here.

2.3. Hypervector Representation of Scalars and Numerical Vectors

In this paper, we are concerned with the representation of scalar values and numer-
ical vectors and employ the compositional approach [34], proposed in [35–37], for the
construction of their HVs.

Using this approach, it is desirable to map similar numerical values to similar HVs,
rather than numerical values that are further apart; that is, the HVs should preserve the
similarity between numerical values. One of the possible ways to transform numerical
scalars to HVs is “linear mapping” [23,38]. Namely, after quantizing the numerical scalars
to the range of integer values [0, Q], the lowest quantization level is assigned a randomly
generated HV. Then, an HV for each consecutive quantization level is obtained by flip-
ping a certain fixed number of bits in the HV of the previous quantization level without
flipping those bits that have already been flipped [23]. As a result, the similarity value to
the lowest quantization level decreases linearly from the lowest level up to the highest
level. Now, let us represent a numerical vector x ∈ Rd consisting of d scalar features (i.e.,
x = [x1, x2, . . . , xd]) as HV vx ∈ BD.

This is achieved in the following way:

1. Quantizing the numerical values of each feature to the range of values [0, Q] such that
x ∈ [0, Q]d.

2. Representing the quantized feature values as their HVs vxj using linear mapping.

3. Assigning a random HV v f j
to each of the d features f j.

4. Binding each feature value HV with its corresponding feature HV using the component-
wise XOR, i.e., vxj ⊕ v f j

.

5. Finally, obtaining the HV vx by the addition of all d bound feature–value pairs followed
by a majority vote:

vx = [vx1 ⊕ v f1 + vx2 ⊕ v f2 + . . . + vxd ⊕ v fd
] = [

d

∑
j=1

(vxj ⊕ v f j
)]. (1)

2.4. Basic HDC Classifiers

The simplest HDC classifier is prototype HDC classifier (Prot-HDCL), which creates
K class prototypes (also referred to as centroids), with K being the number of classes in
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the dataset. This is achieved by superimposing all sample HVs vx,i of the training set that
belong to the same class to obtain the class prototype for that class:

Pk =
N

∑
i=1

{vx,i | yi = k} for k = 1 . . . K. (2)

In (2), yi is the label of the ith sample’s class. In the variant with further binarization of
prototypes, a counter variable keeps track of the number of sample HVs that are included
in each class prototype:

nk =
N

∑
i=1

I(yi = k) for k = 1 . . . K, (3)

where I(.) is the indicator function.
The class prototype Pk is then binarized with a majority vote by the threshold nk/2:

pk = [Pk]. (4)

Those binarized prototypes are used for classification, i.e., class prediction on new in-
put samples.

Building on the basic structure of the HDC classifier described earlier, various training
strategies can be employed to enhance classification performance. The simplest of these
is the prototype refinement rule, which we denote here as HDC classifier with prototype
refinement (Ref-HDCL):

1. For the current training sample i, predict its class using the classifier.
2. If the prediction is incorrect, then update both the correct class prototype and the

incorrect class prototype.
3. If the prediction is correct, leave all class prototypes unchanged.

An important variant of Ref-HDCL, which includes class prototype binarization,
operates as follows: In step 1, class prediction is made by calculating the similarity values
between the input sample’s HV vx,i and all binarized class prototypes pk. The predicted
class ŷi is the class associated with the binary prototype that has the highest similarity score
to the sample’s HV, calculated with the employed similarity measure:

ŷi = argmaxk sim(vx,i, pk) for k = 1 . . . K. (5)

In step 2, the update of class prototypes is triggered in case of a prediction mistake:

ŷi ̸= yi. (6)

The following learning rule is applied to update the non-binary prototypes. The sam-
ple’s HV is added to the prototype of the correct class Pyi and subtracted from the prototype
of the misclassified class Pŷi . Additionally, the class counters are updated by incrementing
nyi and decrementing nŷi . This update process is described by the following expressions:

Pyi = Pyi + vx,i; Pŷi = Pŷi − vx,i. (7)

nyi = nyi + 1; nŷi = nŷi − 1. (8)

When all training samples are processed, and thus one epoch is completed, the ob-
tained non-binary class prototypes Pk are binarized with the corresponding updated
thresholds nk/2 to produce binary class prototypes to be used in the next epoch. This
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iterative training procedure is performed for a predefined number of epochs or until a
predefined accuracy on the training set is reached.

After training completion, the binarized class prototypes are used for prediction. As
stated above, classification in HDC is achieved based on the similarity values (i.e., class
scores) between the input sample HV and the binarized class prototypes. The choice of the
similarity measure (sim) employed influences the classification results.

3. Related Work
3.1. Prototype Classifiers

The simplest form of an HDC classifier, as described in [23], is the prototype/centroid
classifier [3,4]. In this approach, class prototypes are constructed by averaging the data
vectors for each class in the training set, producing a single prototype per class, with an
option to quantize these prototypes. We refer to this approach as Prot-HDCL, as mentioned
above. While this method is computationally efficient for both training and prediction,
its classification performance is often modest. This is due to the fact that the features (or
components of the data HVs) are not weighted according to their relative importance in
distinguishing between classes.

3.2. Prototype Refinement

Several variations of HDC classifiers employing “prototype refining” approaches
essentially implement different versions of the perceptron algorithm. In VoiceHD [39], error
correction is applied with a single pass through the dataset, resulting in non-binary (integer)
weights. In contrast, ref. [40] explores an approach where the weights are binarized after
multiple training epochs.

In BinHD [41], binary class prototypes are used for prediction, but in the event of a
classification error, the non-binary prototypes are updated and subsequently binarized.
This method also uses multiple training epochs. Similarly, QuantHD [42] maintains two
sets of prototypes—one non-quantized and one quantized—with quantization occurring
after each epoch. Quantization in this case can include either binarization or ternarization.

This approach, referred to as Ref-HDCL above, has been employed in many HDC-
related studies, such as [43]. It does not incorporate the notion of confidence in prediction.

3.3. Classification Scores and Confidence in Classification Results

In the data-dependent mode of AdaptHD [44], the learning rate is adjusted based on
the difference between class scores for the correct and misclassified classes. After training,
the class prototypes are binarized. In OnlineHD [45], non-binary data HVs are used to im-
prove classification accuracy, with no mention of prototype quantization. Like AdaptHD [44],
the learning rate in OnlineHD [45] is adapted according to the confidence in the class scores.

In TD-HDC [46], both integer and binary prototypes are supported. During training,
integer prototypes are updated in case of a misclassification by either the binary or integer
classifier, with final binarized prototypes obtained after training. During inference, they use
a “classification confidence” measure, defined as the difference between the two smallest
Hamming distances between the input HV and the class prototypes of the binary classifier.
If this confidence value falls below a predefined threshold (or margin), the integer classifier
is employed to make the prediction. Thus, all of the HDC classifiers mentioned above
update prototypes only when the highest class score is provided for an incorrect class.

In RefineHD [47], the authors also mention using the difference between the top two
class scores for the prototype update decision.

The works most relevant to this paper in the context of HDC classification are Confi-
dence Centroid (CONFcentroid) [48] and linear classifiers [49–51]. These approaches utilize
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the confidence in class scores to determine when to update class prototypes. However,
the mentioned linear classifiers do not address the case of binary prototypes, and none of
the previous works explore setups involving multiple diverse datasets.

3.4. Other HDC Classifiers

In the context of HDC classifiers, the use of randomized non-linear transformations of
input data into HVs followed by a linear classifier was initially proposed in [35,36] for a
distributed representation of class labels. Since then, large-margin linear classifiers have
been employed, with their first explicit mention in English appearing in [49,50], and further
development in [51]. For comprehensive reviews on HDC classifiers, please see [25–27].

