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Abstract: Traditional data warehouses (DWs) have played a key role in business intelligence and
decision support systems. However, the rapid growth of the data generated by the current appli-
cations requires new data warehousing systems. In big data, it is important to adapt the existing
warehouse systems to overcome new issues and limitations. The main drawbacks of traditional
Extract–Transform–Load (ETL) are that a huge amount of data cannot be processed over ETL and
that the execution time is very high when the data are unstructured. This paper focuses on a new
model consisting of four layers: Extract–Clean–Load–Transform (ECLT), designed for processing
unstructured big data, with specific emphasis on text. The model aims to reduce execution time
through experimental procedures. ECLT is applied and tested using Spark, which is a framework
employed in Python. Finally, this paper compares the execution time of ECLT with different models
by applying two datasets. Experimental results showed that for a data size of 1 TB, the execution
time of ECLT is 41.8 s. When the data size increases to 1 million articles, the execution time is 119.6 s.
These findings demonstrate that ECLT outperforms ETL, ELT, DELT, ELTL, and ELTA in terms of
execution time.

Keywords: big data; unstructured data warehouse; ELT; ETL

1. Introduction

Every online interaction, social media post, financial transaction, sensor reading,
and digital communication generates data. The proliferation of digital technologies, the
widespread use of the internet, and the advent of connected devices have contributed
to this massive growth in data. Furthermore, organizations accumulate vast amounts of
data in the form of customer records, sales transactions, operational logs, and so on. As a
result, an unprecedented amount of data is available for processing and analysis. A data
warehouse is a central repository that deals with highly structured, cleansed, processed,
stored, and integrated data from a variety of sources to give business intelligence users and
decision-makers a single view [1]. These data are processed by an Extract–Transform–Load
(ETL) process. The are two types of processes for extracting data from various sources: full
extraction and incremental extraction. The data are then transformed through actions such
as joining, converting, filtering, cleaning, aggregation, and so on. Finally, these transformed
data are loaded into a data warehouse [2,3]. Full extraction is employed when replicating
data from a source for the first time or when some sources cannot identify changed data,
necessitating a complete reload for the entire table. Incremental extraction is utilized when
some data sources cannot provide notifications about updates but can identify modified
records and extract them [4]. Cleaning is essential for data warehouses before data are
stored; for example, erroneous or misleading information will result from duplicated,
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inaccurate, or missing data. Data cleaning is regarded as one of the most difficult tasks
in data warehousing throughout the ETL process due to the vast variety of possible data
discrepancies and the enormous amount of data [5]. Recently, there has been a growing
interest in the ELT approach, which prioritizes loading data into a data warehouse before
performing transformations. This approach gains speed by delaying the transformation
until it is necessary. This ELT process is becoming popular where business requirements
are rapidly changing. ‘EL’ essentially implies data replication in numerous real-world
scenarios, and the problem is to accomplish it efficiently and with high accuracy. ELT
has grown in popularity owing to a variety of causes. Data are being created in ever-
increasing quantities, frequently without human intervention. Storage is becoming more
affordable, whether on-premises or in the cloud. With the proliferation of open-source
technologies (e.g., Apache Spark, Apache Hadoop, and Apache Hive) and cloud solutions
(e.g., Microsoft Azure, Google Cloud, and AWS), the cloud provides low-cost solutions for
analyzing disparate and dispersed data sources in an integrated environment [6]. Based
on the sources of the internet, the growth of data has increased incredibly with different
types of structured, semi-structured, and unstructured data, and that gives an idea of
how much the volume of data has increased [7,8]. Structured data are information that is
well ordered and stored in a relational database or a spreadsheet. Semi-structured data
are data that have not been recorded in standard ways. Nevertheless, the data are not
entirely unstructured; examples include metadata and emails. Text, photos, and videos are
examples of unstructured data. Text data have garnered special attention among various
forms of unstructured data, as they stand out as the most suitable technique for describing
and conveying information [9]. These data are distinguished by their complexity, variety,
volume, and application specificity and are generally referred to as big data.

