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Abstract: Inter-state cyberattacks are increasingly becoming a major hidden threat to na-
tional security and global order. However, current prediction models are often constrained
by single-source data due to insufficient consideration of complex influencing factors,
resulting in limitations in understanding and predicting cyberattacks. To address this
issue, we comprehensively consider multiple data sources including cyberattacks, bilateral
interactions, armed conflicts, international trade, and national attributes, and propose
an interpretable multimodal data fusion framework for predicting cyberattacks among
countries. On one hand, we design a dynamic multi-view graph neural network model
incorporating temporal interaction attention and multi-view attention, which effectively
captures time-varying dynamic features and the importance of node representations from
various modalities. Our proposed model exhibits greater performance in comparison
to many cutting-edge models, achieving an F1 score of 0.838. On the other hand, our
interpretability analysis reveals unique characteristics of national cyberattack behavior.
For example, countries with different income levels show varying preferences for data
sources, reflecting their different strategic focuses in cyberspace. This unveils the factors
and regional differences that affect cyberattack prediction, enhancing the transparency and
credibility of the proposed model.

Keywords: cyberattack prediction; graph neural networks; attention mechanism; multimodal
data fusion; international relations

1. Introduction
Currently, cyberspace, as an emerging geopolitical arena, is reshaping the geopolitical

landscape and the global balance of power [1,2]. In this turbulent environment, some state
and non-state actors are weaponizing cyber capabilities, increasingly using cyber opera-
tions as the preferred means for building geopolitical competitive advantages, whether
to support their economies or to challenge the sovereignty of other nations [3]. In this
context, given the high frequency and significant threats of cyberattacks, it is crucial to
predict potential cyberattacks.

At present, research on cybersecurity at the national level can be broadly divided into
two distinct fields: macro-level research and micro-level research. Macro-level research
focuses on larger regions and uses aggregated data or indicators (e.g., fixed broadband
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subscriptions) to understand the driving factors of cyberattacks. Researchers in this field
believe that national-level cyberattack activities are complex phenomena related to political
motivations, military strategies, social culture, national sentiments, etc. [4–7]. These studies
provide valuable insights into the overall trends and motivations behind cyberattacks.
Meanwhile, micro-level research concentrates on specific attackers or attack methods and
uses fine-grained data (e.g., network traffic) to analyze cyber threats. Machine learning, data
mining and other techniques are often employed to detect anomalies or forecast potential
cybersecurity incidents [8–12]. These approaches have achieved significant success in
identifying specific attack patterns and making short-term prediction.

Despite the valuable contributions made by the aforementioned studies, there exists a
disconnect between the two areas of research. In fact, the essence of inter-state cyberattacks
is a concrete manifestation of international relations in specific practical activities. These
malicious cyber actions do not occur in isolation, but are inevitably influenced by a series
of relationships, including political, economic, military, diplomatic, and cultural factors,
with the aim of achieving deterrence effects or altering the information balance with
adversaries [13]. Therefore, these observable or monitorable features at the macro level
can serve as effective early predictive indicators of abnormal activities or hostile actions
in cyberspace [14]. Unfortunately, there is a lack of a connective bridge between the two
areas of research, which leads to the following key issues. First, predictive capability
is limited. On one hand, while macro-level factors can help understand cyber attack
behaviors at the national level, they are often insufficient to make accurate and timely
prediction for specific cyberattacks due to their large spatiotemporal scale. On the other
hand, without integrating macro-level factors, micro-level predictive models fail to account
for the broader context that influences the likelihood of cyberattacks, which may impact
their prediction effectiveness. Second, the predictive results lack interpretability. Models
focusing solely on micro-level data often provide limited insights into the root causes
and motivations behind cyberattacks, making it difficult for decision-makers to formulate
informed strategies.

To address these limitations, a more systematic approach is required to bridge the gap
between macro-level factor analysis and micro-level prediction. To this end, we propose a
multimodal data fusion framework for predicting cyberattacks, aimed to effectively predict
and explain malicious cyber behaviors among countries. Specifically, the framework inte-
grates multiple data sources, including historical cyberattack records, inter-state interaction
events, armed conflict incidents, international trade data, and national attribute information.
This comprehensive integration of data not only enables us to capture direct technical indi-
cators of cyberattacks, but also incorporates broader geopolitical and economic factors that
influence inter-state cyberattacks. Furthermore, an interpretability module is incorporated
into the framework. By leveraging explainable boosting machine and attention weight
analysis, we can gain deeper insights into the decision-making process of the model and
reveal the relative importance of different features and datasets in predicting cyberattacks.

Based on the aforementioned considerations, we propose a dynamic multi-view graph
neural network to model the time-varying relationships between countries while capturing
the interdependencies among different data modalities. First, static graph neural networks
(e.g., GCN and GAT) are designed for fixed graphs, making them inadequate for capturing
the temporal evolution of inter-state relationships, where nodes (i.e., countries), edges
(i.e., bilateral relations), and attributes (i.e., national characteristics) change continuously
over time [15,16]. Second, dynamic graph neural networks typically rely on sequential
models such as LSTM or GRU to process temporal dependencies, but they fail to fully
account for cross-modal interactions among different data modalities (e.g., cyberattacks
and armed conflicts) [17,18]. Lastly, although multi-view graph neural networks can handle
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multiple interaction types, existing methods are usually limited to static snapshots, over-
looking the temporal dynamics within each view [19,20]. These limitations motivate our
proposed dynamic multi-view graph neural network, which integrates temporal interaction
attention mechanism and multi-view attention mechanism to simultaneously model the
time-varying dynamics of country relations and the cross-modal dependencies among
different data sources.

The contributions of this paper are mainly reflected in the following aspects:

• Unlike previous studies that focus solely on either macro-level geopolitical analysis or
micro-level technical research, we innovatively apply the concept of multimodal data
fusion to the scenario of inter-state cyberattack prediction, overcoming the limitations
of traditional single-source data approaches.

• We propose a novel multimodal fusion model based on GNN that can captures
temporal dependencies and multi-view interactions simultaneously. That is, the tem-
poral interaction attention mechanism captures the evolving dependencies among
various data modalities over time, while the multi-view attention mechanism adap-
tively weights different modalities to achieve effective integration of heterogeneous
data sources.

• To ensure transparency and credibility, we integrate explainable boosting machine and
attention-based weight analysis. Through this approach, we identify key geopolitical
and economic factors underlying cyberattacks and highlight regional disparities,
providing valuable insights for policymakers and cybersecurity professionals.

The rest of this paper is organized as follows. Section 4 describes the research data and
their selection criteria. Section 5 introduces the architecture and core components of the
interpretable multimodal data fusion method. In Section 6, we present the results through
comparative experiments and ablation experiments. In Section 7, we discuss the results in
depth, uncover the complex factors that influence cyberattack activities, and highlight the
limitations of our study. Finally, we conclude this paper in Section 8.

2. Research Objectives
This study aims to develop a multimodal fusion framework that provides advanced

prediction tools and explains the complex factors influencing inter-state cyberattacks.
The research objectives are as follows:

• RO1: To construct a comprehensive multimodal dataset (Section 4). By integrating
data from multiple sources—cyberattack records, geopolitical news events, armed
conflicts, international trade, and national attributes—we aim to provide a holistic
view of cyberattack behaviors and their underlying factors. The rationale behind
choosing these data sources is to incorporate diverse perspectives that offer richer
context than any single data source could provide.

• RO2: To design an advanced multimodal data fusion architecture (Section 5.1). Due to
the complexity (e.g., interactivity and dynamics) of bilateral relations between nations,
we need to design a novel dynamic multi-view graph neural network architecture
to capture both interaction features and temporal characteristics among national net-
works in different domains (i.e., different datasets). This model structure is intended to
optimize information integration from different modalities to improve the predictive
ability of inter-state cyberattacks (Sections 6.2 and 7.2).

• RO3: To conduct interpretable analysis of inter-state cyberattacks (Section 5.2). An-
other primary focus of this study is to enhance the interpretability of cyberattack
predictions and bridge the gap between computational methods and geopolitical
analysis. We need to leverage some interpretability techniques to provide insights into
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key characteristics and regional patterns that influence cyberattack activities, thereby
offering actionable information for decision-makers (Sections 6.3 and 7.1).

3. Related Work
This section reviews related research work from the following three aspects. First,

we introduce the quantitative analysis of inter-state cyberattacks, clarifying the multidi-
mensional factors influencing national cyber behaviors. Second, we review prediction
methods for cyberattacks based on digital media data. Third, we summarize the technical
developments of graph neural networks in static graphs, dynamic graphs, and multi-view
graphs. Additionally, in the final subsection, we provide a summary that clarifies the
starting point of this study, as well as its relationship with the above three areas of research.

