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Abstract: For the financial health of lenders and institutions, one important risk assessment called
credit risk is about correctly deciding whether or not a borrower will fail to repay a loan. It not only
helps in the approval or denial of loan applications but also aids in managing the non-performing loan
(NPL) trend. In this study, a dataset provided by the LendingClub company based in San Francisco,
CA, USA, from 2007 to 2020 consisting of 2,925,492 records and 141 attributes was experimented
with. The loan status was categorized as “Good” or “Risk”. To yield highly effective results of
credit risk prediction, experiments on credit risk prediction were performed using three widely
adopted supervised machine learning techniques: logistic regression, random forest, and gradient
boosting. In addition, to solve the imbalanced data problem, three sampling algorithms, including
under-sampling, over-sampling, and combined sampling, were employed. The results show that the
gradient boosting technique achieves nearly perfect Accuracy, Precision, Recall, and F1 score values,
which are better than 99.92%, but its MCC values are greater than 99.77%. Three imbalanced data
handling approaches can enhance the model performance of models trained by three algorithms.
Moreover, the experiment of reducing the number of features based on mutual information calculation
revealed slightly decreasing performance for 50 data features with Accuracy values greater than
99.86%. For 25 data features, which is the smallest size, the random forest supervised model yielded
99.15% Accuracy. Both sampling strategies and feature selection help to improve the supervised
model for accurately predicting credit risk, which may be beneficial in the lending business.

Keywords: credit risk classification; machine learning; imbalance handling; feature ranking

1. Introduction

Machine learning techniques have several benefits in various applications, especially in
the form of predicting a trend or outcome. Hence, machine learning models can accurately
assess credit default probabilities and improve credit risk prediction [1]. Focusing on
financial services like personal loans, accurately predicting the risk of non-performing
loans (NPLs) in peer-to-peer (P2P) lending is one crucial thing for lenders such as P2P
lending platforms. When borrowers fail to repay (or default on) their loans, it brings about
an NPL for the lenders. Generally, an NPL is a major task to overcome in order to reach the
stability and profitability of not only financial institutions [2] but also P2P platforms. So,
risk assessment measures, diversification strategies, and collection processes are always
performed to minimize the NPL issue. These P2P platforms, which are widely used in many
countries, are involved with higher risk than traditional lending, because they depend
on individuals [3]. However, there are many advantages superior to banking credit, i.e.,
lenders’ and borrowers’ direct interaction, detailed credit scoring [4], and the opportunity
to gather and analyze large numbers of data which can be used to assess trustability and
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reduce risks [5]. Therefore, several previous research works have been studied to build
an efficient model to predict the risk of lending [6–8]. Still, there are several challenges,
including selecting important features, coping with imbalanced data, handling data quality,
and experimenting with in-depth model evaluations. Based on lending datasets, they often
contain imbalanced data, i.e., a higher proportion of good loans than risky ones. This
possibly leads to the model’s prediction bias. In addition, resolving missing values in
the data needs mindful consideration of whether to impute, remove, or ignore them. In
addition, selecting a relevant and informative input feature set is one substantial step for
avoiding model overfitting or underfitting. Apart from that, to ensure the efficient model’s
real-world performance, one way is to validate it on many lending datasets. In summary,
covering these above challenges may be able to result in successfully developing a reliable
lending risk prediction model.

In this research, to overcome the challenges associated with building a machine learn-
ing model for this lending risk prediction problem, various approaches were implemented
and contributed. Firstly, exploratory data analysis (EDA) to explore and clean the data was
conducted, which aimed to adjust data quality before initiating the model creation process.
Secondly, logistic regression (LG), random forest (RF), and gradient boosting (GB), which
are supervised machine learning approaches, were used for model building experiments.
Thirdly, over-sampling, under-sampling, and combined sampling techniques to mitigate
the imbalanced data problem were comparatively employed. Lastly, an experiment on
reducing feature number according to its importance computed by mutual information
was also performed.

The remaining sections of this paper are organized as follows. A brief literature review
about the machine learning approaches and imbalanced data handling techniques utilized
in this study is provided in Section 2. The methodology such as material data description,
data preparation, experimental setup, and performance evaluations is outlined in Section 3.
In Section 4, the results and discussions are reported. Finally, in Section 5, the conclusion
and future works are summed up.