4. Methods
In this work, we propose a novel approach for improving the quality of HDC classifiers

by introducing unified criteria for deciding when to update class prototypes during the
training process. The decision rule for refining class prototypes given the HV of the input
data sample during training is different from that of Ref-HDCL as presented above in
expressions (5) and (6).

The different decision rules are based on the notion of the confidence level ci with
which the input sample i belonging to class yi is classified given its HV vx,i. It is defined as
the difference between the similarity of the data sample HV and the correct class prototype
and its similarity to the most similar class prototype of any other class:

ci = sim(vx,i, pyi )− max
k ̸=yi

sim(vx,i, pk). (9)

Here, sim(vx,i, pk), k = 1 . . . K, are the class scores given the input HV vx,i to be
classified. They evidently depend on the employed similarity measure (sim).

Then, various decision rules for prototype updates can be constructed by comparing
the confidence margin value with specific threshold values, which can be defined in
different ways. It is important to note that while the confidence margin ci is calculated based
on the similarity between the input HV and the binarized class prototypes, the updates are
performed on the second set of non-binarized prototypes (which are integer in the setup
we consider, though other setups may use different representations).

In the following subsections, we present two instances of our approach, each resulting
in different update decision rules. Additionally, we outline essential design choices for the
deployment of margin-based HDC classifiers based on our approach.

4.1. HDC Classifiers with Additive Margin

The additive margin strategy results in a family of HDC classifiers with additive
margin (AM-HDCL). An instance of this family is the CONFcentroid classifier [48]. AM-
HDCL will not update the class prototypes in the training mode when

ci > α, 0 ≤ α < 1, (10)

where α is some constant predefined threshold. Therefore, to avoid the prototype update,
the difference in class scores of the correct class and any other class should not only be
positive, but also greater than α. In case of an update (when ci ≤ α), it is performed by (7)
and (8), with ŷi = argmaxk ̸=yi

sim(vx,i, pk). This is different from the update decision rule
of Ref-HDCL, where correct classification when training (and hence no update of class
prototypes) requires ci > 0, taking into account (5) and (6).

In the case of α = 0, AM-HDCL becomes Ref-HDCL. However, when α > 0, we
expect more updates from AM-HDCL, as some samples that Ref-HDCL would not update
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are treated as requiring an update by AM-HDCL. Evaluation of the trained AM-HDCL
classifier is performed by (5) and (6), equivalent to setting α = 0 in (10).

4.2. HDC Classifiers with Multiplicative Margin

The multiplicative margin strategy results in a family of HDC classifiers with mul-
tiplicative margin (MM-HDCL). It is instantiated by the classifiers considered in [49–51].
MM-HDCL avoids update only in the case that

ci > α · sim(vx,i, pyi
), 0 ≤ α < 1. (11)

That is, the similarity margin should be larger than a fraction α of the correct class score.
This approach enables more frequent weight updates compared to Ref-HDCL, converg-

ing slower but towards a solution that ensures a relative (multiplicative) margin. Prototype
updates follow the same procedure as in Ref-HDCL, which is also equivalent to updates in
AM-HDCL. Setting α = 0 recovers the behavior of Ref-HDCL.

When the training set is correctly classified with α > 0, we anticipate an improved test
set accuracy for AM-HDCL and MM-HDCL compared to a correct classification with α = 0,
implying better generalization performance [52,53].

4.3. Design Choices

The performance of machine learning models is influenced by specific design choices
made during the implementation of their methods. In this section, we isolate particular
design choices for the methods applied at different stages of HDC classifiers.

4.3.1. Input Data Preprocessing/Standardization

Input data preprocessing and standardization are essential for the performance of
machine learning models, including HDC classifiers.

The initial step is standardizing input features before transforming them into HVs.
A common approach is per-feature z-score standardization, which scales each feature to
have a mean of 0 and a standard deviation of 1, preserving the relative positioning of data
points within their distributions. This method is useful for datasets that approximate a
normal distribution and when there are outliers or features with varying variances.

After standardization, input data should be quantized in order to apply the composi-
tional method for transforming input data into hypervectors.

A further decision involves how to standardize the resulting HVs of data samples.

4.3.2. Initialization of Class Prototypes

An important factor influencing the performance of HDC classifiers is the choice
of how to initialize class prototypes before starting error-driven iterative training. This
concerns the two sets of prototypes: integer and quantized. The three straightforward
options are (1) initializing with zeros, (2) initializing randomly, and (3) initializing with
“incremental” prototypes resulting from Prot-HDCL.

4.3.3. Quantization of Class Prototypes

The primary distinction between the HDC classifiers being examined and other linear
classifiers lies in the learning of binary prototypes. This is accomplished by maintaining
two sets of prototypes: an “original” set, similar to the weights in traditional linear classi-
fiers; and a quantized (binarized, in this paper) set. Unlike post-training quantization of
prototypes, which can significantly degrade accuracy, we apply quantization during the
training process, as explained in Section 2.4.



Big Data Cogn. Comput. 2025, 9, 68 8 of 22

This opens up several related design choices, from which we here consider just two:
when to quantize; and how to quantize. The simplest alternative for when to quantize
is quantization after each epoch, as given in Section 3 and employed in the CONFcen-
troid model [48]. The primary alternatives for how to quantize involve component-wise
thresholding with a zero threshold, or component-wise thresholding using half-values of
per-class counters (8).

4.3.4. Similarity Measures Between Hypervectors and Prototypes

Linear models are evidently based on the dot-product similarity simdot(a, b) = ⟨a, b⟩ =
∑D

j=1 aj bj. On the other side, a number of HDC classification models operating with
binary HVs and prototypes, including CONFcentroid as the instance of AM-HDCL, use the
Hamming distance distHam to compute class scores: distHam(a, b) = ∑D

j=1 I(aj ̸= bj), where
I(.) is the indicator function.

Here, we analyze the implications for ranking the class prototypes when using simdot

versus distHam. Consider the following identities for binary {0, 1} vectors:

distHam(a, b) = dist2
Euc(a, b) = ||a − b||2 = ||a||2 + ||b||2 − 2⟨a, b⟩, (12)

where ||a||2 = |a| is equal to the number of ones in a. The Hamming similarity is then

simHam(a, b) = D − distHam(a, b). (13)

Taking into account that simdot(a, b) = ⟨a, b⟩ = ∑D
j=1 I(aj = 1 & bj = 1) = |a&b|,

with & being the component-wise conjunction, we obtain

2⟨a, b⟩ = |a|+ |b| − distHam(a, b). (14)

Therefore, generally, the ranking of class prototypes by the value of ⟨a, b⟩ would not
be identical to that by −distHam(a, b) due to varied |a|+ |b|. On the other hand, those
rankings by simdot and simHam would be identical if the binarization of prototypes and
encodings of input vectors ensured a constant value of the sum of the number of ones in
them: |a|+ |b| = const. The most straightforward way to ensure this is to binarize both
prototypes and sample HVs such that the number of ones in both is D/2. Then, the total
number of ones is |a|+ |b| = D, and we obtain

2⟨a, b⟩ = simHam(a, b). (15)

In this case, the ranking by similarity values of simdot and simHam is identical. Note
that in dense binary randomly generated vectors, p(1) = 1/2, hence mean(|a|) = D/2.
The coefficient of variation of |a| decreases as 1/

√
D, and so with increasing D, |a|+ |b|

becomes relatively closer to D, and we could expect closer similarity ranking results for
HVs of larger D. Similar reasoning is also applicable to real-valued vectors, which we do
not consider in this paper.

Importantly, in the case of bipolar {−1,+1} HVs, which are often used in HDC instead of
binary {0,1}, we have ||a||2 = D and 4distHam(a, b) = dist2

Euc(a, b) = ||a − b||2. Therefore,
we obtain exact equality 4distHam(a, b) = 2D − 2⟨a, b⟩, 2distHam(a, b) = D − ⟨a, b⟩ and,
as such, identical ranking for any bipolar HVs of any D.