3.1. Quantitative Analysis of Inter-State Cyberattacks

Existing research shows that cyberattacks at the national level are a complex social
phenomenon influenced by various factors. From the perspective of national characteristics,
Hunter et al. [21] studied the relationship between regime type, military power, economic
power, and cyberattacks. Kumar and Carley [22] employed network analysis to reveal
the correlations between cyberattacks and various factors like the corruption index, GDP,
and internet bandwidth. Chen et al. [6] constructed a theoretical framework integrating
social, economic, political, and technological factors, revealing the causal relationships be-
tween cybercrime and diverse contextual factors. From the standpoint of state interactions,
Kumar and Carley [7] analyzed the impact of inter-state sentiment on cyberattacks using
social media data. Akoto [23] investigated the nonlinear dynamic effects of international
trade composition on cyberattacks. Manzano [24] uncovered the connections between
APT (Advanced Persistent Threat) and geopolitical and economic factors by analyzing
numerous geopolitical events. These studies explored the driving factors of inter-state
cyberattacks from different angles, which provides a theoretical foundation for introducing
multiple datasets in our modeling.

3.2. Cyberattack Prediction Based on Digital Media Data

Digital media data, such as news reports, social media, and online blogs, have become
important sources of information for mining and predicting social events [25], with typical
applications including civil unrest detection [26], conflict prediction [27], and epidemic
tracking [28]. In cybersecurity research, researchers have constructed deep learning-based
models by collecting relevant information from digital media, aiming to predict cyberattacks
before they occur. Wang and Zhang [29] proposed a hierarchical model based on Twitter
text streams to capture both tweet-level and stream-level information, achieving early
predictions of DDoS attacks. Deb et al. [30] utilized data from hacker forums to conduct
sentiment analysis, validating the predictive power of sentiment signals for cyber events.
Pechi [31] used news data to predict politically motivated cyberattacks, and compared
various machine learning and natural language processing models in representing complex
socio-political events. Lakha et al. [32] generated political event graphs using ICEWS news
event data and proposed a prediction model based on graph embeddings and novelty
detection algorithms, highlighting the importance of inter-state interactions in predictions.
These studies demonstrate the potential of digital media data in capturing precursors to
cyberattacks. But due to their reliance on single data sources, these models have limited
predictive capabilities and cannot fully capture the diverse motivations behind cyberattacks.

3.3. Advancements in Graph Neural Networks

Graph neural networks (GNNs) are deep learning models designed to solve graph-
related tasks in an end-to-end manner, widely applied in areas like social network anal-
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ysis and recommendation systems [33,34]. Several classic GNN models, such as Graph
Convolutional Networks (GCN) [35], GraphSAGE [36], and Graph Attention Networks
(GAT) [37], perform well on static graphs but fall short in handling time-varying graph
(i.e., nodes, attributes, and edges change over time) [15,16]. To address this challenge,
researchers developed dynamic graph models that integrate sequence models with GNNs
to capture temporal dependencies. For example, architectures based on recurrent neural
networks (RNNs), including long short-term memory (LSTM) and gated recurrent units
(GRU), utilize a series of graphs or their representations to learn time-aware embeddings
embeddings [17,18]. The incorporation of attention mechanisms further improve the un-
derstanding of the most relevant time points for each representation [38,39]. Additionally,
real-world networks often exhibit multi-view characteristics, where each view describes
a type of interaction among a common set of nodes [40]. In multi-view learning, existing
work has developed multi-relational learning, multi-attribute learning, and hybrid learning
based on the input forms to achieve effective fusion of multi-dimensional information [41].
Despite the rapid development of GNNs, there is a scarcity of studies that model dynamic
graphs and multi-view graphs simultaneously [19,20,42].

3.4. Multimodal Data Fusion

Multimodal data fusion techniques integrate heterogeneous information from different
modalities (e.g., text, images, audio, and sensor data) to explore the complementarity and
interconnections among data, thereby enhancing a model’s ability to understand complex
phenomena [43,44]. Current multimodal fusion approaches can be broadly categorized into
data-driven and model-driven methods. Data-driven methods are based on matrix and
tensor decomposition techniques, which reduce dimensionality of complex multimodal
data or decompose it into multiple low-dimensional factors, thereby revealing intrinsic cor-
relations between different modalities. Examples include independent component analysis,
parallel factor analysis, and coupled tensor decomposition [45]. Model-driven methods fo-
cus on designing end-to-end deep learning architectures, including early fusion, late fusion,
hybrid fusion and other methods. Early fusion (feature-level fusion) integrates all features
from different modalities into a single feature vector, which is suitable for scenarios where
modalities are interdependent but requires strict data alignment. Late fusion (decision-level
fusion) allows each modality to be modeled independently, making it preferable when one
modality dominates the decision-making process. Hybrid fusion combines feature-level
and decision-level fusion strategies, leveraging the benefits of both while mitigating their
respective limitations [46,47]. In terms of applications, multimodal fusion techniques have
demonstrated significant value in multiple domains. For example, in social networks,
the integration of text, images, and user behavior data can substantially improve the ac-
curacy of tasks such as sentiment analysis, social media popularity prediction, and event
detection [48–51]. In environmental monitoring, the fusion of spatiotemporal data from
satellite remote sensing, meteorological radar, and ground-based sensors facilitates disaster
event detection, damage assessment, and early warning systems [52–54]. In the field of
security, integrating social media data, historical event records, and geographic information,
combined with social network analysis and spatiotemporal graph convolution, enables
the dynamic prediction of terrorist attack risks [55,56]. Building on these studies, we pro-
pose a GNN-based dynamic multimodal data fusion method and employ explainability
techniques to analyze the impact of multimodal data on cyberattack prediction, thereby
enhancing the model’s predictive accuracy and decision-making transparency.
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3.5. Motivation and Methods

In light of the above research findings, this study introduces a new approach to enhance
both the predictive capability and interpretability of inter-state cyberattacks. Our approach
builds upon insights from these four primary research areas. Specifically, quantitative
research in international relations has identified a series of factors influencing inter-state
cyberattacks, such as economic connections, political relations, and military activities.
However, these studies often focus on statistical analysis rather than predictive modeling,
missing an opportunity to directly utilize these indicators to forecast prediction. On the
contrary, in the field of computer science, efforts to predict state-level cyberattacks using
digital media data, such as news reports or social media, are often limited by relying on
a single data source, which may fall short in predictive power. Therefore, we attempt to
bridge this gap by constructing a multimodal dataset specifically designed for inter-state
cyberattack prediction, where each data modality is represented as a dynamic interaction
network between nations. Consequently, the inherent graph structure of these network
relations (where nations serve as nodes and interactive events serve as edges) naturally
aligns with the functionality of GNNs.

Following this line of thinking, we want to integrate advanced GNN techniques into a
multimodal data fusion framework. However, existing methods remain suboptimal for
inter-state cyberattack prediction due to several limitations. Classical GNNs (e.g., GCN and
GAT) excel at learning node representations in static graphs, which is incompatible with
the dynamic nature of inter-state relations. While dynamic GNNs can capture temporal
patterns, they treat all interactions as homogeneous, ignoring the distinct semantics of
multimodal data. In contrast, multi-view GNNs can effectively handle different types of
node interactions but typically treat them as static entities, rendering them unsuitable for
time-sensitive prediction tasks. These limitations hinder their applicability in cyberattack
prediction, where both dynamic and multimodal characteristics are crucial. To address
these challenges, we propose a novel architecture that combines temporal interaction
attention (to learn time-aware dependencies within and across views) and multi-view
attention (to adaptively weight the importance of each modality). This design enables our
model to process dynamic multi-view graphs, that is, to capture complex and time-varying
dependencies across modalities, and to achieve feature fusion, thereby improving the
predictive capability of inter-state cyberattacks.

Furthermore, by incorporating interpretability techniques, we hope to validate and
extend insights derived from quantitative research. Through explainable boosting machine
and attention-based weight analysis, our approach not only verifies the importance of
previously identified factors but also uncovers new patterns in inter-state cyberattacks.
This deeper and more subtle understanding of cyberattack behaviors at the national level
can strengthen the theoretical foundation of our method while providing valuable insights
for policymakers.

4. Dataset Creation
In order to thoroughly describe the multifaceted factors influencing inter-state cyber-

attacks, we construct a dataset that considers data from multiple aspects, including the
technical characteristics of cyberattacks, geopolitical context, trade exchanges, and national
attributes. This section will elaborate on each data sources and their selection rationale.
Table 1 provides statistical information for each data.
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Table 1. Summary statistics of five data.

Data Time Scale #Snapshots #Nodes/Snapshot #Edges/Snapshot #Edge Features

Cyber attack Day 366 220 1681 3
News event Day 366 179 495 2
Armed conflict Day 366 66 201 2
International trade Year 1 210 29,488 2
National similarity Year 1 222 49,062 1

Cyber attack data is central to the prediction, as it directly records historical cyberattack
incidents among countries. Previous studies have shown that past attack patterns are
important indicators for predicting future attacks [8,9]. In this study, we use the DAM
(Digital Attack Map) dataset [57], which collects DDoS attacks occurring between pairs of
countries. We use this dataset to construct 366 temporal snapshot graphs, with an average
of 220 nodes and 1681 edges per graph. Nodes represent different countries, while edges
represent attack incidents between two countries, with attributes including attack type,
attack duration, and maximum traffic flow.