2. Related Works
2.1. Literature Review

Lately, various machine learning algorithms have been applied in the lending risk
assessment problem [9], for example, logistic regression, variance in decision trees [10],
neural networks and deep learning [11], as well as ensemble approaches [12–14]. One
important issue is the imbalanced data problem. Commonly, the number of good credit
customers is much greater than that of bad ones. This problem needs to be mitigated,
since many machine learning algorithms cannot well handle it, leading to biased predictive
models. Consequently, many wrong predictions bring about lenders’ financial losses.
Therefore, variously proposed techniques to handle imbalanced data have been offered by
researchers. Some examples are as follows. Ref. [15] offered the under-sampling method in
their resampling ensemble model called REMDD for imbalanced credit risk evaluation in
P2P lending. In the work [16], the ADASYN (adaptive synthetic sampling approach) [17]
was adopted for reducing the class imbalance problem. Meanwhile, ref. [18] proposed
quite balanced datasets, yielded by employing the under-sampling technique for creating
models to predict the default risk of P2P lending. Focusing on datasets previously used in
this research domain, the LendingClub dataset is one famously public dataset. It is from
a lending platform in the United States. There are several LendingClub dataset versions
which have been used in many works, as exemplified in Table 1.
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Table 1. Research paper examples of various versions of LendingClub data.

Research LendingClub Data Imbalance Solving ML Best Performance

[19]

Year: 2013–2015 - Random forest Accuracy: 0.885
Samples: 656,724 Decision tree
Features: 115 Bagging
Classes: 2 ({good}; {bad})

[20]

Year: 2012–2013 - BPSOSVM + Accuracy: 0.64
Samples: 164,620 Extremely randomized tree Precision: 062
Features: 34 Recall: 0.65
Classes: 2 ({Charged Off, F1 score: 0.61
Late (31–120 days),
Default}; {Fully Paid})

[9]

Year: 2016–2017 Under-sampling Logistic regression Accuracy: 0.64
Samples: 877,956 Over-sampling Random forest AUC: 0.71
Features: 151 Hybrid MLP TPR: 0.66
Classes: 2 ({Fully Paid}; TNR: 0.64
{Charged Off})

[16]

Year: 2019 ADASYN Fusion model Accuracy: 0.994
Samples: 128,262 (logistic regression, Recall: 0.99
Features: 150 random forest, F1 score: 0.99
Classes: no details and CatBoost)

[14]

Year: 2007–2015 SMOTE LGBFS Accuracy: 0.9143
Samples: 9578 + StackingXGBoos Recall: 0.9151
Features: 14 F1 score: 0.9165
Classes: 2 ({not.fully.paid};
{fully.paid})

[14]

Year: 2012–2018 SMOTE LGBFS Accuracy: 0.99982
Samples: 2,875,146 + StackingXGBoos Recall: 0.9999
Features: 18 F1 score: 0.9999
Classes: 2
loan_status ∈ {0, 1}

[21]

Year: 2007–2016 SMOTE LGB-XGB-Stacking Accuracy: 0.8940
Samples: 396, 030 Recall: 0.7131
Features: 27 AUC: 0.7975
Classes: 2 ({Fully Paid};
{Charged Off})

In research communities, the lending prediction problem is currently active. One major
challenge of this problem is how to effectively solve imbalanced data for machine learning
model training. Due to a lot of attributes in the lending dataset, one challenge is how to
effectively reduce data dimension. Recently, random forest classifiers combining with either
the feature selection method [22] or the imbalanced data handling technique [23] showed
good predictive results. Apart from that, the LendingClub dataset is still a widely used
public dataset in numerous research studies. This presents several challenges such as its big
volume, rapidly increasing volume size, high data dimensionality, missing data occurrence,
and massive imbalanced data. To create efficient models for loan status prediction and
eventually decrease risks within the lending system, rigorous data exploration should be
performed to cope with such a messy dataset.

2.2. Machine Learning Approaches

In this study, three machine learning approaches, i.e., logistic regression, random
forest, and gradient boosting, were applied to create models for predicting loan statuses. A
brief overview of each algorithm is provided below.
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2.2.1. Logistic Regression (LR)

Logistic regression [24] is based on a statistical approach primarily designed for
solving binary classification problems, where the output has two categorical classes. The
probability of an input belonging to a specific class using the logistic function (sigmoid
function) is calculated via Equation (1).

hθ(x(i)) =
1

1 + e−(θ0+θ1x1+...+θnxn)
(1)

where x0, x1, . . . , xn are the values of input features and the associated parameters updated
during the learning process are represented as θ0, θ1, . . . , θn. These parameters are then
returned as the model for prediction. The output is in the range of 0 to 1, indicating the
probability of the input belonging to the positive class. Logistic regression is simple to
interpret and efficient, especially in situations where the relationship between the features
and the binary output is assumed to be linear. Logistic regression is currently popular for
building predictive analyses in financial research [25–28].