4.3.5. The Training Procedure

For both AM-HDCL and MM-HDCL, the simplest update rule we use is given by (7).
However, decisions regarding the stopping criterion and selection of class prototypes for
the evaluation phase play a crucial role in achieving robust classifier performance.
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A straightforward stopping criterion is to halt training after a predefined number of
epochs. Another common approach is early stopping, triggered when a specified accuracy
threshold on the training set is reached.

Upon completion of training, the choice of which set of class prototypes to use in
evaluation becomes pertinent. While it is straightforward to use the final prototypes
obtained at the end of training, this can lead to challenges, especially in determining the
optimal number of training epochs on a per-dataset basis. This issue is exacerbated when
handling two sets of class prototypes, one integer and one binary.

4.3.6. The Choice of Design Setup for Experiments

In this section, we outline the finalized design setup chosen for our instantiations of
AM-HDCL and MM-HDCL, selected from the numerous combinations of design choices,
as defined above.

1. Input data standardization: Per-feature z-score standardization. In preliminary eval-
uations, we investigated more intensive approaches for managing outliers; however,
these yielded inconsistent effects across datasets. Consequently, we adopt the standard
z-score approach for consistency.

2. Input data quantization: Uniform quantization into the [0, Q] range. We use Q = 100.
3. Input data transformation to hypervectors (Section 2.3): Here, instead of flipping

D/(2Q) bits per quantization level as in our previous work [48], we adopt a scheme
that flips D/Q bits to generate HVs for scalar values. This effectively halves the
dimensionality of the hypervectors.

4. Hypervector standardization: We maintain the binary format of generated HVs by
avoiding further standardization.

5. Prototypes initialization: Before starting error-driven iterative training to refine class
prototypes, we initialize the two sets of prototypes (integer and quantized) using the
initial “incremental” prototypes from Prot-HDCL.

6. The similarity measures between HVs and class prototypes: For AM-HDCL, we use
the Hamming similarity normalized by the HV dimensionality, and for MM-HDCL,
we apply dot-product similarity.

7. Selection of α values: The hyperparameter α is evaluated over the range of [0.00,
0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7] for both AM-HDCL and
MM-HDCL.

8. Integer prototype update rule: According to rule (7).
9. Binary prototype update rule: Binarization of integer prototypes is applied after

each epoch. For AM-HDCL, binarization is achieved by thresholding based on class
counter values, while for MM-HDCL, the thresholding is performed with zero values.

10. Training stopping: In contrast to [48], we significantly reduce the number of training
epochs from 2500 to 100, making training feasible for the large collection of 121 UCI
datasets. Additionally, we halt training early if the training accuracy reached 0.9999.

11. Selection of class prototypes for deployment: Upon completion of the training, we
do not use the final class prototypes for testing. Nor do we apply any procedure or
validate some hyperparameters to select some intermediate set of prototypes. Instead,
we select the prototypes obtained at the epoch with the highest training accuracy,
as in our previous work [48]. While this method may not always be optimal (we
observed that maximum testing accuracy often occurs in earlier epochs, before poten-
tial “overtraining”), it remains reasonable since prototypes obtained after the training
completion may lead to worse performance.
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5. Experiments
The AM-HDCL and MM-HDCL instances are distinguished by their respective strate-

gies based on the different types of confidence margin, as well as the design choices specified
above. In this section, we describe the experimental setup for evaluating the performance
of AM-HDCL and MM-HDCL. The performance was measured as classification accuracy.
For performance comparison, we include AM-HDCL with α = 0 (AM-HDCL α = 0) and
MM-HDCL with α = 0 (MM-HDCL α = 0) as baselines, along with corresponding versions
of Prot-HDCL, which are prototype classifiers without prototype refinement.

We experimented with 121 UCI benchmark datasets from [54] (see Appendix A),
containing the training/validation/testing dataset splits of 121 UCI datasets proposed
in [54]. Though those splits themselves have drawbacks from the point of view of classic
ML basic principles (see also [55]), they are widely used and selected by us to ensure better
compatibility with the existing performance results.

For the encoding part, we experimented with the influence of the dimensionality
D = {200, 1000, 4000, 10,000} of HVs on the classification performance.

Since HDC relies on random initialization of HVs, which influences performance,
experiments with HDC were repeated for multiple realizations of randomly generated
HVs, i.e., with multiple seeds for initializing a random number generator. For each seed,
we transformed the initial data from the splits into their HVs. We conducted experiments
with ten different seeds for each classification setup/configuration.

To select the α value to be used for training/testing, we trained/tested on the HVs of
the validation split obtained for each seed at each combination of hyperparameter value
from its range at the particular design setup. Thereafter, the obtained validation accuracies
for each design setting/hyperparameter value were averaged across all seeds. The value of
α providing the highest mean validation accuracy was selected for each dataset.

In the final training/testing, the selected hyperparameter value was used to train and
test the final (selected) model for each seed. As such, a test accuracy averaged across the
multiple seeds (for the “separated” datasets) or a test accuracy averaged across the four test
folds and multiple seeds (for the “non-separated” datasets) was obtained for each dataset.

Setting the single value α = 0 gave us marginless versions AM-HDCL α = 0 and
MM-HDCL α = 0 of AM-HDCL and MM-HDCL, respectively. Since the AM-HDCL α = 0
and MM-HDCL α = 0 classifiers did not need selection of the hyperparameter α, only their
final training/testing was performed.

6. Results and Discussion
Table 1 reports the mean test classification accuracies of the Prot-HDCL simHam, Prot-

HDCL simdot, AM-HDCL α = 0, MM-HDCL α = 0, AM-HDCL, and MM-HDCL classifiers,
averaged across all 121 UCI datasets and seeds (detailed results per dataset can be found in
Appendix B). Figure 1a further shows how varying the HV dimensionality D influences
the final test accuracy, corresponding to the data in Table 1. Figure 1b presents the mean
number of training epochs required to reach the best training accuracy, while Figure 1c
provides the mean training time per epoch measured when running our python scripts
in a distributed system of a set of heterogeneous clusters (consisting of NVIDIA A100
80 GB PCIe, Quadro RTX 4000, Tesla V100-SXM2-32 GB and Tesla V100-SXM3-32 GB) using
five CPUs.

As indicated in Table 1 and Figure 1a, the mean classification accuracy improves with
increasing HV dimensionality. The results for both AM-HDCL α = 0 and MM-HDCL α = 0,
as well as AM-HDCL and MM-HDCL, are quite similar, with AM-HDCL and MM-HDCL
consistently outperforming their marginless variants. Notably, even the marginless pro-
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totype refinement classifiers AM-HDCL α = 0 and MM-HDCL α = 0 yield substantially
higher accuracy than the Prot-HDCL variants.

Table 1. Mean test accuracies (in %) across all 121 datasets and seeds, reported for the best α value
obtained through validation. The results are presented for Prot-HDCL simHam, Prot-HDCL simdot,
AM-HDCL α = 0, MM-HDCL α = 0, AM-HDCL, and MM-HDCL at various HV dimensionalities D.
Standard deviations are provided in brackets, with the highest mean accuracy in bold.

Classifier
D

200 1000 4000 10,000

Prot-HDCL simHam 66.36 (±16.28) 69.70 (±15.96) 70.66 (±15.98) 70.92 (±16.05)
Prot-HDCL simdot 61.36 (±19.10) 65.73 (±19.20) 66.99 (±19.46) 67.43 (±19.35)
AM-HDCL α = 0 74.36 (±17.11) 77.71 (±16.64) 78.75 (±16.45) 79.00 (±16.55)
MM-HDCL α = 0 74.95 (±16.90) 77.87 (±16.45) 78.75 (±16.27) 78.89 (±16.32)
AM-HDCL 76.11 (±16.18) 79.26 (±15.62) 80.07 (±15.59) 80.49 (±15.40)
MM-HDCL 75.88 (±16.54) 79.10 (±15.59) 79.87 (±15.61) 80.27 (±15.25)

(a) Accuracy.