News event data provides rich contextual information, reflecting geopolitical relations
between countries. Some studies have indicated that geopolitical events and changes in
international relations often serve as precursors or triggers for cyberattacks [24,58]. This
study use the ICEWS (Integrated Crisis Early Warning System) dataset [59], which collects
news events occurring globally that often signal potential conflict or cooperation. We
use this dataset to construct 360 temporal snapshot graphs, with an average of 179 nodes
and 495 edges per graph. Edges indicate the daily interaction between two countries.
And their attributes consist of CAMEO (Conflict and Mediation Event Observations) codes
corresponding to a specific type of events or behaviors, as well as intensity scores reflecting
the degree of hostility or cooperation of the events.

Armed conflict data mirrors tensions and violent conflicts between countries. Past
history has shown that in today’s information age, cyberattacks are often integrated with
other conventional military forces [60,61]. We chose the UCDP (Uppsala Conflict Data
Program) dataset [62], which provides statistical data on global violence and war events
since 1946. Similarly, we construct 366 temporal snapshot graphs, with an average of
66 nodes and 201 edges per graph. Edges mean armed conflict between two countries,
with attributes including type of conflict and number of fatalities.

International trade data presents the economic connections and cooperation between
countries, which may influence the motivations and target selection for cyberattacks [23,63].
In this study, we utilize the Gravity [64] dataset, a widely used international trade database
develop by the French research institution CEPII. Different from the previous datasets,
this dataset collects annual trade data of countries and regions worldwide. So we only
construct a graph on a one-year scale, including 210 nodes and 29,488 edges. Edges denote
trade relationships between two countries, with attributes including product categories
and export/import amounts.

National attribute data provides multidimensional national characteristics that help
assess a country’s tendency and ability to launch or defend against cyberattacks. Research
suggests that factors such as regime type, technological level, and military strength, directly
influence a country’s behavior in cyberspace [5,6,21]. As a result, we use data from theGlob-
alEconomy [65], which offers over 500 indicators for more than 200 countries and regions
from 1960 to the present. Referring to previous studies [4–6,21,66,67], we select a broad
range of 54 indicators to describe national attribute characteristics in the fields of economic,
military, political, technological, etc. Furthermore, we calculate the degree of similarity
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between each pair of countries, and obtain an annual scale graph with 222 nodes and
49,062 edges, where each edge represents the similarity of attributes between two countries.

Based on the above data, we create a multimodal dataset for predicting inter-state
cyberattacks. First, our experiments consider cyberattack events over 366 days from
1 January to 31 December 2020. Specifically, we employ a sliding window algorithm with a
window size of 1 week (7 days) and a shift interval of 1 day. For each window, we generate
a static graph for each day. We then use 7 consecutive graphs to predict the likelihood of an
attack occurring between any pair of countries in the next day. That is, each dynamic graph
used in the experiments contains a sequence of 8 static graphs. As we predict, for each
graph, regardless of whether there will be one attack or multiple attacks in the next day,
we treat the problem as a binary classification task. Then, in the same way, we construct
graph structure for the other 4 modal data as background information to jointly participate
in the prediction of inter-state cyberattacks. It should be noted that since the international
trade data and national similarity data only have one annual scale graph, we duplicate
them seven times to construct a graph sequence for subsequent unified modeling. Finally,
after removing graph sequences with too few nodes or edges in their static graphs, we
construct a total of 327 dynamic graphs for our experiments.

5. Methodology
The architecture of the proposed method is shown in Figure 1, which mainly includes

two parts. (1) Multimodal data fusion model. This model adopts the dynamic graph neural
networks and utilizes attention mechanism to fuse features extracted from different data
to predict whether a cyberattack will occur between two countries in the next time step.
(2) Interpretable framework. This section explores the complex relationships between input
data and output results from both ante-hoc (using explainable boosting machine) and
post-hoc (using attention weights analysis) perspectives, quantifying the impact of different
features and data sources on cyberattacks.

Figure 1. Overall architecture of the interpretable multimodal data fusion framework.
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5.1. Multimodal Data Fusion Model

The main task of dynamic multi-view graph neural networks is to simultaneously
capture heterogeneous information and temporal evolution patterns on multiple dynamic
graphs. To this end, we propose a novel network architecture, as shown in part 1 of
Figure 1. Firstly, a graph propagation attention module is used to encode each snapshot
of each view, combining graph structure, node features, and edge features at the same
time. Next, a temporal interaction attention module is used to learn temporal evolution
patterns, which exploits complementary information from different views. Finally, we use
multi-view attention module to fuse features from multiple views and obtain the final node
representations for downstream link prediction tasks.

5.1.1. Problem Definition

In a dynamic multi-view graph, each node u ∈ U and each edge e ∈ E are as-
sociated with a view v ∈ V and a timestamp t ∈ T . Thereby, we formally repre-
sent the dynamic multi-view graph as G = {Gv,t}|V|,|T |

v=1,t=1 = (U , E). Given a view v,

Gv = {Gv,t}|T |
t=1 = (U v, E v) is a dynamic graph which can be represented as a series of

graph snapshot sequences. Here, each snapshot is a static graph Gv,t = {Gv,t} = (U v,t, E v,t),
with a node set U v,t and its attribute information Xv,t

u ∈ R|U |× fu , as well as a edge set E v,t

and its attribute information Xv,t
e ∈ R|E |× fe at view v and time t. Our goal is to predict

whether there exists a connecting edge e between each pair of nodes in the graph at the next
time step t + 1, based on the dynamic multi-view graph up to the previous t time steps.

5.1.2. Graph Propagation Attention

Taking into account the structural features, node features, and edge features of each
snapshot in each view, the graph propagation attention introduces the multi-head attention
mechanism into graph learning, which is called graph transformer [68–70]. Specifically,
for view v and time step t, given node features Xv,t

u = {xv,t
u0 , xv,t

u1 , . . . , xv,t
ui , . . .}, the attention

mechanism calculates the correlation of each node pair (xv,t
ui , xv,t

uj ). And in order to incorpo-

rate the edge information that connects these nodes, the edge feature xv,t
eij is encoded and

added to the key and value vectors, as shown in Equation (2). Finally, after obtaining the
multi-head attention, the information from node j to node i is aggregated to obtain the new
representation hv,t

i for node i, as shown in Equation (3).

qv,t
c,i = Wv,t

c,q xv,t
ui

, k̂v,t
c,j = Wv,t

c,k xv,t
uj

v̂v,t
c,j = Wv,t

c,v xv,t
uj

, ev,t
c,ij = Wv,t

c,e xv,t
eij

(1)

kv,t
c,j = k̂v,t

c,j + ev,t
c,ij, vv,t

c,j = v̂v,t
c,j + ev,t

c,ij (2)

hv,t
i = Wv,t

i ∥C
c=1

[
so f tmax(qv,t

c,i
T

kv,t
c,j )v

v,t
c,j

]
(3)

where, q, k and v represent the query, key, and value vectors in the attention mechanism,
W denotes the learnable parameters, c = 1 to C represents the number of attention heads,
and ∥ denotes the concatenation operation.

5.1.3. Temporal Interaction Attention

Temporal evolution patterns exhibit the emergence and disappearance of nodes
and edges over time. While the graph propagation attention can effectively capture the
heterogeneity of static snapshots, it can not model patterns that evolve over time. Re-
cently, temporal self-attention has significantly enhanced the performance to dynamic
graph embedding methods. Inspired by Sankar et al. [39] and Wei et al. [71], we ex-
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tend the existing temporal self-attention models by introducing a cross-attention mech-
anism and design a temporal interaction attention module. It is used to capture deeper
evolutionary patterns across different views and temporal snapshots, enabling simul-
taneous modeling of both inter-modal and intra-modal relationships. The input com-
prises node features Hv f = {hv f ,t1 , hv f ,t2 , ..., hv f ,ti , ...} from view v f and node features
Hvg = {hvg ,t1 , hvg ,t2 , ..., hvg ,ti , ...} from another view vg. The output is a new node represen-
tation Ĥv f = {ĥv f ,t1 , ĥv f ,t2 , ..., ĥv f ,ti , ...} that fuses the historical information from both its
own view v f and another view vg, as shown in Equation (4).