2.2.2. Random Forest (RF)

The random forest algorithm [29] is an ensemble learning method widely used for
classification and regression tasks. The data are separated into M subsets for creating M
decision trees with several parameters involved in the creation of decision trees such as
the maximum depth of the tree, the minimum number of samples required to split an
internal node, and the minimum number of samples required to be at a leaf node. A forest
of decision trees is constructed during the training phase. Each decision tree is created
using a subset of the training data and a random subset of features at each split, presenting
diversity among the trees. Random forest is based on the bagging technique, in which
multiple subsets of the training data (with replacement) are used to train individual trees,
thereby reducing overfitting and improving generalization. Additionally, random feature
selection at each split ensures that the trees are less correlated, resulting in a more robust
ensemble. For classification tasks, the voting process involves counting the votes for each
class from all the decision trees, and the class with the most votes is chosen as the final
prediction. Mathematically, if M is the number of trees in the random forest and Vij is the
vote count for class j by tree i, the final predicted class ypred is determined via Equation (2).

ypred = argmaxj

(
M

∑
i=1

Vij

)
(2)

where ypred is the predicted class and argmaxj returns the class j that maximizes the sum
of votes across all trees. Random forest has been widely applied to various problems in the
lending domain [30–32].

2.2.3. Gradient Boosting (GB)

Gradient boosting [33] is a machine learning algorithm that operates by sequentially
improving the performance of weak learners, typically decision trees, to create a strong
predictive model. The algorithm works in an iterative manner, adding new weak learners to
correct the errors made by the existing ensemble. An initial prediction for each class is often
set by assigning balanced probabilities to each class. Subsequently, the pseudo-residuals
for data input i and class j, denoted as rij, are calculated via Equation (3).

rij = yij − Fm−1(xi) (3)

where yij is the true class label for data input i and class j. Fm−1(xi) is the predicted class
probability for data input i from the model at iteration m − 1. The pseudo-residuals, rij,
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represent the disparity between the true class labels yij and the current predicted class
probabilities. The iterative update of the class probabilities is derived via Equation (4):

Fm(x) = Fm−1(x) + η
N

∑
i=1

γmhm(xi) (4)

where η is the learning rate, controlling the contribution of each weak learner to the overall
model. hm(xi) represents the prediction made by the weak learner for the data input i
at iteration m. γm is the weight assigned to the output of the weak learner at iteration
m. This weight is determined during the training process and is chosen to minimize the
overall loss of the model. The final prediction for a given input in a classification task
is determined by selecting the class with the highest cumulative probability of all weak
learners. Mathematically, the predicted output is expressed as:

ŷi = argmaxjFM(xi) (5)

where ŷi is the predicted class for data input i. FM(xi) is the cumulative sum of contributions
from all weak learners up to the final iteration (M) for data input i. Gradient boosting has
recently gained popularity for risk prediction in the financial domain [10,34–37].

2.3. Resampling Imbalanced Data

Three widely used approaches to handle imbalanced data were applied, including
the over-sampling, under-sampling, and combined sampling approaches. Their details are
explained as follows.

2.3.1. Over-Sampling Approach

In the first approach, SMOTE (Synthetic Minority Over-sampling Technique) [38] was
employed for generating synthetic data of the minority class to create a more balanced
dataset. The basic idea behind SMOTE is to create synthetic data by interpolating between
the existing data of the minority class. Let xi be a data point from the minority class and
xzi be one of its k nearest neighbors (i.e., it is selected randomly). Also, let λ be a random
number between 0 and 1. The synthetic data point xnew is created using the formula:

xnew = xi + λ × (xzi − xi) (6)

This equation represents a linear interpolation between the original minority class
data point xi and one of its k nearest neighbors xzi. The parameter λ determines the amount
of interpolation, and it is randomly chosen for each synthetic data point. In summary, the
steps of SMOTE are as follows.

(1) Select a minority class data point xi.
(2) Find its k nearest neighbors (e.g., xzi).
(3) Randomly select one of the neighbors xzi.
(4) Generate a random number λ between 0 and 1.
(5) Use the formula to create a synthetic instance xnew.
(6) Repeat steps (1)–(5) for the desired number of synthetic data points.

This process helps balance the class distribution by creating synthetic data points along
the line segments connecting existing minority class data points, consequently solving the
class imbalance issue in the dataset.

2.3.2. Under-Sampling Approach

Under-sampling for handling imbalanced data problems involves reducing the size
of the majority class to balance it with the minority class. In this approach, the data are
randomly selected from the majority class to achieve a more balanced class distribution [39].
Unlike SMOTE, which involves creating synthetic data, the random under-sampling simply
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removes examples from the majority class randomly. We assume xi is a data point from the
majority class, N is the total number of data points in the majority class, and Nnew is the
desired number of data points after under-sampling. The basic idea is to randomly select
Nnew data points from the majority class without replacement. The processes of random
under-sampling are as follows.

(1) Calculate the sampling ratio: ratio = Nnew
N .