(b) Number of training epochs. (c) Training time.

Figure 1. Impact of HV dimensionality D on (a) the mean final test accuracy (as detailed in Table 1),
(b) the mean number of training epochs required to achieve the best training accuracy, and (c) the
mean time per epoch (in seconds). All values are averaged across 121 UCI datasets and ten seeds for
AM-HDCL α = 0, MM-HDCL α = 0, AM-HDCL, and MM-HDCL.

Figure 1b,c illustrate that the mean number of training epochs needed to achieve the
highest accuracy on the training set decreases with increasing HV dimensionality. Further-
more, AM-HDCL and MM-HDCL generally require fewer epochs compared to the margin-
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less variants AM-HDCL α = 0 and MM-HDCL α = 0. In contrast, the mean training time
increases significantly with HV dimensionality. Although AM-HDCL α = 0 and AM-HDCL
generally take longer to train than MM-HDCL α = 0 and MM-HDCL, this time difference di-
minishes as the HV dimensionality increases. Notably, with D = 10,000, the additional time
required results in only a marginal accuracy improvement over D = 4000. Thus, D = 4000
may provide a practical trade-off between accuracy and computational complexity.

Figure 2 presents a comparison between AM-HDCL and MM-HDCL at D = 10,000,
indicating the number of datasets where AM-HDCL performs better, equally well, or worse
than MM-HDCL. The datasets are grouped based on the number of features, number
of classes, number of samples, and the ratio of the number of features to the number of
samples. The comparison shows that AM-HDCL outperforms MM-HDCL on datasets
with more than 30 features, on datasets with two classes, and on datasets with more than
3000 samples. Additionally, AM-HDCL achieves better performance on datasets with a
feature-to-sample ratio smaller than 0.05.

(a) Number of features. (b) Number of classes.

(c) Number of samples. (d) Ratio num features/num samples.

Figure 2. Comparison of classification results for AM-HDCL and MM-HDCL at D = 10,000 across
121 UCI datasets, categorized by (a) the number of features, (b) the number of classes, (c) the number
of samples, and (d) the ratio of the number of features to the number of samples.

Figure 3 compares the performance of AM-HDCL and MM-HDCL at D = 10,000
against other HDC classifiers on the 121 UCI datasets. The results from [27,47] are displayed
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in gray, while those from [56,57] are shown in light gray. The figure highlights that AM-
HDCL and MM-HDCL outperform other HDC classifier variants. Specifically, the highest-
performing HDC classifier in the literature, RefineHD [47], achieves a mean accuracy
of 76.7%. In comparison, AM-HDCL and MM-HDCL achieve accuracies of 80.49% and
80.27%, respectively. Notably, AM-HDCL reaches an accuracy of 76.11% even with low HV
dimensionality, D = 200 (Table 1).

Figure 3. Comparison of the best mean accuracy of AM-HDCL and MM-HDCL (shown in red) and
other HDC classifiers. Results from [27,47] are shown in gray, while those from [56,57] are shown
in light gray.

Additionally, it is worth noting that our results are better than previously reported ac-
curacies obtained using Ridge classifier (79.82% for IntRVFL [56], 78.24% for sparseRP [57],
and 79.54% for SparseBlock [57]). Ridge classifier utilizes real-valued instead of binary
prototypes, as well as integer-valued rather than binary hypervectors. The closeness of
their results to each other also underscores the difficulty in improving upon this task for
the HDC approach.

Our HDC classifiers leverage binary class prototypes and hypervectors, enabling
extremely efficient deployment. In prediction mode, the core operation reduces to sim-
ply counting the number of 1-bits in machine words—a computation highly optimized
on modern hardware and efficiently implemented on chips. This efficiency is particu-
larly beneficial in scenarios with limited computational resources or where online and
real-time performance is required. Moreover, the inherent simplicity of binary representa-
tions and the lightweight nature of HDC classifiers address the growing demand for fast,
resource-constrained machine learning solutions, such as those needed for IoT, EdgeAI,
and AIoT applications.

However, HDC classifiers with binary vectors and prototypes require larger dimen-
sionality to achieve high classification performance and currently do not reach the top
results achieved by some non-HDC classifiers. Additionally, there remains a notable gap in
the theoretical understanding of these methods.

In contrast, non-HDC classifiers typically rely on real-valued vector representations
and classifier parameters, with algorithms that demand significantly greater computational
resources and extensive training. Although these models may achieve higher perfor-
mance—as demonstrated by the top classifiers on the 121 UCI datasets in [54], including
non-linear SVMs, Random Forests, and Boosting methods—they are tailored for appli-
cations where high predictive accuracy is paramount and ample computational power
is available. Furthermore, deep neural networks require large datasets for extensive co-
training of features and classifiers, and they are commonly employed in complex tasks like
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image recognition and natural language processing, where the extra computational cost
and energy consumption are acceptable trade-offs for enhanced accuracy.

7. Conclusions
This work proposed an approach to training HDC classifiers which leverages

confidence-triggered refinement of class prototypes based on certainty levels in individual
sample classifications. The enhancement of classification accuracy is demonstrated in
comparison with results obtained from classical marginless HDC counterparts and has
been validated across a diverse set of 121 UCI datasets. We show that applying either
additive or multiplicative margin-based training strategies results in a good performance,
with the additive margin configuration yielding slightly higher results. Both strategies
consistently outperform alternative modifications of classical HDC classifiers, given the
results available in the literature on the same set of UCI datasets.

Additionally, we achieved better results compared to the HDC approach using a Ridge
classifier, which operates with real-valued prototypes and integer-valued hypervectors
rather than binary ones.

By operating with quantized and ultimately binary data and class prototype vector
representations—particularly in prediction mode—our approach remains inherently fast,
hardware- and energy-efficient, and well suited for resource-constrained, online, and real-
time classification applications.

Promising directions for future research include exploring the combination of our
confidence margin-based training with existing HDC classifiers that incorporate learning
rate adjustments, which could potentially complement each other to further enhance per-
formance. Another important avenue is investigating whether this or other improvements
to HDC classifiers could enable them to achieve the performance of top non-HDC clas-
sifiers on the 121 UCI datasets while preserving the efficiency benefits of binary vectors
and weights. Additionally, developing hardware implementations optimized in terms of
gate efficiency and energy consumption presents a valuable direction for further research.
Conducting a theoretical analysis of the proposed approach would also provide deeper
insights into its fundamental properties and potential improvements.
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Abbreviations
The following abbreviations are used in this manuscript:

AM-HDCL HDC classifier with additive margin
AM-HDCL α = 0 AM-HDCL with α = 0
HDC Hyperdimensional computing
HV Hypervector
MM-HDCL HDC classifier with multiplicative margin

MM-HDCL α = 0 MM-HDCL with α = 0
Prot-HDCL Prototype HDC classifier
Ref-HDCL HDC classifier with prototype refinement

Appendix A. Details on Datasets
We evaluate classifiers on 121 UCI repository datasets, as introduced in [54], which

are publicly available. Table A1 contains descriptions of all 121 datasets, including the
total number of samples, the number of features, the number of classes, the ratio of the
number of features to the number of samples, and the mean number of samples per class.
For 19 of these 121 datasets, there are fixed training and testing sets, so we refer to them
as “separated” and mark them in gray in the table. The other 102 datasets do not have
separated training/testing sets. For both types of datasets, the procedures for splitting them
into subsets for hyperparameter selection (in our case, α) and final evaluation as described
in [54] are followed. More specifically, training and validation sets are generated randomly,
each consisting of 50% of the samples making sure all classes are balanced between the
two sets. The final evaluation is performed by a 4-fold cross validation with the whole
dataset for the “non-separated” datasets, or by using the fixed training and test set of the
“separated” datasets.