Big data are a large number of datasets that are difficult to store and process using
existing database management tools [10]. Big data have some characteristics, denoted by
5Vs: volume, velocity, veracity, variety, and value [11]. Volume refers to the size of the
data, velocity refers to the speed of the data from the sources to the destination (data flow),
variety refers to different format types of the data, veracity refers to the quality of the data,
and value refers to the importance of the data collected without analysis and insight [12].
Lastly, the characteristics have become more than ten, like volatility and visualization
value [13]. Recently, organizations aimed to obtain a comprehensive overview of big
data within a data warehouse, encompassing all unstructured data, posing a significant
challenge. Many researchers and developers are making efforts to learn how to use big data
in data warehouses. These challenges impose significant constraints on building, storing,
transforming, and analyzing a data warehouse in a timely and scalable manner without
impacting end users, which led to the emergence of the concept of a data lake.

The approach outlined in this paper employs the concept of a “data lakehouse” to
formulate an ECLT model aimed at reducing the processing time for unstructured data
through four steps: extract, clean, load, and transform (ECLT). In our approach, we take
into account both volume and variety, utilizing Spark as a processing engine to extract all
text data into RDD. During the data cleaning phase, the approach is designed to identify
errors, duplicated data, and any noisy data, addressing and resolving these issues to ensure
that all data are cleaned before being loaded into a data lake storage. The subsequent
step in the data lake loading phase involves converting text data into tabular data using
a regular expression pattern. Following this, a Hive table is created to store the tabular
data, facilitating easy handling and querying of the data for potential transformations
using Spark SQL, such as aggregation, filtering, or counting. ECLT is designed to process
unstructured data with a focus on text data, making it suitable for various textual data
types, including medical reports or Wikipedia articles. In this paper, log data are employed
as a case study to measure the execution time of the proposed model and compare it with
other models.

The summary of the contribution is outlined as follows: (1) reducing execution time
in a pre-processing model; (2) developing the proposed model (ECLT), consisting of four
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phases; (3) incorporating a cleaning stage after data extraction to expedite the conversion
from text to table, with the transformation stage not significantly extending the overall time;
(4) converting data from unstructured to structured during the loading phase; (5) loading
structured data into the Hive table; (6) conducting experiments on different models using
two datasets; (7) evaluating the proposed model (ECLT) in comparison to other models.

The rest of the paper is structured as follows: Section 2 provides an overview of the
concepts of data lakes and the technology used in the proposed model. Section 3 reviews
the related work. Section 4 describes the proposed model ECLT for big data, defines the
cleaning phase before the loading, and describes the result of execution time when applying
the ECLT using the data lake. Next, Section 5 presents the results from our experiments,
and then, in Section 6, we discuss them. Finally, Section 7 concludes the paper and presents
future work.

2. Overview
2.1. Data Lake

A data lake is a headquartered repository that keeps massive amounts of raw, unpro-
cessed, and diversified data in its natural format [14,15]. It is intended to hold structured,
semi-structured, and unstructured data, offering an expandable and affordable data storage
and analysis solution. Data are gathered in a data lake through a variety of sources, such as
databases, log files, social media feeds, and sensors. Data lakes, unlike typical data storage
platforms, do not impose a fixed structure or schema on data at the moment of input.
Instead, data are saved in their raw form, keeping their natural structure and inherent
flexibility. Because the structure and purpose of the data may be specified later within the
analysis phase, this strategy allows businesses to gather huge volumes of data without the
requirement for prior data modeling. So, on the other hand, it is seen as the next stage in
displacing data warehouses as an enhanced present approach to raw analytics information
storage [16,17]. While a data lake has tremendous benefits, it also has certain drawbacks. Be-
cause data lakes hold raw and unprocessed data, they are exposed to data quality, security,
and privacy challenges. Without effective governance and data management techniques,
a data lake may quickly devolve into a data swamp. A data swamp is a data lake that
has become bloated with inconsistent, incomplete, erroneous, and ungoverned data. It is
frequently caused by a lack of processes and standards that are not effectively regulated.
As a result, data in a data swamp are difficult to locate, process, and analyze. Users may
need to invest substantial time and effort in data searches and understanding the data’s
context when there is no defined data model or schema [18]. Given the advantages and
disadvantages of both data warehouses and data lakes, a recent approach has emerged,
known as a data lakehouse.