(2) For each data point xi in the majority class:

(2.1) With probability ratio, keep xi.
(2.2) With probability 1 − ratio, discard xi.

This process is repeated until Nnew data points are selected, achieving the desired
sample class distribution.

2.3.3. Combined Sampling Approach

For the combined sampling approach, we use SMOTEENN, which is a combina-
tion of over-sampling using SMOTE and under-sampling using edited nearest neighbors
(ENN) [40]. The goal is to address imbalanced data by first generating synthetic data points
with SMOTE and then cleaning the dataset using edited nearest neighbors to remove po-
tentially noisy examples. After applying SMOTE to generate synthetic data points, edited
nearest neighbors is used to remove data points that are considered noisy or misclassified.

(1) Identify data points in the dataset that are misclassified.
(2) For each misclassified data point, check its k nearest neighbors.

(2.1) If the majority of the neighbors have a different class label, remove the misclas-
sified data point.

This process helps to improve the overall quality of the dataset by eliminating noisy
points introduced during the over-sampling process.

3. Materials and Methodology
3.1. Data Description and Preprocessing

In this work, financial data provided by the LendingClub Company from 2007 to
2020Q3 [41] were used. The data consist of 2,925,493 records which are divided into various
loan statuses as in Table 2. The loan statuses are categorized as “Good” or “Risk” users.
The “Fully Paid” status is categorized as “Good” users, whereas “Charged Off”, “In Grace
Period”, “Late (16–30 days)”, “Late (31–120 days)”, and “Default” are grouped as “Risk”
users. The “Current” status is not explicitly categorized as “Good” or “Risk” since it
represents the current state of ongoing payments. “Issued” is also not classified as it may
refer to loans that are approved but not yet active. “Does not meet the credit policy” users
were excluded in this study. For the experiment, the data contain 1,497,783 samples labeled
as “Good” and 391,882 samples labeled as “Risk”, totaling 1,889,665 samples. This is a
two-class dataset with an imbalance ratio (IR) equal to 3.82, which shows a slight class
imbalance, as displayed in Figure 1. IR is the majority class size divided by the minority
class size. A high IR value may affect model performance in some machine learning
algorithms, i.e., the majority class is more correctly predicted than the minority class due to
imbalanced training data causing model bias. However, the selected algorithms used in this
paper like random forest and gradient boosting are quite robust for mild class imbalance. It
is more helpful to solve imbalanced data before model training because of the increasing
chance of model performance improvement. In addition, the imbalanced data handing
methods used in this work are explained in Section 2.3.
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Figure 1. Class imbalance of our experimental dataset from LendingClub dataset.

Table 2. Dataset from LendingClub company from 2007 to 2020Q3 and loan status distribution.

Loan Status Count Label

“Fully Paid” 1,497,783 “Good”
“Charged Off” 362,548 “Risk”
“In Grace Period” 10,028 “Risk”
“Late (16–30 days)” 2719 “Risk”
“Late (31–120 days)” 16,154 “Risk”
“Default” 433 “Risk”
“Current” 1,031,016 -
“Issued” 2062 -
“Does not meet the credit policy. Status: Fully Paid” 1988 -
“Does not meet the credit policy. Status: Charged Off” 761 -

Total 2,925,493

There are 141 attributes in the original data which contain many missing values,
as illustrated in Figure 2, with high percentages. Some columns need to be dropped
and transformed before training the models. The data were preprocessed through the
following steps.

(1) Drop column “id” because it typically serves as a unique identifier for each row, and
including it as a feature could lead the model to incorrectly learn patterns that are
specific to certain ids rather than generalizing well to new data.

(2) Drop “url” because it might not provide meaningful information for your model, or
its content might be better represented in a different format.

(3) Drop columns “pymnt_plan” and “policy_code” because every record in the “pymnt_plan”
column has the value “n” and every record in the “policy_code” column has the value
1. These columns contain constant values, resulting in the model being unable to
differentiate between different data inputs.

(4) Drop columns that have missing values exceeding 50%. The selected dataset now
comprises 101 columns, including 100 features and the loan status.

(5) In the “int_rate” and “revol_util” columns, convert the percentage values from string
format to float.

(6) For categorical data, fill the missing values with the mode and transform them into
numerical values.

(7) For real value data, fill the missing values with the mean of the existing values.
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Figure 2. The summary of missing values on each attribute excluding the “id”, “url”, “pymnt_plan”,
and “policy_code” attributes.

Now, the dataset comprises 100 features. Each feature was explored in the relationship
with its target variable (class label) to rank the importance of features. Mutual information
(MI) can identify informative features on both linear and non-linear relationships between
features and target variables. In feature selection, a feature with a higher mutual informa-
tion value is considered as more important and typically selected into a training feature set.
The importance of these features can be represented by mutual information, as defined in
Equation (7).