Table A1. Description of the 121 UCI datasets. The table includes the total number of samples,
the number of features, the number of classes, the ratio of the number of features to the number of
samples, and the mean number of samples per class.

ID Dataset No. Samples No. Features No. Classes Ratio Feat/Samples Avg Samples per Class
1 abalone 4177 8 3 0.0019 1392
2 acute-inflammation 120 6 2 0.0500 60
3 acute-nephritis 120 6 2 0.0500 60
4 adult 48,842 14 2 0.0003 24,421
5 annealing 898 31 5 0.0345 180
6 arrhythmia 452 262 13 0.5796 35
7 audiology-std 196 59 18 0.3010 11
8 balance-scale 625 4 3 0.0064 208
9 balloons 16 4 2 0.2500 8
10 bank 4521 16 2 0.0035 2260
11 blood 748 4 2 0.0053 374
12 breast-cancer 286 9 2 0.0315 143
13 breast-cancer-wisc 699 9 2 0.0129 350
14 breast-cancer-wisc-diag 569 30 2 0.0527 284
15 breast-cancer-wisc-prog 198 33 2 0.1667 99
16 breast-tissue 106 9 6 0.0849 18
17 car 1728 6 4 0.0035 432
18 cardiotocography-10clases 2126 21 10 0.0099 213
19 cardiotocography-3clases 2126 21 3 0.0099 709
20 chess-krvk 28,056 6 18 0.0002 1559
21 chess-krvkp 3196 36 2 0.0113 1598
22 congressional-voting 435 16 2 0.0368 218
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Table A1. Cont.

ID Dataset No. Samples No. Features No. Classes Ratio Feat/Samples Avg Samples per Class
23 conn-bench-sonar-mines-rocks 208 60 2 0.2885 104
24 conn-bench-vowel-deterding 990 11 11 0.0111 90
25 connect-4 67,557 42 2 0.0006 33,778
26 contrac 1473 9 3 0.0061 491
27 credit-approval 690 15 2 0.0217 345
28 cylinder-bands 512 35 2 0.0684 256
29 dermatology 366 34 6 0.0929 61
30 echocardiogram 131 10 2 0.0763 66
31 ecoli 336 7 8 0.0208 42
32 energy-y1 768 8 3 0.0104 256
33 energy-y2 768 8 3 0.0104 256
34 fertility 100 9 2 0.0900 50
35 flags 194 28 8 0.1443 24
36 glass 214 9 6 0.0421 36
37 haberman-survival 306 3 2 0.0098 153
38 hayes-roth 160 3 3 0.0188 53
39 heart-cleveland 303 13 5 0.0429 61
40 heart-hungarian 294 12 2 0.0408 147
41 heart-switzerland 123 12 5 0.0976 25
42 heart-va 200 12 5 0.0600 40
43 hepatitis 155 19 2 0.1226 78
44 hill-valley 1212 100 2 0.0825 606
45 horse-colic 368 25 2 0.0679 184
46 ilpd-indian-liver 583 9 2 0.0154 292
47 image-segmentation 2310 18 7 0.0078 330
48 ionosphere 351 33 2 0.0940 176
49 iris 150 4 3 0.0267 50
50 led-display 1000 7 10 0.0070 100
51 lenses 24 4 3 0.1667 8
52 letter 20,000 16 26 0.0008 769
53 libras 360 90 15 0.2500 24
54 low-res-spect 531 100 9 0.1883 59
55 lung-cancer 32 56 3 1.7500 11
56 lymphography 148 18 4 0.1216 37
57 magic 19,020 10 2 0.0005 9510
58 mammographic 961 5 2 0.0052 480
59 miniboone 130,064 50 2 0.0004 65,032
60 molec-biol-promoter 106 57 2 0.5377 53
61 molec-biol-splice 3190 60 3 0.0188 1063
62 monks-1 556 6 2 0.0108 278
63 monks-2 601 6 2 0.0100 300
64 monks-3 554 6 2 0.0108 277
65 mushroom 8124 21 2 0.0026 4062
66 musk-1 476 166 2 0.3487 238
67 musk-2 6598 166 2 0.0252 3299
68 nursery 12,960 8 5 0.0006 2592
69 oocytes_merluccius_nucleus_4d 1022 41 2 0.0401 511
70 oocytes_merluccius_states_2f 1022 25 3 0.0245 341
71 oocytes_trisopterus_nucleus_2f 912 25 2 0.0274 456
72 oocytes_trisopterus_states_5b 912 32 3 0.0351 304
73 optical 5620 62 10 0.0110 562
74 ozone 2536 72 2 0.0284 1268
75 page-blocks 5473 10 5 0.0018 1095
76 parkinsons 195 22 2 0.1128 98
77 pendigits 10,992 16 10 0.0015 1099
78 pima 768 8 2 0.0104 384
79 pittsburg-bridges-MATERIAL 106 7 3 0.0660 35
80 pittsburg-bridges-REL-L 103 7 3 0.0680 34
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Table A1. Cont.

ID Dataset No. Samples No. Features No. Classes Ratio Feat/Samples Avg Samples per Class
81 pittsburg-bridges-SPAN 92 7 3 0.0761 31
82 pittsburg-bridges-T-OR-D 102 7 2 0.0686 51
83 pittsburg-bridges-TYPE 105 7 6 0.0667 18
84 planning 182 12 2 0.0659 91
85 plant-margin 1600 64 100 0.0400 16
86 plant-shape 1600 64 100 0.0400 16
87 plant-texture 1599 64 100 0.0400 16
88 post-operative 90 8 3 0.0889 30
89 primary-tumor 330 17 15 0.0515 22
90 ringnorm 7400 20 2 0.0027 3700
91 seeds 210 7 3 0.0333 70
92 semeion 1593 256 10 0.1607 159
93 soybean 683 35 18 0.0512 38
94 spambase 4601 57 2 0.0124 2300
95 spect 265 22 2 0.0830 132
96 spectf 267 44 2 0.1648 134
97 statlog-australian-credit 690 14 2 0.0203 345
98 statlog-german-credit 1000 24 2 0.0240 500
99 statlog-heart 270 13 2 0.0481 135
100 statlog-image 2310 18 7 0.0078 330
101 statlog-landsat 6435 36 6 0.0056 1072
102 statlog-shuttle 58,000 9 7 0.0002 8286
103 statlog-vehicle 846 18 4 0.0213 212
104 steel-plates 1941 27 7 0.0139 277
105 synthetic-control 600 60 6 0.1000 100
106 teaching 151 5 3 0.0331 50
107 thyroid 7200 21 3 0.0029 2400
108 tic-tac-toe 958 9 2 0.0094 479
109 titanic 2201 3 2 0.0014 1100
110 trains 10 29 2 2.9000 5
111 twonorm 7400 20 2 0.0027 3700
112 vertebral-column-2clases 310 6 2 0.0194 155
113 vertebral-column-3clases 310 6 3 0.0194 103
114 wall-following 5456 24 4 0.0044 1364
115 waveform 5000 21 3 0.0042 1667
116 waveform-noise 5000 40 3 0.0080 1667
117 wine 178 13 3 0.0730 59
118 wine-quality-red 1599 11 6 0.0069 266
119 wine-quality-white 4898 11 7 0.0022 700
120 yeast 1484 8 10 0.0054 148
121 zoo 101 16 7 0.1584 14

Marked in gray are the 19 “separated” datasets.

Appendix B. Detailed Results per Dataset
Table A2 includes the detailed results for each of the 121 UCI datasets obtained with

the Prot-HDCL simHam, Prot-HDCL simdot, AM-HDCL α = 0, MM-HDCL α = 0, AM-HDCL,
and MM-HDCL models for hypervector dimensionality D = 10,000. In addition, the best
α hyperparameter value for the AM-HDCL and MM-HDCL models obtained through
validation is shown in the last two columns.