A data lakehouse is a combination of both a data warehouse and a data lake. A data
lakehouse is a single and integrated platform that combines a data lake’s scalability and
flexibility with a data warehouse’s structured querying and performance improvements.
It provides enterprises with a unified platform for organized, semi-structured, and un-
structured data. It removes the need for separate storage systems and enables users to
effortlessly access and analyze various kinds of data. A data lakehouse allows for schema
evolution. It supports schema-on-read, allowing users to apply schemas and structures
while querying data. In addition, cloud-based storage and computation resources are
used in a data lakehouse, allowing enterprises to expand resources as needed and employ
sophisticated query engines, such as Apache Spark or Presto, to analyze enormous amounts
of data quickly and efficiently [19,20].

2.2. Spark and Hive

Spark is a powerful distributed processing system that provides a simple tool for
analyzing heterogeneous data from various sources. It supports batch processing, real-
time processing, and near-real-time processing (DStream). Spark can be deployed as a
stand-alone cluster (if associated with a capable storage layer) or as an alternative to the
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MapReduce system by connecting to Hadoop. Spark uses a model called Resilient Dis-
tributed Datasets (RDDs) to implement batch calculations in memory, which allows it to
maintain fault tolerance without having to write to disk after each operation [21]. As a
result, the buffer memory enables it to process a large volume of incoming data, increasing
overall throughput, and thus, in-memory processing contributes significantly to speed.
Batch processing in Spark offers incredible advantages in terms of speed and memory
consumption. Spark, which stores intermediate results in memory, is only influenced by the
HDFS configuration when reading the initial input and writing the final output [22]. In ELT,
new data sources can be easily added to the model. Consequently, various transformations
may be applied to the data as needs vary. When raw data are loaded, numerous transfor-
mations can be implemented based on changes in requirements [23]. There are big data
processing technologies like Map-Reduce, Storm, Kafka, Sqoop, and Flink; the best technol-
ogy for parallelism is Spark. Spark Core serves as the foundational execution engine for
the Spark platform, serving as the base for all other functionalities. It offers capabilities for
working with Resilient Distributed Datasets (RDDs) and performing in-memory computing
tasks. PySpark serves as a Python interface for Apache Spark, enabling the development of
Spark applications and the analysis of data within a distributed environment and allowing
users to write data from Spark DataFrame or RDDs to Hive tables [24].

Hive is a data warehousing infrastructure tool based on the Hadoop Distributed File
System (HDFS) [25,26] used for analyzing, managing, and querying large amounts of data
distributed on the HDFS. Reading and writing data are supported by Hive. Hive is mainly
used for structured data, but for this paper, we can load text data using SerDe, which stands
for “Serializer and Deserializer”. When an object is transformed into a binary format for
writing to permanent storage, such as the HDFS, this process is referred to as serialization,
while the process of converting binary data back into objects is known as deserialization.
Tables are turned into row elements in Hive, and then row objects are put onto the HDFS
using a built-in Hive serializer. These row objects are then transformed back into tables
using a built-in Hive Deserializer. Hive is allowed to integrate with other data processing
tools. For example, the HCatalog SerDe allows reading and writing Hive tables via Spark.

3. Related Work

Unstructured data are critical to decision-making, as several studies have shown [27].
According to the white paper [28], 80% of a corporation’s data consists of semi-structured
and unstructured data.