ĥv f ,ti =W
v f ,ti
1 ∥C

c=1

[
so f tmax(q

v f ,ti
c

T
k

v f ,tj
c + Mij)v

v f ,tj
c

]
+W

v f ,ti
2 ∥C

c=1

[
so f tmax(q

v f ,ti
c

T
k

vg ,tj
c + Mij)v

vg ,tj
c

] (4)

In fact, the first part of Equation (4) can be understood as self-attention mechanism,
used to capture the temporal changes of the dynamic view v f over time steps. The query
qv f , key kv f , and value vv f are all derived from the input node hv f multiplied by the linear
projection matrices W

v f
q , W

v f
k , W

v f
v , respectively, as shown in Equation (5). The latter part of

Equation (4) can be understood as cross-attention mechanism, used to capture the historical
influence of another dynamic view vg on that dynamic view v f . The query remains qv f ,
while the key kvg and value vvg are derived from the input node hvg multiplied by the linear
projection matrices W

vg
k , W

vg
v , respectively, as shown in Equation (6).

q
v f ,ti
c = W

v f ,ti
c,q hv f ,ti , k

v f ,tj
c = W

v f ,tj
c,k hv f ,tj

v
v f ,tj
c = W

v f ,tj
c,v hv f ,tj

(5)

k
vg ,tj
c = W

vg ,tj
c,k hvg ,tj , v

vg ,tj
c = W

vg ,tj
c,v hvg ,tj (6)

where, q, k and v represent the query, key, and value vectors in the attention mechanism, W
represents the learnable parameters, c = 1 to C denotes the number of attention heads, and ∥
denotes concatenation operation. Additionally, to prevent leakage of future information,
we use a mask matrix M ∈ RT×T . When Mij = −∞, it means that the attention from time
i to time j is turned off, corresponding to zero elements in the softmax attention weight
matrix, as shown in Equation (7).

Mij =

0, i ≤ j

−∞, otherwise
(7)

5.1.4. Multi-View Attention

After the temporal interaction attention, we obtain the node representations for all
dynamic views at the time step t, denotes as Ĥt = {ĥv1,t, ĥv2,t, ..., ĥvi ,t, ...}, which has already
incorporated historical information from the previous t time steps. However, not all
representations contribute equally to predicting labels. Therefore, we introduce an attention
mechanism to adaptively assign different importance weights to node representations from
different views, and aggregate the node representations of all views together to form a fully
data-driven fused node representation [72]. Specifically, each view’s node representation
ĥvi ,t is transformed into corresponding hidden representation zvi ,t through a single-layer
MLP (Multi-Layer Perceptron), as shown in Equation (8). Then, the importance of each
view’s node representation is measured by the similarity between zvi ,t and an introduced
context query vector Uvi . And the attention weight αvi is calculated using the softmax
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function, as shown in Equation (9). Finally, the fused node representation zt is computed as
the weighted sum of Ĥt, as shown in Equation (10).

zvi ,t = tanh
(

Wvi ĥvi ,t + bvi
)

(8)

αvi ,t =
exp

(
Uvi Tzvi ,t

)
∑V

i=1 exp
(

Uvi Tzvi ,t
) (9)

zt =
V

∑
i=1

αvi ,tzvi ,t (10)

where, W and U represent learnable parameters.

5.1.5. Structure Evolutionary Loss for Link Prediction

Finally, in order to enable the learned representation to capture structural evolution,
we define an objective function for link prediction, as shown in Equation (11). This function
uses binary cross-entropy loss at time step t to ensure that node i and its nearby nodes j
have similar embedding features. Intuitively, this function brings similar nodes closer in
the latent space while pushing dissimilar nodes apart.

L
(
zt

i
)
=− log

(
σ
(
< zt

i · zt
j >

))
− qn ·Ej′∼Pn(i) log

(
σ
(
< zt

i · zt
j′ >

)) (11)

where, σ is an activation function (e.g., sigmoid function), and < · > represents the inner
product operation. Node j is a first-order neighbor of node i, which can be relaxed to
nodes j co-occurring with node i in a fixed-length random walk. Node j′ is a negative
sampling node, which is disconnected from i, and obtained according to the negative
sampling distribution Pn. qn is an adjustable hyperparameter used to balance positive and
negative samples.

5.2. Interpretable Framework

As is well known, deep learning models are black-box models that can accurately
predict future results based on input data, but do not elucidate the decision-making mech-
anism. In fact, the deep semantic differences in multimodal data contribute differently
to the uncertainty of the results. To this end, we design an interpretable framework that
includes two modules: ante-hoc and post-hoc interpretability, as shown in part 2 of Figure 1.
The former calculates the contribution of different features using explainable boosting ma-
chine before prediction, and the latter extracts attention weights from multi-view attention
module to further analyze the importance of various data sources after the prediction.

5.2.1. Ante-Hoc Interpretability

Explainable boosting machine (EBM) is a generalized additive model (GAM) that
can quantitatively analyze the impact of input features on the results. Compared to
traditional GAM, EBM provides several important improvements by employing bagging,
gradient boosting and a set of shallow regression trees. The model uses a very low learning
rate and an iterative cyclic gradient boosting algorithm to learn each feature function fi,
rendering the order of features non-essential. To mitigate the impact of collinearity, EBM
iteratively traverses the attributes to identify the most influential attribute function fi for
each attribute. Subsequently, it incorporates the information from each attribute into the
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prediction process. Finally, EBM can automatically detect pairwise interaction terms, further
improving accuracy while maintaining interpretability, as shown in Equation (12) [73–75].

g(E[y]) = β0 + ∑ fi(xi) + ∑ fi,j
(
xi, xj

)
(12)

where g(·) is the link function, β0 is the intercept term, x is the attribute, and f is the
feature function.

5.2.2. Post-Hoc Interpretability

Section 5.1.4 proposes a learnable attention module for fusing node representa-
tions from multiple views into one representation. By extracting the weights (i.e., α in
Equation (9)) from this module, we visualize the weights of each node. This allows for
an intuitive analysis of the different contributions of each data source to the representa-
tion of each node, thereby revealing the personalized prediction logic for specific nodes
(i.e., countries), and enhancing the credibility of the decisions.

6. Results
6.1. System Design and Implementation

This section provides an overview of the overall framework design and experimental
setup. The framework consists of two modules: the multimodal data fusion module and
the explainability module. By integrating these two components, we achieve effective
prediction of inter-state cyberattacks while providing interpretable result analysis.

The multimodal data fusion module serves as the core of the framework, aiming
to integrate information from multiple data sources to enhance the model’s predictive
capability for cyberattacks. Specifically, this module includes the following key steps.

• Data preprocessing and integration. Using a time-window approach, we perform
temporal processing on cyber attack data, news event data, armed conflict data,
international trade data, and national attribute data, to ensure temporal alignment of
different modalities along the time axis (Section 4).

• Multimodal data fusion modeling. We use graph neural networks and attention mech-
anisms to achieve multimodal data fusion (Section 5.1). First, a static graph neural net-
work is utilized to capture the structural relationships among nodes within each data
modality. Then, temporal interaction attention and multi-view attention mechanisms
are applied to adaptively weight and integrate information across different modalities.

• Model training and evaluation. We design comparative experiments to validate the
effectiveness of the proposed model (Section 6.2). Specifically, the dataset is divided
into training, validation and test sets in a chronological order with a ratio of 7:2:1 to
ensure effective generalization of the model on future data. The model adopts a single-
layer architecture with 16 attention heads and a hidden layer dimension of 256. We
use AdamW as the optimizer, set the learning rate to 0.005 and the dropout rate to 0.5,
along with an early stopping strategy to prevent overfitting. We use precision, recall,
F1-score, and accuracy to evaluate the prediction effect of the model. All experiments
are conducted on an NVIDIA RTX 3090 GPU and implemented using PyTorch 2.5.1.

To interpret the prediction results and model behavior, the framework incorporates an
explainability module, which provides model interpretability through two complementary
approaches (Section 5.2).
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• Ante-hoc interpretability analysis. We employ the EBM to analyze input data and
quantify the contribution of each feature as well as pairwise interaction terms to the
model’s predictions (Section 6.3.1).

• Post-hoc interpretability Analysis. We extract the attention weights from the multi-
view attention module. This allows us to visually represent the proportion of
attention allocated to each data modality when making predictions for a given
country (Section 6.3.2).

6.2. Validation of the Proposed Model
6.2.1. Comparison of Benchmark Experimental Results

To evaluate the performance of our proposed model in the task of predicting inter-
state cyberattacks, we conduct comparative experiments with various classic and emerging
models on our dataset. Table 2 presents the average performance and standard deviation
of each model over 10 rounds.

For a start, traditional machine learning models, including logistic regression (LR) [76]
and gradient boosting decision tree (GBDT) [77], perform well in precision, with 0.878 and
0.880 respectively. However, due to the deficiency in mining the graph structure information
of the data, they fail to fully capture the complex characteristics of each network, resulting
in relatively lower recall, F1 score, and accuracy.