MI(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) · log2

(
p(x, y)

p(x)p(y)

)
(7)
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where p(y), p(x, y), and p(x) represent the probabilities associated with the target variable
Y and the joint and marginal distributions of features X and Y, respectively. The mutual
information values for all features are presented in Figure 3. These were used to investigate
the impact of feature selection on the performance of the models. The correlation matrix
for the first 25 features with the highest mutual information and the class label is depicted
in Figure 4. Each cell in the table shows the correlation between two variables. It is often
used to understand the relationships between different variables in a dataset. The values
range from −1 to 1, where −1 indicates a perfect negative correlation, 1 indicates a perfect
positive correlation, and 0 indicates no correlation.

Figure 3. A summary of mutual information (MI) across the 100 features used.
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Figure 4. Correlation matrix on the first 25 highest mutual information features.

3.2. Model Creations and Evaluations

An overview of the processes in this work is depicted in Figure 5. The raw dataset
was explored for characteristics such as data types and missing values. Subsequently, the
data were preprocessed to handle missing values. The dataset was then separated into
training and testing sets. Two data splitting protocols were experimented with, i.e., hold-out
cross-validation with a 70:30 ratio of training and testing sets and 4-fold cross-validation.
Next, the training data were prepared in four versions based on imbalanced data handling
methods, including original (no sampling), over-sampling, under-sampling, and combined
sampling training data. Each training dataset version was used to create three models using
logistic regression, random forest, and gradient boosting approaches. The testing dataset
was employed to evaluate model performance by calculating Accuracy, Precision, Recall,
F1 score, and Matthews Correlation Coefficient (MCC). In the context of imbalanced data,
where one class may dominate the others, using macro-averaging for Precision, Recall,
F1 score, and MCC can provide a more balanced evaluation across different classes. Then,
the confusion matrix was displayed, which is a tabular representation commonly employed
to assess the effectiveness of a classification algorithm. This matrix provides a concise
overview of the model’s performance by detailing the distribution of predicted and actual
class labels (Figure 6). Denote that green and red cells stand for the number of correctly
predicted and wrongly predicted samples, respectively. TP and TN are the sample numbers
of correctly classified to positive and negative classes, respectively, while FP and FN are
the sample numbers of wrongly classified to positive and negative classes, respectively.
Subsequently, key performance metrics such as Accuracy, Precision, Recall, F1 score, and
MCC were computed as follows:
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Figure 5. Overview of proposed methodology.

Confusion Matrix:
Actual Positive Actual Negative

Predicted Positive TP FP
Predicted Negative FN TN

Figure 6. Two-by-two confusion matrix.

Accuracy is a fundamental metric that measures the overall correctness of a classifica-
tion model by assessing the proportion of testing data that are correctly predicted out of
the total testing data size.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision (Macro-Averaged) is a metric used to evaluate the Precision of a classification
model when dealing with imbalanced datasets. In the context of macro-averaging, Precision
is calculated individually for each class and then averaged across all classes.

Precision =
1
C

C

∑
i=1

TPi
TPi + FPi

(9)

where C is the number of classes and TPi and FPi are the true positives and false positives
for class i.
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Recall (Macro-Averaged) is a metric used to evaluate the Recall of a classification
model in the context of imbalanced datasets. In macro averaging, Recall is calculated
individually for each class and then averaged across all classes.

Recall =
1
C

C

∑
i=1

TPi
TPi + FNi

(10)

where FNi represents the false negatives for class i.
F1 score (Macro-Averaged) is a metric that combines both Precision and Recall, offer-

ing a balanced assessment of a model’s performance on imbalanced datasets. In macro
averaging, the F1 Score is calculated individually for each class and then averaged across
all classes.

F1 score =
1
C

C

∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

(11)

where Precisioni and Recalli are the Precision and Recall for class i.
The Matthews Correlation Coefficient (MCC) is one of the metrics suitable for eval-

uating binary classification models, especially models that were trained by imbalanced
datasets, because true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) are all taken into account in its formula. The MCC is defined as:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (12)

The MCC value ranges between −1 and 1. The best and worst MCC values are 1 and
−1, respectively. When the MCC value is 0, this means that the model performance is not
greater than that of random guessing.

4. Results and Discussion

To solve an imbalanced data issue, four versions of training datasets, including data
with no sampling, over-sampling, under-sampling, and combined sampling, were experi-
mented with. The number of data samples in each training dataset is illustrated in Figure 7.
Experiments with two methods of training and testing data splitting, 70:30 hold-out cross-
validation and 4-fold cross-validation, were performed.