3.1. ETL in Big Data

In [29], the author proposed a scalable dimension ETL called Cloud-ETL using Hadoop
as a platform and Hive as a warehouse system. Although experiments were performed
using map-reduce and proved that cloud ETL is faster than Hadoop++ and ETLMR, they
were not mentioned in ELT. In [30], the author proposed a new approach called BigDimETL
for processing unstructured data using MapReduce and HBase as a warehousing system
using the NoSQL database. It speeds up data handling by providing distributed storage
capabilities. An experiment was performed to measure execution time using a join algo-
rithm, but there was no comparative analysis, in particular, in Spark and Hive. The authors
of [31] used the ETL application to process and analyze the streaming data and compared
Spark SQL and Hive QL, and the results showed that the execution time of Spark SQL is
less than that of Hive QL and that Spark SQL has better performance.

The author of [32] developed a processing model of ETL for unstructured data in a
data warehouse using MapReduce for processing and Pig for querying data. After the
extraction stage, the data are cleaned, transformed, and finally loaded into the HDFS.
There has been no experiment performed to prove this process model. In [33], the author
discussed the proposed on-demand ETL approach for processing data, but applying it to
achieve transformation in a parallel way leads to reduced processing time but continual
maintenance of the complex parallel system, so the author needed to propose three blocks
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to obtain the data: first, converting from ETL to ELT; second, on-demand processing; and
third, a monitoring component to ensure that consumers can be aware of data, even if
queries demanding the data have not been executed yet.

The work presented in [34] is a scalable ETL in big data streaming that uses three
scenarios for common ETL. Three scenarios exist: without aggregated data, aggregated
data based on a predefined time, and aggregation within a single user session. In [35]
and [36], the authors proposed an architecture to integrate data warehouse architecture
with big data technologies such as Hadoop and Apache Spark for handling unstructured
data and huge datasets using a data lake without any experiments. In [37], the author
suggested an ETLMR architecture that uses MapReduce to run separate ETL processes in
parallel and supports common ETL operations for dimensional schemas. However, it does
not support dynamic partitioning, which would enable it to adjust to parallel execution
automatically when nodes are added to or removed from a cluster.

The authors of [38] proposed Os-ETL, a novel ETL solution developed to combine
heterogeneous data with large-scale data warehousing environments. This solution intends
to increase the speed, flexibility, and performance of data integration operations. By using
Scala’s open-source nature and scalability, it may deliver major gains in managing a variety
of data sources inside data warehousing systems.

The authors of [39] proposed a new distributed architecture called Open ETL, which
supports both batch and stream processing and is implemented within the Spark frame-
work. They provided a real-life case study using the LUBM benchmark, which involves
heterogeneous data sources, to evaluate their approach through three separate experiments.
The first experiment focused on the scalability of the proposed system, the second com-
pared the response time of the proposed system with the PDI tool, and the third evaluated
the loading time of the ETL process after a change in the sources.

3.2. ELT in Big Data

In [40], the author proposed ELTL using Spark. The process involves extracting
the data, loading the ingested data into the data lake to enable real-time analytics, and
then transforming the loaded data before ultimately loading them into a data warehouse.
This approach requires additional resources for the data transformation step. The work
presented in [41] developed the Extract–Load–Transform–Analysis (ELTA) model and
showed the difference between ETL and ELT. It proved that ELT is better than ETL. Ref. [42]
describes the ETL pre-processing step for collecting and analyzing data from multiple data
sources to ensure the data are reliable and help with decision-making in an academic data
analysis model.

According to the author of [43], the transformation stage is divided into two parts:
cleaning and transformation. The cleaning stage involves cleaning dirty and inconsistent
data and storing the cleaned data in the middle library, and then these data are transformed.
This division enhanced the performance but did not work with big data. In [44], the
author proposed an approach called DETL (delayed ETL) that delays the decision of how
to perform a transformation until the context of the analysis is understood. The experiment
proved that the proposed approach is better than ETL and ELT when using large volumes
of data. So, this approach was taken in our experiment.