The next, random walk-based graph embedding models, including node2vec [78] and
struc2vec [79], perform poorly in the prediction task, as they can only learn the topological
structure of graphs. The performance of struc2vec is particularly unsatisfactory with an F1
score of 0.750. While node2vec shows some improvement, reaching an F1 score of 0.771, it
still could not compete with graph neural network models.

After that, static graph neural networks, including GCN [36], GraphSAGE [36],
GPS [80], EGC [81], GATv2 [82] show some advantages in capturing graph structure
information. Among them, GCN shows the poorest prediction performance with an F1
score of only 0.768. GATv2 achieves the highest F1 score of 0.829, but the balance between
its precision (0.779) and recall (0.887) is relatively poor. As a result, due to the neglect of
temporal dynamics, they also suffer from insufficient performance.

In contrast, dynamic graph neural networks, including STGCN [17], DySAT [39],
DNNTSP [83], A3T-GCN [84], MPNN+LSTM [85], which can capture the dynamic evolution
of graph structures, achieve better performance. These models generally outperform static
models, particularly excelling in recall and F1 scores. For example, the F1 scores of DNNTSP
and MPNN+LSTM are 0.828 and 0.822 respectively, with better balance among precision,
recall, and F1.

Finally, the model we propose for multimodal data fusion, through designing an
innovative temporal interaction attention module, can fully explore the intrinsic correla-
tions among different data and capture the temporal characteristics. Compared to other
baseline models, our method excels in all evaluation metrics, especially achieving the best
performance in the comprehensive indicators of F1 score and accuracy, with 0.838 ± 0.006
and 0.835 ± 0.005 respectively. Moreover, it shows balanced precision (0.821 ± 0.008) and
recall (0.856 ± 0.017) with the low standard deviation, indicating stable performance that
overall surpasses both static and dynamic graph neural network models.

Table 2. Prediction results of cyberattacks between countries.

Model Types Models Precision Recall F1 Accuracy

Traditional machine
learning models

LR 0.878 ± 0.029 0.711 ± 0.102 0.783 ± 0.070 0.807 ± 0.052
GBDT 0.880 ± 0.0350.880 ± 0.0350.880 ± 0.035 0.713 ± 0.102 0.784 ± 0.070 0.808 ± 0.054
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Table 2. Cont.

Model Types Models Precision Recall F1 Accuracy

Random walk-based
graph embedding models

node2vec 0.712 ± 0.027 0.843 ± 0.076 0.771 ± 0.044 0.752 ± 0.040
struc2vec 0.722 ± 0.028 0.783 ± 0.076 0.750 ± 0.047 0.742 ± 0.041

Static graph neural
network models

GCN 0.749 ± 0.008 0.795 ± 0.043 0.768 ± 0.020 0.763 ± 0.011
GraphSAGE 0.776 ± 0.005 0.878 ± 0.018 0.824 ± 0.007 0.812 ± 0.006
GPS 0.829 ± 0.017 0.778 ± 0.065 0.800 ± 0.027 0.808 ± 0.018
EGC 0.803 ± 0.010 0.836 ± 0.024 0.818 ± 0.011 0.816 ± 0.008
GATv2 0.779 ± 0.003 0.887 ± 0.0180.887 ± 0.0180.887 ± 0.018 0.829 ± 0.007 0.817 ± 0.006

Dynamic graph neural
network models

STGCN 0.809 ± 0.006 0.843 ± 0.013 0.825 ± 0.007 0.823 ± 0.006
DySAT 0.786 ± 0.008 0.872 ± 0.014 0.826 ± 0.007 0.817 ± 0.006
DNNTSP 0.805 ± 0.009 0.854 ± 0.009 0.828 ± 0.008 0.824 ± 0.008
A3T-GCN 0.751 ± 0.008 0.851 ± 0.026 0.797 ± 0.012 0.784 ± 0.009
MPNN+LSTM 0.805 ± 0.014 0.843 ± 0.023 0.822 ± 0.010 0.819 ± 0.009

Dynamic multi-view graph
neural network models Our method 0.821 ± 0.008 0.856 ± 0.017 0.838 ± 0.0060.838 ± 0.0060.838 ± 0.006 0.835 ± 0.0050.835 ± 0.0050.835 ± 0.005

The highest value for each metric is highlighted in bold.

6.2.2. Benefits of Multimodal Data Fusion

In this section, we design several ablation experiments to emphasize the critical
role of multimodal data fusion in improving the performance and stability of inter-state
cyberattack prediction. That is, by removing data modalities other than cyberattack data,
we observe the changes in model performance. Table 3 lists the specific performance of the
model in terms of precision, recall, F1 score, and accuracy under different data combinations.

When only a single cyberattack data is used, the model achieves high recall (0.871) but
relatively low precision (0.780), indicating that while the model effectively captures true
positives, it lacks sufficient contextual information for precise predictions. By contrast, when
additional data modalities such as news event, armed conflict, international trade, and na-
tional attribute, are incorporated individually, the model’s performance improve to varying
degrees. This indicates that these heterogeneous data provides more contextual information
for capturing the multifaceted factors influencing cyberattacks, thereby enhancing overall
prediction performance. When all modalities are combined, the model achieves the best
overall performance (F1 = 0.838 ± 0.006, accuracy = 0.835 ± 0.005) with the lowest standard
deviation, demonstrating superior stability and robustness.

Here, we need to emphasize that although the improvement of model performance
by adding a single type of data might appear similar (e.g., F1 is 0.836 after adding news
event data, and F1 is 0.834 after adding armed conflict data), this does not diminish the
value of multimodal data fusion. This is because each type of data has a unique ability
to provide contextual information. For example, news event data introduces background
signals related to international geopolitics, while international trade data plays a role in the
economic dimension. In fact, each data modality provides different insights for prediction,
which we will discuss in detail in Sections 6.3 and 7.1.

Table 3. Ablation analysis.

Datasets Metric
Cyber
Attack

News
Event

Armed
Conflict

International
Trade

National
Attribute Precision Recall F1 Accuracy

✓ 0.780 ± 0.011 0.871 ± 0.0180.871 ± 0.0180.871 ± 0.018 0.822 ± 0.007 0.813 ± 0.007
✓ ✓ 0.820 ± 0.013 0.853 ± 0.022 0.836 ± 0.007 0.833 ± 0.006
✓ ✓ 0.824 ± 0.0140.824 ± 0.0140.824 ± 0.014 0.846 ± 0.024 0.834 ± 0.014 0.833 ± 0.012
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Table 3. Cont.

Datasets Metric
Cyber
Attack

News
Event

Armed
Conflict

International
Trade

National
Attribute Precision Recall F1 Accuracy

✓ ✓ 0.821 ± 0.005 0.851 ± 0.022 0.835 ± 0.010 0.833 ± 0.008
✓ ✓ 0.821 ± 0.009 0.850 ± 0.022 0.834 ± 0.008 0.832 ± 0.006
✓ ✓ ✓ ✓ ✓ 0.821 ± 0.008 0.856 ± 0.017 0.838 ± 0.0060.838 ± 0.0060.838 ± 0.006 0.835 ± 0.0050.835 ± 0.0050.835 ± 0.005

The highest value for each metric is highlighted in bold.

6.3. Interpretability of the Proposed Model
6.3.1. Feature Importance Analysis

We use EBM to quantify the contribution of each feature to cyberattack prediction.
The results are shown in Figure 2.

As shown in Figure 2a, features from the cyberattack dataset have the highest im-
portance score, totaling 67.74%. Specifically, the in degree of target nodes contributes the
most to the model’s prediction, with an importance score as high as 21.96%. Other crucial
features include the average neighbor degree of target nodes, the graph clustering coeffi-
cient of target nodes, etc. These features are all related to the structure of the cyberattack
network, indicating that graph structure (i.e., network topology) characteristics are key
factors in cyberattack prediction. Secondly, the news events dataset ranks second with a
total contribution of 11.01%. The main features include the number of event types, the total
number of events, and the intensity of each event. These features provide a macro geopolit-
ical context that helps capture the dynamics of national interactions, which are essential
external drivers that influence cyberattacks. Lastly, the total contribution of the armed
conflict dataset, the international trade dataset, and the national characteristics dataset
are 6.68%, 9.63%, and 4.95%, respectively. Concretely, the death toll and the number of
conflicts in the armed conflict dataset reveal the severity and frequency of conflicts between
countries. The trade volume and the number of product types in the trade dataset provide a
perspective on economic activities, which to some extent reflects the economic dependence
and interaction between countries. The national attribute dataset presents the comprehen-
sive characteristics of a country in politics, economy, military, etc., reflecting the overall
similarity between each pair of countries. These features offer diverse information for the
model’s prediction and contribute to the prediction of cyberattacks to varying degrees.