# items ‘Good’ # items ‘Risk’ Total
No sampling 1,048,015 274,750 1,322,765
Over-sampling 1,048,015 1,048,015 2,096,030
Under-sampling 274,750 274,750 594,500
Combined sampling 989,477 734,581 1,724,058

Figure 7. Comparison of training data sizes on various sampling methods.
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4.1. Hold-Out Cross-Validation with 70:30 Ratio of Training and Testing Sets

The confusion matrices of testing data prediction were yielded by logistic regression,
random forest, and gradient boosting models, which were trained by four versions of
training data as shown in Figure 8a–d. The five performance metrics, i.e., Accuracy,
Precision, Recall, F1 score, and MCC, are shown in Table 3. The comparably highest
effective performance, i.e., the first and second ranks across the five metrics, was yielded
by the random forest model as well as the gradient boosting model trained by data with
over-sampling. In detail, the gradient boosting model with the over-sampling technique
showed slightly better results, i.e., performance values were 1 for all five measures, but this
hold-out cross-validation experiment was performed one time due to convenience for a
very large dataset, at first. Therefore, for a solid experimental conclusion, another 4-fold
cross-validation experiment was also studied.

(a)

(b)

(c)

(d)
Figure 8. Confusion matrices of 70:30 hold-out cross-validation results. (a) No sampling testing
data (original data). (b) Over-sampling testing data. (c) Under-sampling testing data. (d) Combined
sampling testing data.
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Table 3. The performance of three different machine learning techniques with various sampling
approaches in the 70:30 hold-out cross-validation experiment. The superscript numbers in the
brackets denote the performance ranking based on the evaluation measure in each column.

Imbalanced Data Model Accuracy Precision Recall F1 Score MCCHandling Technique

No sampling
(original data)

Logistic regression 0.9882 (12) 0.9920 (10) 0.9506 (12) 0.9709 (12) 0.9639 (12)

Random forest 0.9979(4) 0.9999 (3) 0.9902 (6) 0.9951 (4) 0.9938 (4)

Gradient boosting 0.9961 (9) 0.9999 (3) 0.9812 (10) 0.9905 (9) 0.9882 (9)

Over-sampling
Logistic regression 0.9914 (11) 0.9895 (12) 0.9685 (11) 0.9789 (11) 0.9736 (11)

Random forest 0.9999 (2) 1.0000 (1) 0.9999 (2) 0.9999 (2) 0.9999 (2)

Gradient boosting 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)

Under-sampling
Logistic regression 0.9950 (10) 0.9900 (11) 0.9856 (9) 0.9878 (10) 0.9847 (10)

Random forest 0.9986 (3) 0.9989 (8) 0.9940 (3) 0.9965 (3) 0.9956 (3)

Gradient boosting 0.9979 (4) 0.9992 (7) 0.9908 (4) 0.9950 (5) 0.9937 (5)

Combined sampling
Logistic regression 0.9966 (8) 0.9973 (9) 0.9864 (8) 0.9918 (8) 0.9897 (8)

Random forest 0.9979 (4) 0.9994 (6) 0.9907 (5) 0.9950 (5) 0.9937 (5)

Gradient boosting 0.9972 (7) 0.9997 (5) 0.9866 (7) 0.9931 (7) 0.9914 (7)

4.2. Four-Fold Cross-Validation

The average confusion matrices for 4-fold cross-validation results are illustrated in
Figure 9a–d. The performance metrics for logistic regression, random forest, and gradient
boosting are shown in Tables 4, 5, and 6, respectively. Three imbalanced data handling ap-
proaches, including over-sampling, under-sampling, and combined sampling, can improve
the performance of models trained by logistic regression, random forest, and gradient
boosting algorithms. Considering only the performance of logistic regression models, mod-
els with the combined sampling approach outperform the others. For random forest and
gradient boosting models, when the under-sampling approach was employed, they both
showed better model performance compared to the other sampling approaches. In general,
from all 4-fold cross-validation results, gradient boosting models with the under-sampling
method gave the superior performance. The additionally depicted comparisons of MCC
and F1 score are shown in Figure 10 and Figure 11, respectively.

Overall result summation from both experiments of the two cross-validation methods
indicates that the gradient boosting algorithm with an appropriate data solving technique
for supervised model training offers the very impressive ability of resulting in models that
correctly classify both “Good” and “Risk” instances.