Big Data Cogn. Comput. 2025, 9, 68 18 of 22

Table A2. Detailed results of the Prot-HDCL simHam, Prot-HDCL simdot, AM-HDCL α = 0, MM-
HDCL α = 0, AM-HDCL, and MM-HDCL models for the 121 UCI datasets. Hypervector dimen-
sionality D = 10,000. The last two columns present the α hyperparameter value for AM-HDCL and
MM-HDCL selected through validation.

ID Prot-HDCL
simHam

Prot-HDCL
simdot

AM-HDCL
α = 0

MM-HDCL
α − 0 AM-HDCL MM-HDCL AMα MMα

1 54.10 (±0.21) 54.03 (±0.24) 60.46 (±0.82) 61.80 (±0.91) 59.70 (±0.50) 62.61 (±0.56) 0.2 0.1
2 96.42 (±0.97) 96.25 (±0.90) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 0 0
3 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 0 0
4 75.12 (±0.38) 75.55 (±1.55) 85.08 (±0.20) 84.54 (±0.46) 85.08 (±0.20) 84.54 (±0.46) 0 0
5 55.50 (±1.51) 47.50 (±3.17) 97.30 (±0.82) 95.80 (±1.40) 97.70 (±0.82) 96.60 (±0.84) 0.02 0.02
6 59.89 (±1.53) 61.59 (±1.54) 71.70 (±0.92) 61.59 (±1.54) 71.70 (±0.92) 61.75 (±1.33) 0 0.02
7 77.60 (±2.80) 48.40 (±7.88) 72.40 (±6.10) 76.00 (±3.77) 72.40 (±5.80) 77.60 (±6.31) 0.02 0.04
8 66.96 (±0.59) 61.84 (±0.98) 92.98 (±0.86) 95.95 (±0.54) 92.98 (±0.86) 95.95 (±0.54) 0 0
9 85.63 (±3.02) 79.38 (±10.64) 80.00 (±2.64) 80.63 (±8.56) 75.00 (±6.59) 81.88 (±6.22) 0.2 0.4
10 64.01 (±0.64) 63.64 (±2.08) 89.17 (±0.30) 89.89 (±0.26) 90.15 (±0.15) 90.02 (±0.19) 0.04 0.02
11 65.88 (±0.44) 65.57 (±0.86) 76.24 (±0.77) 78.64 (±0.37) 79.97 (±0.50) 79.41 (±0.62) 0.2 0.2
12 71.94 (±0.60) 66.02 (±1.38) 68.70 (±1.20) 73.03 (±1.90) 75.85 (±1.08) 74.61 (±0.35) 0.2 0.4
13 96.83 (±0.09) 96.74 (±0.11) 96.97 (±0.22) 97.50 (±0.18) 97.46 (±0.09) 97.71 (±0.00) 0.12 0.15
14 94.61 (±0.36) 94.51 (±0.35) 95.48 (±0.33) 94.42 (±0.74) 96.57 (±0.27) 96.71 (±0.31) 0.02 0.04
15 61.68 (±1.28) 54.29 (±3.51) 74.95 (±2.88) 77.45 (±2.55) 76.63 (±0.89) 82.09 (±0.88) 0.3 0.3
16 65.00 (±0.50) 64.81 (±0.67) 69.13 (±1.89) 70.96 (±1.68) 67.40 (±3.38) 66.92 (±3.21) 0.12 0.1
17 68.96 (±0.50) 76.86 (±1.47) 92.59 (±0.58) 91.45 (±0.99) 92.59 (±0.58) 91.45 (±0.99) 0 0
18 51.69 (±0.29) 49.06 (±1.02) 77.59 (±2.03) 73.01 (±1.57) 77.59 (±2.03) 73.78 (±0.89) 0 0.12
19 77.37 (±0.45) 76.32 (±1.82) 93.05 (±0.25) 93.12 (±0.31) 91.34 (±0.16) 93.12 (±0.31) 0.06 0
20 23.27 (±0.10) 22.36 (±0.43) 33.23 (±0.72) 31.18 (±0.72) 36.71 (±0.41) 33.62 (±0.74) 0.2 0.1
21 83.30 (±0.61) 82.73 (±1.17) 97.42 (±0.17) 95.54 (±0.11) 97.06 (±0.21) 95.54 (±0.11) 0.02 0
22 61.47 (±0.00) 61.47 (±0.00) 59.45 (±0.28) 59.98 (±0.93) 62.22 (±0.27) 61.08 (±0.19) 0.12 0.7
23 67.07 (±1.86) 66.63 (±1.91) 81.15 (±1.36) 77.31 (±4.52) 82.98 (±1.34) 80.72 (±0.86) 0.08 0.15
24 80.28 (±1.50) 73.61 (±2.50) 76.88 (±2.41) 98.07 (±0.39) 84.98 (±2.65) 89.20 (±2.61) 0.06 0.02
25 65.88 (±1.29) 67.14 (±6.70) 81.93 (±0.40) 80.14 (±0.31) 81.93 (±0.40) 80.14 (±0.31) 0 0
26 46.24 (±0.38) 46.13 (±0.48) 50.69 (±0.42) 52.53 (±1.29) 52.81 (±0.21) 51.02 (±0.50) 0.1 0.25
27 87.12 (±0.28) 86.80 (±0.74) 84.16 (±1.07) 86.89 (±0.57) 87.05 (±0.44) 87.50 (±0.65) 0.5 0.3
28 66.88 (±0.78) 66.37 (±1.67) 77.13 (±1.22) 75.96 (±0.87) 77.64 (±1.26) 76.84 (±1.16) 0.08 0.15
29 97.28 (±0.16) 97.20 (±0.17) 97.53 (±0.29) 92.39 (±0.86) 97.42 (±0.27) 97.47 (±0.28) 0.04 0.08
30 81.21 (±0.48) 81.36 (±0.39) 80.91 (±1.55) 78.26 (±1.75) 85.61 (±0.00) 85.68 (±0.24) 0.2 0.4
31 85.33 (±0.54) 51.34 (±2.76) 81.93 (±1.25) 83.93 (±1.25) 85.83 (±0.90) 85.27 (±0.58) 0.15 0.15
32 83.13 (±0.43) 82.19 (±0.42) 93.72 (±0.12) 93.98 (±0.61) 91.80 (±0.51) 93.98 (±0.61) 0.08 0
33 84.58 (±0.29) 84.31 (±0.24) 89.26 (±0.54) 88.93 (±0.35) 85.09 (±0.26) 85.65 (±0.74) 0.2 0.06
34 72.50 (±1.35) 76.00 (±1.76) 84.00 (±1.49) 85.30 (±0.67) 86.90 (±0.57) 86.30 (±0.67) 0.15 0.25
35 47.81 (±1.12) 34.11 (±1.87) 55.36 (±1.25) 57.71 (±1.34) 57.50 (±1.82) 59.06 (±1.67) 0.04 0.04
36 53.44 (±1.34) 54.15 (±1.57) 67.41 (±2.08) 68.44 (±1.21) 67.41 (±2.08) 69.86 (±1.36) 0 0.02
37 66.55 (±0.64) 66.94 (±1.26) 71.41 (±0.81) 70.66 (±1.53) 70.43 (±0.80) 74.01 (±0.00) 0.3 0.7
38 50.00 (±0.00) 50.00 (±0.00) 49.29 (±6.02) 39.29 (±0.00) 59.64 (±13.26) 67.14 (±10.49) 0.02 0.08
39 55.20 (±0.98) 49.05 (±1.28) 54.93 (±1.15) 55.23 (±1.84) 59.97 (±0.64) 59.67 (±0.96) 0.4 0.4
40 85.58 (±0.25) 85.31 (±0.38) 78.49 (±0.58) 78.66 (±1.61) 85.68 (±0.22) 85.24 (±0.25) 0.3 0.4
41 33.39 (±1.02) 7.18 (±0.71) 35.32 (±1.69) 40.48 (±1.51) 39.27 (±2.19) 40.73 (±2.56) 0.06 0.12
42 31.00 (±1.00) 30.15 (±0.88) 31.30 (±1.70) 31.30 (±2.53) 31.35 (±2.84) 31.30 (±2.53) 0.04 0
43 78.59 (±0.45) 76.86 (±1.02) 82.56 (±0.95) 83.21 (±1.27) 83.46 (±0.84) 84.81 (±0.80) 0.02 0.12
44 51.68 (±0.38) 51.67 (±1.07) 51.52 (±0.55) 53.18 (±1.42) 51.82 (±0.17) 53.91 (±1.37) 0.06 0.02
45 76.91 (±1.56) 77.06 (±2.21) 82.94 (±1.73) 83.68 (±0.83) 87.94 (±0.93) 87.50 (±1.59) 0.15 0.25
46 60.12 (±0.58) 59.61 (±1.46) 71.92 (±1.29) 70.96 (±1.06) 71.92 (±0.00) 72.07 (±0.26) 0.4 0.7
47 84.60 (±0.38) 84.11 (±0.86) 90.17 (±0.99) 90.87 (±1.53) 90.20 (±1.11) 91.39 (±0.50) 0.08 0.06
48 69.69 (±0.45) 69.77 (±0.57) 89.94 (±0.93) 93.21 (±0.94) 94.40 (±0.73) 94.09 (±0.42) 0.08 0.25
49 92.77 (±0.72) 92.23 (±0.97) 96.08 (±0.70) 97.70 (±0.47) 96.28 (±0.57) 96.76 (±0.53) 0.06 0.06
50 63.16 (±1.37) 63.60 (±1.33) 71.08 (±0.98) 71.21 (±1.08) 74.20 (±0.25) 73.33 (±0.48) 0.25 0.12
51 84.58 (±3.43) 61.67 (±2.64) 79.17 (±3.40) 72.08 (±3.95) 79.17 (±3.40) 79.17 (±2.78) 0 0.1
52 65.09 (±0.41) 64.84 (±0.60) 69.54 (±0.59) 65.44 (±0.98) 69.54 (±0.59) 65.44 (±0.98) 0 0
53 57.11 (±0.79) 57.58 (±1.00) 73.97 (±1.37) 76.69 (±0.85) 76.14 (±1.68) 76.69 (±0.85) 0.04 0
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Table A2. Cont.