Furthermore, building upon the aforementioned feature analysis, we introduce pair-
wise feature interaction analysis to explore the interdependencies among features and their
impact on predictive performance, as shown in Figure 2b. To this end, we compare the
model’s performance with and without interaction terms. The experimental results indicate
that, on the complete dataset, incorporating feature interactions improves the model’s
R2 from 0.811 to 0.825, demonstrating that feature interactions can enhance predictive
capability. Additionally, when cyberattack graph features are removed, we observe an
increase in R2 from 0.201 to 0.336, suggesting that in the absence of structured cyberattack
information, feature interactions can partially compensate for missing information. This
result validates the synergistic effect between features, that is, the pairwise interactions play
a crucial role in capturing complex relationships that may be overlooked when considering
individual features in isolation. For instance, the feature interaction term (event counts &
country similarity) exhibits a high contribution rate (6.68%), indicating that the similarity
of country attributes may influence patterns of inter-state interactions, while the number of
news events reflects the intensity of bilateral relations. The combination of these two factors
enables a more effective differentiation between cooperative and conflictual dynamics,
thereby enhancing the predictive capability of the model. As a result, by considering
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both individual features and their interactions, we are able to provide a more nuanced
explanation for inter-state cyberattack prediction.

Figure 2. Feature importance scores of different datasets. (a) illustrates the feature importance scores
when cyberattack graph features are included but interaction terms are not incorporated. (b) shows
the feature importance scores when interaction terms are included but cyberattack graph features are
omitted. In these figures, CA refers to cyber attack data, NE refers to news event data, AC refers to
armed conflict data, IT refers to international trade data, and NA refers to national attribute data.

6.3.2. Attention Weight Analysis

The multi-view attention module can adaptively assign the importance weights of
each dataset for each countries. In this section, we extract weights from this module,
and present and analyze them from multiple dimensions.

Figure 3a shows that there are significant differences in the distribution of attention
weights for various countries on the five different datasets, which emphasizes the unique
contribution of each data modality to the model’s prediction. Among them, cyberattack
data has the highest weight, indicating that historical cyberattack records holds the most
important position in prediction. This is followed by news event data and armed conflict
data. International trade data and national attribute data have relatively lower weights.

Furthermore, we conduct an analysis based on income levels, illustrated in Figure 3b
and Figure 3c, which show the distribution of attention weights for countries with and
without armed conflicts, respectively. A clear trend can be observed: in areas with conflict,
the weights of cyberattack data decrease as income levels rise; conversely, for armed conflict
data, the weights increase with higher income levels. In contrast, non-conflict regions do
not exhibit a similar pattern, i.e., the weight distribution of each data modality in each
income group show no significant differences. This result indicates that in a stable national
environment, income (economic) level has a minimal impact on the preference for different
datasets in cyberattack prediction.

Immediately, we make an in-depth study of countries involved in conflicts, and pro-
vide the attention weights for the top 5 countries ranked by the number of cyberattacks
on 5 datasets, as shown in Figure 3d. For high-income countries such as the United States,
the United Kingdom, and Spain, the weight of armed conflict data is the highest, reaching
around 0.35, which reflects that armed conflict is the primary drivering force affecting
the prediction of cyberattacks in these countries. At the same time, news event data also
has a relatively high weight, exceeding 0.30, underscoring the importance of bilateral rela-
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tions in their cyberattack behavior. Notably, compared to countries at other income levels,
the weight of international trade data in this area has increased significantly, reaching
about 0.15. In contrast, the weight of cyber attack data is the lowest. The above results
suggest that high-income countries focus more on macro-level geopolitical and economic
contexts rather than on the cyber attack data itself when predicting cyberattacks. While the
low-income and middle-income countries, such as Afghanistan, Syria, and Iran, have the
highest weight of cyber attack data, and the vast majority are above 0.40. This indicates
that the future cyberattack behaviors of these countries are largely influenced by their past
cyberattack patterns.

Figure 3. Dataset weights divided by national income. (a) shows the distribution of attention weights
for different countries/regions on 5 datasets. (b,c) group countries by income level, showing the
distribution of attention weights for countries with and without armed conflict, respectively. Note:
* represents p < 0.1, ** represents p < 0.05, *** represents p < 0.01, **** represents p < 0.0001.
(d) presents the attention weights for the top 5 countries experiencing armed conflicts ranked by the
number of cyberattacks.

7. Discussion
7.1. The Main Factors Affecting the Prediction of Cyberattacks

Through ante-hoc and post-hoc interpretability analysis, we reveal the complex factors
that affect the prediction of cyberattacks among countries from the perspectives of features
and datasets, and gain insights into the intrinsic connections and differences among these
factors across different countries and regions. The two complement and corroborate
each other, providing a multi-dimensional explanatory path for predicting cyberattacks.
In general, the advantage of the interpretability of this method provides a basis for scientific
prediction, and offers decision-making support for the formulation of targeted cyber
defense strategies, such as monitoring network traffic, guiding public opinion, managing
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regional conflicts, and adjusting trade policies. This enables more precise measures to be
taken to eliminate potential cyberattack threats and safeguard national network security.

7.1.1. Feature Diversity Is Momentous for Prediction

Figure 2 indicates that among all 17 features, the graph features from the cyber attack
dataset play a pivotal role in prediction, particularly the in degree of target nodes, which
accounts for 21.96% of the importance. However, it is worth noting that the trade volume
ranks 5th and country similarity ranks 7th, surpassing many graph topology features. This
manifests that in addition to network structure information, macroeconomic and national
characteristics also provide important information for model prediction, which illustrates
the necessity and advantages of multimodal data fusion from a feature perspective. That is,
while single cyberattack data contains valuable information, it still has certain limitations.
Capturing features with different semantics from multiple viewpoints and levels can help
to fully characterize the complex factors that affect cyberattacks between countries.

Interestingly, the analysis results of EBM also indirectly prove the effectiveness of
graph deep learning in mining topological information and complex features from graph
structures [86]. The EBM model learns through manually created features, including graph
topology features provided by cyberattack data and attribute features provided by other
data sources, rather than directly learning from the graph data. These features are crucial
for cyberattack prediction, accounting for a total importance of 67.74%. Compared with
EBM that combines handcrafted features, the graph deep learning paradigm, due to its
end-to-end learning capabilities, can automatically learn node representations directly
from original graph data without the need for manual feature engineering. As a result, it
can better capture richer graph structural information and provide more valuable feature
representations for predictive tasks [87]. This lays the foundation for us to introduce graph
neural network models. Meanwhile, combined with the multimodal fusion method, we
further enhance the representation ability and prediction performance.

7.1.2. Inter-State Cyberattacks Exhibit Distinct Spatial Differences

Figure 3 shows that different countries have different degrees of dependence on vari-
ous modal data in cyberattack prediction. These differences are consistent with classical
geopolitical theories of cyber conflict, reflecting the complexity of geopolitical landscapes,
cultural traditions, and historical origins of each country or region [14]. That is, regional
conflicts, strategic confrontations [60,88], religious and ideological differences [89,90], eco-
nomic interests [91], etc., all influence and propel cyberattack behaviors in different areas.

In areas with frequent armed conflicts, most countries are low-income and middle-
income, such as Afghanistan, Syria and Iran. Their cyberattack prediction are more in-
fluenced by their own cyberattack history. We speculate this is because these countries’
religious conflicts, territorial disputes, and other historical issues are intricate and complex,
leading to political instability, which provides a breeding ground for cyberattack activities.
In other words, due to political turmoil, there is already a quantity of cyberattacks in these
countries. Therefore, when predicting cyberattacks, they tend to rely on historical cyberat-
tack data rather than other data such as news events or armed conflicts. The essence lies in
the fact that the use of cyber tools and the development of cyber capabilities can alter the
balance of military power between countries, which prompts countries in the area to regard
cyberspace as a new battlefield for gaining strategic advantages [92,93]. This is in line with
the concept of asymmetric warfare in geopolitical theory, where weaker forces confront
stronger ones through low-cost and high-efficiency means, with cyberattacks serving as a
typical example of such tactics [94,95]. For instance, known cases of state-sponsored cyber
operations collected by the Council on Foreign Relations suggest that the current cyber
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arms race is mainly a matter between Iran, Israel and the GCC (Gulf Cooperation Council)
states [96].

By comparison, high-income countries, such as the United States and the United King-
dom, are more driven by macro-level geopolitics rather than micro-level historical cyberattacks
in the prediction task. This can be seen from the higher weights of armed conflict data, news
event data, and national trade data, as these data largely represent their geopolitical and
economic tendencies [24]. This is consistent with the theories of cyber deterrence and offen-
sive cyber strategy [97–99]. Actually, this is inseparable from the global military strategy and
cyber hegemony that the above countries have long dominated [100]. They play important
roles in international affairs, widely participate in global violent conflicts and geopolitical
events [101–103], pursue open cyber deterrence policies, and tend to use cyber means to strike
against perceived potential threats [104]. For example, in 2019, the United States launched
cyberattacks on Iran’s weapons systems, marking the first time in the history of global
cyber warfare that a government publicly announced a cyber war against another sovereign
state [105].