Next, the feature selection method was applied, i.e., computing and ranking the
mutual information (MI) values of each feature, in order to reasonably select important
features of the smaller feature size k of the training set. So, the training data with the best
imbalanced data handling technique for each model were further explored by preparing
a smaller number of k features via their MI values to assess the trade-offs between the
different important feature sizes and their impact on model performance. The features were
ranked based on their computed values of mutual information. Three numbers of feature
size, i.e., k = 25, 50, and 100, were experimented with. The results of logistic regression,
random forest, and gradient boosting models on both 70:30 hold-out cross-validation and
4-fold cross-validation with three different feature sizes are shown in Figures 12, 13, and 14,
respectively. Generally, the performance of all three supervised models was reduced slightly.
For k = 25 and 50 important features as training data, gradient boosting models showed
better results than logistic regression and random forest models. Focusing on k = 50
important features, random forest and gradient boosting models yielded five performance
values, i.e., Accuracy, Precision, Recall, F1 score, and MCC, greater than 99%, whereas
logistic regression models gave four performance values, excepting MCC, higher than
95%. For k = 25 important features, gradient boosting models still yielded Accuracy,
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Precision, Recall, and F1 score values not less than 99%, but MCC values reduced to around
97.5%. These show that when the number of features was reduced by half (k = 50), the
performance values were reduced by only less than 1%. Although the number of features
was approximately reduced by 75% (k = 25), the performance values were reduced by only
less than 1–2%. Apart from that, the performance of gradient boosting models using k = 100
important features was better than that of the others on both 70:30 hold-out cross-validation
and 4-fold cross-validation experiments.

(a)

(b)

(c)

(d)
Figure 9. Average confusion matrices of four-fold cross-validation results. (a) No sampling testing
data (original data). (b) Over-sampling testing data. (c) Under-sampling testing data. (d) Combined
sampling testing data.
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Table 4. Performance metrics for logistic regression with different sampling approaches in 4-fold
cross-validation (4-fold cv) experiments.

Method 4-Fold cv Accuracy Precision Recall F1 Score MCC

Logistic regression: No sampling

Fold 1 0.993637 0.993660 0.993637 0.993607 0.980512
Fold 2 0.994283 0.994302 0.994283 0.994258 0.982578
Fold 3 0.993988 0.994015 0.993988 0.993960 0.981772
Fold 4 0.994526 0.994546 0.994526 0.994503 0.983267

Average 0.994108 0.994131 0.994108 0.994082 0.982032

Logistic regression: Over-sampling

Fold 1 0.995970 0.995972 0.995970 0.995960 0.987666
Fold 2 0.996202 0.996201 0.996202 0.996196 0.988435
Fold 3 0.995349 0.995352 0.995349 0.995337 0.985900
Fold 4 0.994964 0.994964 0.994964 0.994951 0.984602

Average 0.995621 0.995622 0.995621 0.995611 0.986651

Logistic regression: Under-sampling

Fold 1 0.996188 0.996185 0.996188 0.996182 0.988336
Fold 2 0.995838 0.995836 0.995838 0.995831 0.987324
Fold 3 0.995170 0.995165 0.995170 0.995161 0.985355
Fold 4 0.995948 0.995945 0.995948 0.995943 0.987621

Average 0.995786 0.995783 0.995786 0.995779 0.987159

Logistic regression: Combined sampling

Fold 1 0.997049 0.997050 0.997049 0.997044 0.990975
Fold 2 0.996418 0.996421 0.996418 0.996411 0.989094
Fold 3 0.996833 0.996833 0.996833 0.996828 0.990406
Fold 4 0.996016 0.996012 0.996016 0.996011 0.987829

Average 0.996579 0.996579 0.996579 0.996573 0.989576

Table 5. Performance metrics for random forest with different sampling approaches in 4-fold cross-
validation (4-fold cv) experiments.

Method 4-Fold cv Accuracy Precision Recall F1 Score MCC

Random forest: No sampling

Fold 1 0.997993 0.997998 0.997993 0.997990 0.993868
Fold 2 0.997949 0.997954 0.997949 0.997945 0.993762
Fold 3 0.997818 0.997823 0.997818 0.997813 0.993395
Fold 4 0.997919 0.997924 0.997919 0.997915 0.993651

Average 0.997920 0.997925 0.997920 0.997916 0.993669

Random forest: Over-sampling

Fold 1 0.998114 0.998118 0.998114 0.998111 0.994237
Fold 2 0.998167 0.998171 0.998167 0.998164 0.994425
Fold 3 0.998050 0.998055 0.998050 0.998047 0.994100
Fold 4 0.998042 0.998047 0.998042 0.998039 0.994026

Average 0.998093 0.998098 0.998093 0.998090 0.994197

Random forest: Under-sampling

Fold 1 0.998567 0.998568 0.998567 0.998566 0.995621
Fold 2 0.998548 0.998548 0.998548 0.998547 0.995583
Fold 3 0.998478 0.998478 0.998478 0.998477 0.995393
Fold 4 0.998525 0.998525 0.998525 0.998523 0.995497

Average 0.998529 0.998530 0.998529 0.998528 0.995523

Random forest: Combined sampling

Fold 1 0.998076 0.998079 0.998076 0.998073 0.994120
Fold 2 0.997987 0.997990 0.997987 0.997984 0.993877
Fold 3 0.998059 0.998063 0.998059 0.998056 0.994125
Fold 4 0.997985 0.997989 0.997985 0.997981 0.993851

Average 0.998027 0.998030 0.998027 0.998023 0.993993
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Table 6. Performance metrics for gradient boosting with different sampling approaches in 4-fold
cross-validation (4-fold cv) experiments.