ID Prot-HDCL
simHam

Prot-HDCL
simdot

AM-HDCL
α = 0

MM-HDCL
α − 0 AM-HDCL MM-HDCL AMα MMα

54 77.33 (±0.44) 51.73 (±3.24) 90.51 (±0.47) 89.21 (±0.64) 89.61 (±0.58) 89.21 (±0.64) 0.02 0
55 51.56 (±2.21) 41.88 (±4.22) 47.50 (±4.84) 50.31 (±4.76) 44.06 (±2.31) 48.13 (±4.93) 0.06 0.4
56 85.47 (±0.80) 67.70 (±1.85) 86.28 (±0.90) 87.77 (±0.67) 86.82 (±1.40) 89.12 (±1.08) 0.08 0.2
57 75.01 (±0.35) 74.76 (±0.40) 84.89 (±0.16) 82.81 (±0.64) 84.89 (±0.16) 82.59 (±0.59) 0 0.02
58 79.64 (±0.17) 79.75 (±0.38) 80.07 (±0.66) 79.00 (±0.62) 81.07 (±0.27) 79.00 (±0.62) 0.3 0
59 80.73 (±0.65) 80.78 (±1.25) 86.61 (±0.40) 87.85 (±0.25) 87.66 (±0.19) 87.85 (±0.25) 0 0
60 83.75 (±2.00) 85.38 (±1.42) 85.96 (±1.77) 88.85 (±2.18) 89.90 (±1.38) 88.75 (±1.57) 0.15 0.3
61 84.18 (±0.34) 81.88 (±3.76) 91.86 (±0.33) 92.07 (±1.14) 92.78 (±0.36) 92.07 (±1.14) 0.04 0
62 63.84 (±0.37) 60.76 (±0.97) 79.91 (±1.09) 77.87 (±1.10) 81.25 (±1.01) 77.87 (±1.10) 0.02 0
63 80.90 (±0.76) 80.97 (±0.83) 94.31 (±1.14) 90.02 (±1.60) 88.17 (±0.92) 86.46 (±1.19) 0.12 0.2
64 88.68 (±0.71) 77.01 (±1.77) 93.01 (±0.71) 92.94 (±0.78) 92.94 (±0.93) 92.15 (±0.57) 0.08 0.25
65 87.06 (±0.48) 87.53 (±0.91) 99.78 (±0.05) 99.83 (±0.08) 99.99 (±0.01) 99.94 (±0.04) 0.02 0.02
66 65.15 (±0.47) 64.98 (±1.25) 84.33 (±0.51) 74.12 (±3.00) 83.34 (±1.52) 74.12 (±3.00) 0.02 0
67 75.56 (±0.12) 75.66 (±0.21) 97.11 (±0.31) 96.09 (±0.30) 97.11 (±0.31) 96.09 (±0.30) 0 0
68 83.17 (±0.19) 66.98 (±1.83) 93.63 (±0.45) 88.72 (±0.56) 94.68 (±0.17) 91.49 (±0.26) 0.04 0.12
69 56.91 (±0.20) 57.16 (±0.31) 73.63 (±1.62) 74.31 (±0.75) 73.63 (±1.62) 72.03 (±0.73) 0 0.08
70 83.70 (±0.24) 83.76 (±0.45) 90.84 (±0.46) 91.50 (±0.47) 91.93 (±0.35) 92.06 (±0.28) 0.04 0.02
71 59.45 (±0.85) 59.40 (±1.43) 60.96 (±1.57) 68.00 (±2.27) 74.29 (±0.83) 70.68 (±2.26) 0.08 0.2
72 72.45 (±0.52) 72.70 (±0.79) 90.86 (±0.51) 90.83 (±0.39) 88.84 (±0.49) 89.67 (±0.69) 0.08 0.06
73 89.00 (±0.22) 89.03 (±0.36) 94.00 (±0.19) 94.75 (±0.34) 95.89 (±0.21) 95.39 (±0.28) 0.04 0.04
74 69.87 (±0.52) 71.14 (±1.61) 96.65 (±0.11) 96.88 (±0.15) 97.15 (±0.02) 97.16 (±0.00) 0.1 0.04
75 73.75 (±0.93) 73.89 (±1.52) 95.27 (±0.25) 96.22 (±0.15) 95.48 (±0.17) 96.22 (±0.15) 0.02 0
76 76.58 (±0.78) 76.53 (±0.96) 89.34 (±0.70) 90.20 (±1.20) 89.34 (±0.70) 90.51 (±0.55) 0 0.02
77 78.79 (±0.19) 78.68 (±0.45) 95.34 (±0.12) 95.05 (±0.16) 95.99 (±0.18) 95.35 (±0.41) 0.04 0.04
78 67.93 (±0.39) 67.92 (±0.46) 73.66 (±1.30) 73.95 (±1.01) 74.70 (±0.30) 74.24 (±0.37) 0.12 0.15
79 84.90 (±0.46) 83.17 (±0.82) 93.17 (±1.24) 91.44 (±1.39) 92.50 (±1.68) 93.27 (±1.01) 0.08 0.06
80 62.50 (±1.01) 54.23 (±2.91) 71.83 (±2.13) 74.90 (±1.95) 73.08 (±1.01) 74.13 (±2.62) 0.2 0.25
81 59.89 (±1.08) 59.46 (±1.45) 59.67 (±3.01) 54.67 (±1.54) 68.59 (±0.95) 65.11 (±1.66) 0.25 0.25
82 89.10 (±1.29) 91.20 (±0.63) 88.70 (±1.49) 87.70 (±1.34) 88.80 (±0.79) 88.70 (±0.48) 0.12 0.4
83 54.62 (±1.09) 50.10 (±0.84) 61.92 (±2.65) 62.88 (±1.58) 71.25 (±0.84) 71.83 (±1.57) 0.4 0.5
84 49.44 (±2.22) 53.67 (±2.67) 55.72 (±3.34) 56.72 (±3.73) 71.11 (±0.00) 71.11 (±0.00) 0.5 0.4
85 79.34 (±0.42) 78.89 (±0.61) 79.08 (±0.63) 69.21 (±1.16) 79.08 (±0.63) 73.83 (±1.30) 0 0.04
86 51.68 (±0.33) 51.88 (±0.67) 42.11 (±1.00) 53.56 (±1.63) 47.51 (±0.78) 53.56 (±1.63) 0.02 0
87 70.98 (±0.49) 71.13 (±0.64) 74.77 (±0.43) 69.53 (±0.87) 74.77 (±0.43) 73.19 (±1.28) 0 0.02
88 51.02 (±2.48) 0.68 (±0.59) 47.27 (±2.35) 47.95 (±2.61) 70.34 (±0.99) 70.23 (±0.72) 0.4 0.7