Other countries with considerable comprehensive strength, such as Russia and India,
show more moderate weights of each dataset when predicting cyberattack activities, rank-
ing between low-income and high-income countries. This pattern can be explained from
the perspective of gray zone conflict theory. These countries occupy a unique position in
the international system—they are neither hegemonic powers that dominate the interna-
tional order nor weak states within the global system. As a result, they are more likely to
adopt gray zone strategies to safeguard their interests, rather than relying on traditional
military confrontation [106,107]. This strategic inclination shapes the complexity of their
cyberattack patterns, necessitating a comprehensive consideration of political, economic,
military, and social factors in decision-making. For example, as the main successor to
the former Soviet Union, Russia has inherited the superpower status and influence from
the Cold War era. This historical background endows Russia with a unique position in
international politics [108]. Additionally, Russia possesses formidable conventional military
forces and nuclear deterrence capabilities, and is also actively developing cyber warfare
capabilities [109]. This diversity in foreign relations and military strength may be reflected
in the diversification of its cyberattack strategies.

In summary, our explanatory analysis aligns with several geopolitical theories. In low-
income countries, cyberattacks are a continuation of historical conflicts rather than isolated
incidents, consistent with the theory of asymmetric warfare. The macro-factor-driven
pattern observed in high-income countries validates the cyber hegemony theory. And the
hybrid pattern for medium-power nations suggests that the motivations for cyberattacks
are a dynamic balance of history, geography and capabilities, which can be analyzed in
conjunction with gray zone conflict theory. These results indicate that the cyberattack strate-
gies of different countries are not random but are deeply embedded in their international
status, military strategies, and geopolitical objectives.

7.2. Advantages of the Proposed Method
7.2.1. Enhanced Prediction and Theoretical Insights into Cyberattack Behaviors

We propose a multimodal data fusion method for predicting inter-state cyberattacks.
The results of ablation experiments show that our model enhances the prediction perfor-
mance to a certain extent by leveraging the advantages of various data sources. For in-
stance, when using all data modalities, the overall performance reach its peak (F1 = 0.838,
accuracy = 0.835), higher than the model using only a single data source (F1 = 0.822,
accuracy = 0.813). This not only validates the necessity of multi-source heterogeneous
data fusion: different modal data have complementarity in describing the complexity
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and diversity of cyberattack behaviors, collectively providing comprehensive support for
predicting cyberattack activities. It also demonstrates the effectiveness of the temporal
interaction attention module and the multi-view attention module: our model can effec-
tively explore the intrinsic correlations among different modalities, achieving information
interchange and enhancement.

Moreover, it is essential to clarify that, unlike approaches that solely focus on devel-
oping state-of-the-art prediction models, our framework emphasizes interpretability and
the integration of diverse data sources. This enables it to reveal key factors and patterns of
cyberattack behaviors from geopolitical and economic perspectives. Specifically, through
explainable boosting machine and attention weight analysis, we validate the critical role
of factors such as armed conflicts, geopolitical interactions, and economic dependence in
the dynamic prediction of cyberattacks. These findings align with and reinforce insights
from quantitative studies on cyber attack behavior (as mentioned in Section 3.1). This
interdisciplinary approach goes beyond technical performance metrics and helps deepen
the understanding of cyberattacks at the national level.

7.2.2. Broader Applicability to Other State Behaviors

What is more interesting is that the significance of this study extends far beyond
cyberattack prediction. Our proposed method has broad generalizability and can be
flexibly applied to the prediction of other national-level behaviors. For instance, in the field
of armed conflict prediction, this framework can integrate historical conflict data, political
event data, military exercise data, etc., to provide a more comprehensive description of
inter-state tensions and potential conflict risks. In predicting economic sanctions, this
method can fuse historical sanction data, international trade data, bilateral relations data,
etc., to capture the complex economic and political relationships between the sanctioning
country and its targets. When forecasting changes in diplomatic relations, this approach can
synthesize information from political statements, economic interactions, cultural exchanges,
and other multifaceted data to paint a more holistic picture of evolving international
relationships. Through the interpretable multimodal data fusion framework proposed in
this study, each of the above applications benefits from higher prediction accuracy and
deeper understanding of the driving factors. In brief, this provides a powerful tool and
methodology for international relations and security research.

7.3. Limitations and Future Works

Despite this study has made some progress in integrating multimodal data to predict
inter-state cyberattacks, some limitations remain.

Firstly, the dataset used in this research is concentrated in the period from 1 January to
31 December 2020. This fails to encompass recent major events, such as the Russia-Ukraine
conflict that erupted in February 2022, which has significantly altered the global geopoliti-
cal landscape and potentially leading to new patterns and characteristics in cyberattack
behaviors between countries [110]. Although we have strived to integrate heterogeneous
data sources, some still have shortcomings in diversity, temporal scale, and coverage.
For instance, DDoS attacks are widely used due to their low implementation cost and
distributed nature, making them more difficult to attribute [7]. But there are other means
of attack, so considering only DDoS attacks can not fully reflect the cyberattack behavior
between countries. Therefore, in the future, longer-term and more diverse data sources
could be introduced. For example, data from social media platforms like Twitter (i.e., X)
could provide additional contextual information to further enhance the prediction ability
of the model [111,112].
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Secondly, while EBM and attention weights offer intuitive explanations for the model’s
decision-making process, each method has certain limitations and potential biases. EBM,
which is based on a generalized additive model, assumes that feature contributions to
the output are additive. Although it supports feature interactions, it may struggle to
fully capture highly complex nonlinear patterns or higher-order interactions. And during
training, EBM tends to prioritize features that have the most significant impact on the target
variable, which may lead to the omission of weaker yet still meaningful features, thereby
affecting the comprehensiveness of the interpretation to some extent [74,75]. Similarly,
attention mechanisms explain model decisions by assigning different weights to various
data modalities. However, these weights do not necessarily indicate causal relationships;
rather, they reflect correlations learned by the model between features and outputs. Studies
have shown that attention weights can be influenced by the distribution of training data
and model architecture, meaning that when data contains noise or biases, the interpretative
results may be affected [113,114]. Therefore, although these explainability techniques serve
as valuable tools for understanding model decisions, their outputs should be interpreted
cautiously. In real-world applications, it is essential to incorporate domain expertise to
validate insights and avoid overinterpreting the model’s causal mechanisms.

Finally, recent advances in large language models (LLMs) have demonstrated remark-
able capabilities in natural language understanding and contextual reasoning, enabling the
extraction of subtle semantic information from unstructured text [115]. In the context of this
study, one promising future direction is to incorporate LLMs to enhance the understanding
of geopolitical reports and news events. This would facilitate the capture of real-time, po-
tential triggers of cyberattacks, thereby enriching the predictive information of the model.
In addition, by combining LLMs with GNNs, we can bridge the gap between textual and
graph-based data, and realize multimodal data modeling [116,117]. For instance, while
GNNs effectively capture the dynamic interactions between nations, LLMs can process and
contextualize the textual data describing these interactions (e.g., news articles on diplomatic
conflicts). The fusion of the two models is expected to further promote the prediction and
understanding of inter-state cyberattacks.

8. Conclusions
In response to the increasingly severe situation of inter-state cyberattack activities,

this study design a novel dynamic multi-view graph neural network model for processing
multimodal data. On one hand, this model utilizes a temporal interaction attention mecha-
nism to simultaneously capture the intrinsic connections between different data modalities
and dynamic features that change over time. On the other hand, it employs a multi-view
attention mechanism to learn the importance of node representations from different data
modalities, forming a fused node representation that ultimately enables accurate prediction
of cyberattack activities. Our experimental results show that considering multimodal data
including cyberattacks, news events, armed conflicts, international trade, and national
characteristics can help improve the predictive performance of the model, with an F1 score
of 0.838 and an accuracy of 0.835.

Additionally, another key contribution of this study is the construction of an inter-
pretability module. We use explainable boosting machine to quantify the specific contribu-
tion of each feature from multi-source datasets, and use attention weight analysis to reveal
multiple influencing factors of cyberattack activities among countries at different income
levels. This interpretability enhances the model’s transparency and credibility, and also
provides new perspectives for in-depth understanding of the inter-state cyberattacks.



Big Data Cogn. Comput. 2025, 9, 63 22 of 26

Author Contributions: Conceptualization, D.J. and F.D.; methodology, J.D. and S.C.; software,
J.W., J.D. and S.C.; validation, J.D., S.C. and J.Z.; investigation, M.H.; data curation, J.Z. and J.W.;
writing—original draft preparation, M.H. and J.D.; writing—review and editing, F.D. and D.J.; project
administration, D.J.; funding acquisition, M.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2023YFB3107200.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ramadhan, I. The Implication of Cyberspace Towards State Geopolitics. Politicon J. Ilmu Polit. 2021, 3, 161–184. [CrossRef]
2. Vanberghen, C. Cyberspace and the 21st Century Arms Race. 2023. Available online: https://digitalsociety.eui.eu/publication/

cyberspace-and-the-21st-century-arms-race/ (accessed on 3 July 2024).
3. ASD. ASD Cyber Threat Report 2022–2023. 2023. Available online: https://www.cyber.gov.au/about-us/view-all-content/

reports-and-statistics/asd-cyber-threat-report-july-2022-june-2023 (accessed on 3 July 2024).
4. Asal, V.; Mauslein, J.; Murdie, A.; Young, J.; Cousins, K.; Bronk, C. Repression, Education, and Politically Motivated Cyberattacks.