Method 4-Fold cv Accuracy Precision Recall F1 Score MCC

Gradient boosting: No sampling

Fold 1 0.999172 0.999173 0.999172 0.999172 0.997471
Fold 2 0.999130 0.999130 0.999130 0.999130 0.997355
Fold 3 0.999217 0.999217 0.999217 0.999216 0.997630
Fold 4 0.999107 0.999107 0.999107 0.999106 0.997275

Average 0.999156 0.999157 0.999156 0.999156 0.997433

Gradient boosting: Over-sampling

Fold 1 0.999280 0.999281 0.999280 0.999280 0.997801
Fold 2 0.999179 0.999179 0.999179 0.999178 0.997503
Fold 3 0.999208 0.999209 0.999208 0.999208 0.997605
Fold 4 0.999174 0.999175 0.999174 0.999174 0.997482

Average 0.999210 0.999211 0.999210 0.999210 0.997598

Gradient boosting: Under-sampling

Fold 1 0.999285 0.999284 0.999285 0.999284 0.997814
Fold 2 0.999276 0.999276 0.999276 0.999276 0.997799
Fold 3 0.999257 0.999257 0.999257 0.999257 0.997752
Fold 4 0.999166 0.999166 0.999166 0.999166 0.997456

Average 0.999246 0.999246 0.999246 0.999246 0.997705

Gradient boosting: Combined sampling

Fold 1 0.999164 0.999164 0.999164 0.999163 0.997446
Fold 2 0.999177 0.999177 0.999177 0.999176 0.997496
Fold 3 0.99913 0.99913 0.99913 0.999129 0.997367
Fold 4 0.999181 0.999181 0.999181 0.99918 0.997501

Average 0.999163 0.999163 0.999163 0.999162 0.997453

Figure 10. Average MCC comparison for different sampling methods.

In order to additionally display our results compared with previous research, the
performance comparison of the proposed methods with other existing works on various
versions of LendingClub data is shown in Figure 15. Based on Accuracy, the proposed
methods outperform the others.
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Figure 11. Average F1 score comparison for different sampling methods.

Figure 12. Logistic regression model performance on five metrics for k different numbers of features,
i.e., k = 25, 50, and 100.
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Figure 13. Random forest model performance on five metrics for k different numbers of features, i.e.,
k = 25, 50, and 100.

Figure 14. Gradient boosting model performance on five metrics for k different numbers of features,
i.e., k = 25, 50, and 100.
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Figure 15. Accuracy of the proposed method compared with existing works on various versions of
LendingClub data. Denote that ˆ and ∗ symbols stand for the different dataset or experiment in the
same work.

5. Conclusions and Future Work

This study provided a very efficient solution to the problem of credit risk prediction.
To investigate the improved predictive model results that could be better than those from
previous works, three popular machine learning methods, including logistic regression,
random forest, and gradient boosting, were employed. Additionally, the imbalanced data
problem was resolved by experimenting with various sampling strategies: under-sampling,
over-sampling, and combined sampling. Based on our best model performance outcomes,
the over-sampling as well as under-sampling methods robustly manage class-imbalanced
data, especially when the training model uses the gradient boosting method. In addition,
the feature numbers of the data were reduced by selecting only important features for the
training set according to their ranks computed by mutual information. Another experiment
was performed using two reduced feature sets, the half size as well as the one-fourth size
of its original feature size. The resulting model performance was just barely decreased.
Remarkably, both random forest and gradient boosting models created by the reduced
feature sets with the half size showed impressive Accuracy values, higher than 99%.

This comprehensive analysis enhances better understanding of credit risk prediction
using a supervised learning method combined with various imbalanced data solving
strategies. Furthermore, the importance of features based on mutual information was
addressed in order to increase model performance with the smaller feature size of training
data. Our proposed method and results offer a simple way to select important features
with the reduced size by ranking the mutual information values of each feature. In spite
of this method not providing the most optimal size with the best performance, it can
apply to other large credit risk data with different feature sets. This approach does not
significantly decrease performance, but there might be better methods available. In future
work, it may be beneficial to further investigate parameter optimization, particularly
in handling imbalanced data, and explore alternative feature selection methods beyond
mutual information, such as correlation and symmetrical uncertainty, to improve model
performance. In addition, ensemble techniques could offer performance improvement
of those small feature sizes. Apart from that, real-time data streams and dynamic model
updating may increase the adaptability of credit risk prediction systems.
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