89 41.65 (±0.54) 35.30 (±0.69) 45.03 (±1.23) 49.09 (±1.55) 52.23 (±0.83) 52.65 (±1.23) 0.25 0.25
90 83.22 (±0.47) 62.87 (±4.17) 98.07 (±0.08) 98.30 (±0.09) 98.09 (±0.07) 98.11 (±0.07) 0.08 0.4
91 89.62 (±0.52) 89.90 (±0.60) 92.36 (±0.58) 92.12 (±0.61) 92.88 (±0.63) 93.32 (±0.48) 0.06 0.04
92 81.60 (±0.39) 81.06 (±0.69) 90.20 (±0.23) 90.68 (±0.43) 92.31 (±0.25) 92.99 (±0.25) 0.08 0.04
93 81.81 (±0.60) 78.86 (±0.49) 86.97 (±0.80) 85.00 (±1.30) 86.57 (±0.65) 86.94 (±1.55) 0.2 0.12
94 82.29 (±0.33) 82.25 (±0.74) 92.36 (±0.44) 92.13 (±0.36) 92.36 (±0.44) 92.13 (±0.36) 0 0
95 69.68 (±0.73) 63.33 (±3.00) 64.25 (±2.02) 68.71 (±1.29) 59.73 (±0.53) 63.23 (±1.57) 0.7 0.4
96 44.17 (±1.75) 52.19 (±3.66) 51.55 (±3.66) 58.66 (±6.89) 51.55 (±3.66) 59.25 (±3.45) 0 0.15
97 54.68 (±0.90) 55.00 (±2.77) 66.41 (±1.08) 65.87 (±1.23) 66.85 (±0.41) 68.39 (±1.15) 0.3 0.3
98 70.14 (±0.68) 69.60 (±1.57) 75.12 (±0.97) 77.34 (±0.58) 76.76 (±0.97) 77.34 (±0.58) 0.04 0
99 84.81 (±0.50) 84.59 (±0.43) 82.61 (±0.95) 86.90 (±1.00) 87.84 (±0.40) 87.31 (±0.63) 0.15 0.3
100 85.43 (±0.41) 85.57 (±0.61) 96.70 (±0.23) 96.55 (±0.28) 95.44 (±0.29) 96.55 (±0.28) 0.02 0
101 77.75 (±0.35) 77.81 (±0.64) 83.98 (±0.88) 87.49 (±1.16) 83.98 (±0.88) 87.49 (±1.16) 0 0
102 76.49 (±0.94) 75.98 (±2.99) 99.66 (±0.10) 99.59 (±0.13) 99.66 (±0.10) 99.59 (±0.13) 0 0
103 50.63 (±0.95) 50.79 (±0.76) 71.37 (±1.34) 68.87 (±1.14) 71.37 (±1.34) 67.63 (±1.01) 0 0.2
104 53.61 (±0.41) 53.02 (±0.85) 69.97 (±1.15) 68.28 (±0.62) 71.02 (±0.75) 68.28 (±0.62) 0.06 0
105 91.60 (±0.83) 91.55 (±0.47) 96.55 (±0.25) 97.32 (±0.58) 98.08 (±0.50) 98.57 (±0.33) 0.04 0.02
106 49.87 (±0.42) 51.18 (±0.87) 54.34 (±2.50) 53.42 (±2.52) 54.74 (±1.34) 56.71 (±1.61) 0.06 0.25
107 66.75 (±2.50) 64.06 (±7.99) 93.92 (±0.65) 96.45 (±0.18) 93.91 (±0.28) 96.45 (±0.18) 0.04 0
108 69.45 (±0.73) 69.59 (±0.60) 97.56 (±0.28) 97.54 (±0.29) 97.91 (±0.21) 97.81 (±0.33) 0.02 0.02
109 75.50 (±0.00) 74.48 (±0.70) 77.84 (±0.04) 78.83 (±0.17) 77.95 (±0.27) 78.83 (±0.17) 0.3 0
110 87.50 (±0.00) 87.50 (±0.00) 87.50 (±0.00) 62.50 (±0.00) 87.50 (±0.00) 62.50 (±0.00) 0 0
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Table A2. Cont.

ID Prot-HDCL
simHam

Prot-HDCL
simdot

AM-HDCL
α = 0

MM-HDCL
α − 0 AM-HDCL MM-HDCL AMα MMα

111 96.72 (±0.14) 95.73 (±1.16) 96.76 (±0.12) 97.50 (±0.11) 97.47 (±0.06) 97.50 (±0.11) 0.04 0
112 71.14 (±0.56) 72.24 (±0.80) 82.56 (±0.98) 83.67 (±0.97) 82.56 (±0.98) 83.67 (±0.97) 0 0
113 76.56 (±0.76) 76.95 (±0.53) 81.95 (±1.06) 81.46 (±1.03) 81.95 (±1.06) 82.56 (±0.87) 0 0.02
114 61.89 (±0.31) 61.87 (±1.05) 93.96 (±0.52) 78.58 (±1.77) 93.96 (±0.52) 82.31 (±0.49) 0 0.15
115 79.99 (±0.29) 79.61 (±0.71) 84.03 (±0.44) 84.96 (±0.57) 86.02 (±0.30) 85.75 (±0.29) 0.06 0.1
116 79.43 (±0.31) 81.64 (±1.01) 85.43 (±0.28) 85.43 (±0.67) 85.89 (±0.30) 85.43 (±0.67) 0.06 0
117 97.67 (±0.18) 96.82 (±0.72) 96.88 (±0.40) 98.24 (±0.63) 98.30 (±0.60) 98.75 (±0.59) 0.04 0.02
118 42.56 (±0.82) 29.13 (±1.41) 59.11 (±0.63) 60.30 (±0.52) 60.51 (±0.51) 60.31 (±0.37) 0.12 0.1
119 34.27 (±0.41) 30.92 (±0.88) 53.56 (±0.66) 53.63 (±0.42) 55.50 (±0.21) 55.13 (±0.41) 0.06 0.06
120 50.06 (±0.53) 49.82 (±1.06) 54.89 (±1.21) 57.93 (±0.83) 58.14 (±0.81) 57.99 (±1.01) 0.25 0.12
121 96.40 (±0.52) 93.10 (±1.29) 99.00 (±0.00) 98.60 (±0.70) 98.80 (±0.42) 98.90 (±0.32) 0.3 0.3
mean 70.92 (±16.05) 67.43 (±19.35) 79.00 (±16.55) 78.89 (±16.32) 80.49 (±15.40) 80.27 (±15.25)
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