J. Glob. Secur. Stud. 2016, 1, 235–247. [CrossRef]
5. Li, Y.; Zhang, Y.; Lee, C.C.; Li, J.; Hunter, L.Y.; Albert, C.D.; Garrett, E.; Rutland, J. Democracy and Cyberconflict: How Regime

Type Affects State-Sponsored Cyberattacks. J. Cyber Policy 2022, 7, 72–94.
6. Chen, S.; Hao, M.; Ding, F.; Jiang, D.; Dong, J.; Zhang, S.; Guo, Q.; Gao, C. Exploring the Global Geography of Cybercrime and Its

Driving Forces. Humanit. Soc. Sci. Commun. 2023, 10, 71. [CrossRef]
7. Kumar, S.; Carley, K.M. Understanding DDoS Cyber-Attacks Using Social Media Analytics. In Proceedings of the 2016 IEEE

Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, USA, 28–30 September 2016; pp. 231–236.
8. Ben Fredj, O.; Mihoub, A.; Krichen, M.; Cheikhrouhou, O.; Derhab, A. CyberSecurity Attack Prediction: A Deep Learning

Approach. In Proceedings of the 13th International Conference on Security of Information and Networks, Istanbul, Turkey,
4–6 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–6.

9. Wu, S.; Wang, B.; Wang, Z.; Fan, S.; Yang, J.; Li, J. Joint Prediction on Security Event and Time Interval through Deep Learning.
Comput. Secur. 2022, 117, 102696. [CrossRef]

10. Chen, Y.Z.; Huang, Z.G.; Xu, S.; Lai, Y.C. Spatiotemporal Patterns and Predictability of Cyberattacks. PLoS ONE 2015, 10, e0124472.
[CrossRef]

11. Werner, G.; Yang, S.; McConky, K. Time Series Forecasting of Cyber Attack Intensity. In Proceedings of the 12th Annual
Conference on Cyber and Information Security Research, Oak Ridge, TN, USA, 4–6 April 2017; Association for Computing
Machinery: New York, NY, USA, 2017; pp. 1–3.

12. Xu, M.; Schweitzer, K.M.; Bateman, R.M.; Xu, S. Modeling and Predicting Cyber Hacking Breaches. IEEE Trans. Inf. Forensics
Secur. 2017, 13, 2856–2871. [CrossRef]

13. Maness, R.C.; Valeriano, B.; Jensen, B.; Hedgecock, K.; Macias, J. The Dyadic Cyber Incident and Campaign Data (DCID). 2022.
Available online: https://drryanmaness.wixsite.com/cyberconflict/cyber-conflict-dataset (accessed on 16 March 2024).

14. Gandhi, R.; Sharma, A.; Mahoney, W.; Sousan, W.; Zhu, Q.; Laplante, P. Dimensions of Cyber-Attacks: Cultural, Social, Economic,
and Political. IEEE Technol. Soc. Mag. 2011, 30, 28–38. [CrossRef]

15. Kazemi, S.M.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.; Forsyth, P.; Poupart, P. Representation Learning for Dynamic Graphs: A
Survey. J. Mach. Learn. Res. 2020, 21, 1–73.

16. Barros, C.D.T.; Mendonça, M.R.F.; Vieira, A.B.; Ziviani, A. A Survey on Embedding Dynamic Graphs. ACM Comput. Surv. 2021,
55, 1–37. [CrossRef]

17. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; AAAI Press:
Freiburg, Germany, 2018; pp. 3634–3640.

18. Pareja, A.; Domeniconi, G.; Chen, J.; Ma, T.; Suzumura, T.; Kanezashi, H.; Kaler, T.; Schardl, T.B.; Leiserson, C.E. EvolveGCN:
Evolving Graph Convolutional Networks for Dynamic Graphs. Proc. AAAI Conf. Artif. Intell. 2019, 34, 5363–5370. [CrossRef]

19. Behrouz, A.; Seltzer, M. Anomaly Detection in Multiplex Dynamic Networks: From Blockchain Security to Brain Disease
Prediction. arXiv 2022, arXiv:2211.08378.

http://doi.org/10.15575/politicon.v3i2.12660
https://digitalsociety.eui.eu/publication/cyberspace-and-the-21st-century-arms-race/
https://digitalsociety.eui.eu/publication/cyberspace-and-the-21st-century-arms-race/
https://www.cyber.gov.au/about-us/view-all-content/reports-and-statistics/asd-cyber-threat-report-july-2022-june-2023
https://www.cyber.gov.au/about-us/view-all-content/reports-and-statistics/asd-cyber-threat-report-july-2022-june-2023
http://dx.doi.org/10.1093/jogss/ogw006
http://dx.doi.org/10.1057/s41599-023-01560-x
http://dx.doi.org/10.1016/j.cose.2022.102696
http://dx.doi.org/10.1371/journal.pone.0124472
http://dx.doi.org/10.1109/TIFS.2018.2834227
https://drryanmaness.wixsite.com/cyberconflict/cyber-conflict-dataset
http://dx.doi.org/10.1109/MTS.2011.940293
http://dx.doi.org/10.1145/3483595
http://dx.doi.org/10.1609/aaai.v34i04.5984


Big Data Cogn. Comput. 2025, 9, 63 23 of 26

20. Li, L.; Duan, L.; Wang, J.; Xie, G.; He, C.; Chen, Z.; Deng, S. Transformer-Based Representation Learning on Temporal
Heterogeneous Graphs. In Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint
International Conference on Web and Big Data, Nanjing, China, 11–13 August 2022; pp. 385–400.

21. Hunter, L.Y.; Albert, C.D.; Garrett, E. Factors That Motivate State-Sponsored Cyberattacks. Cyber Def. Rev. 2021, 6, 111–128.
22. Kumar, S.; Carley, K.M. Approaches to Understanding the Motivations behind Cyber Attacks. In Proceedings of the 2016 IEEE

Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, USA, 28–30 September 2016; pp. 307–309.
23. Akoto, W. International Trade and Cyber Conflict: Decomposing the Effect of Trade on State-Sponsored Cyber Attacks. J. Peace

Res. 2021, 58, 1083–1097. [CrossRef]
24. González-Manzano, L.; de Fuentes, J.M.; Ramos, C.; Sánchez, A.; Quispe, F. Identifying Key Relationships between Nation-State

Cyberattacks and Geopolitical and Economic Factors: A Model. Secur. Commun. Netw. 2022, 2022, 5784674. [CrossRef]
25. Deng, S.; Ning, Y. A Survey on Societal Event Forecasting with Deep Learning. arXiv 2021, arXiv:2112.06345.
26. Iyda, J.J.; Geetha, P. An Improved Deep Belief Neural Network Based Civil Unrest Event Forecasting in Twitter. Appl. Intell. 2023,

53, 5714–5731. [CrossRef]
27. Brandt, P.T.; D’Orazio, V.; Khan, L.; Li, Y.F.; Osorio, J.; Sianan, M. Conflict Forecasting with Event Data and Spatio-Temporal

Graph Convolutional Networks. Int. Interact. 2022, 48, 800–822. [CrossRef]
28. Gallotti, R.; Valle, F.; Castaldo, N.; Sacco, P.; De Domenico, M. Assessing the Risks of ‘Infodemics’ in Response to COVID-19

Epidemics. Nat. Hum. Behav. 2020, 4, 1285–1293. [CrossRef]
29. Wang, Z.; Zhang, Y. DDoS Event Forecasting Using Twitter Data. In Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 4151–4157.
30. Deb, A.; Lerman, K.; Ferrara, E. Predicting Cyber-Events by Leveraging Hacker Sentiment. Information 2018, 9, 280. [CrossRef]
31. Pechi, D. Predicting Cyber-Attacks Using Neural Language Models of Sociopolitical Events. 2019. Available online: https:

//danpechi.github.io/Dan%20Pechi%20Thesis.pdf (accessed on 24 June 2024).
32. Lakha, B.; Duran, J.; Serra, E.; Spezzano, F. Prediction of Future Nation-initiated Cyberattacks from News-based Political Event

Graph. In Proceedings of the 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA),
Thessaloniki, Greece, 9–13 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8.

33. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

34. Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv.
2022, 55, 1–37. [CrossRef]

35. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
36. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red
Hook, NY, USA, 2017; pp. 1025–1035.
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