3.3. Big Data Warehouse and Data Lake

In [45], a DL architecture using web server access logs (WSALs) that facilitates the
storage of massive amounts of raw log files is proposed. These logs can then undergo
transformation and advanced analytic procedures without the need for a structured writing
scheme that transforms log files into Parquets, consequently reducing the storage space
compared to the original size. The study in [2] recommends the use of big data technologies
in conjunction with a data warehouse to aid top-level management decision-making at
universities. It is advised that Hadoop be used as a big data analysis tool for data ingestion
and staging. The study investigates the distinctions between traditional data warehouses
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and current data warehouses, emphasizing the modern data warehouse’s ability to manage
large amounts of data in the educational system. In [18], the suggested method identifies
and eliminates bad data, leaving only high-quality research material in the CRIS domain.
This results in more accurate insights and data-driven decisions. A data lake combined
with data wrangling provides a scalable platform for storing and analyzing huge volumes
of research data, turning various data kinds and formats into structured data without
the need for programming. In [46], the author describes the design of the BigO system,
which collects large-scale data from children using sensor technologies in order to construct
obesity prevalence models for data-driven predictions concerning particular policies at the
community level. The paper suggests a three-layered data warehouse architecture for the
proposed system, comprising a back-end layer for data collection, an access control layer
with role-based permissions, and a controller layer that oversees data access protocols [20].
It is considered that the existing data warehouse design will be replaced by the lakehouse
architecture, which is built on open direct-access data formats, enables machine learning
and data science workloads, and provides cutting-edge performance. On TPC-DS, reporting
results from a lakehouse system utilizing Parquet are competitive with popular cloud
data warehouses.

3.4. Cleaning Data

Cleaning data involves detecting, revising, changing, and organizing raw data. Relax
EEG is a data cleaning pipeline model proposed by the authors. It aims to enhance the
quality and reliability of EEG data by systematically addressing various types of artifacts
and noise [47]. In [48], the authors focused on cleaning data, especially focusing on
outlier identification techniques, and a comprehensive survey was performed for outlier
detection algorithms. The authors discussed the approaches utilized for cleaning large
data streams, detecting potential cleaning concerns, and assessing the effectiveness of the
techniques used.

Methodologies utilized to assess the efficacy of these treatments were also discov-
ered [49]. Missing values, duplicated data, outliers, and irrelevant data were listed as cleaning
concerns that may arise throughout the cleaning process. It is believed that the prospects
of cleaning huge data streams prompt the investigation of dynamic functional continuous
monitoring and real-time feedback to enhance cleaning algorithms and methodologies.

As described in Ref. [50], ATDC is a revolutionary evidence-based training data
cleaning approach that automatically verifies and corrects labels of noisy training data,
boosting classification performance without the need for further human interaction. A
mechanism for automatically finding and rectifying labeling errors in texts was proposed.
Experiments were conducted to validate the higher quality of document selection based
on tougher evidence-validation approaches for training. The authors of [51] proposed a
cleaning algorithm in cloud computing using Map-Reduce for massive data mining and
analysis. The approach, based on a data parallel strategy, significantly reduced MapReduce
job start and scheduling time, enhancing the efficiency of the data cleaning procedure in the
cloud computing environment. The experimental findings revealed that the data cleaning
technique was fast and capable of handling large datasets.

The authors of [52] analyzed and visualized unstructured data on air pollution, demon-
strating the prevalence of numerous dangerous gases in the atmosphere. The authors
emphasized the need for data cleaning in dealing with the problems caused by dirty data,
such as null values, incomplete data, missing values, and inconsistent sampling date
formats. The study gives an overview of ways to clean undesirable, filthy, and unclear
data, providing insights into several data cleaning procedures. By applying data cleaning
techniques and algorithms, the paper obtains well-structured data that can be used for
further analysis and visualization. The work presented in [53] proposed an approach for
the automated modification of power failure records using natural language processing
technology. This approach reduced the workload of data cleaning and significantly en-
hanced the efficiency of processing unstructured data. The experimental results showed
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that this method reduced more than 70% of the workload and was helpful in improving
the quality of the data.

While previous studies have played a crucial role in the realm of unformatted data
storage and have addressed certain challenges associated with big data, ELT falls short in
some aspects, particularly concerning unstructured data and a reduction in execution time.
Limitations become evident when the requirement arises for processing unstructured data,
especially text, within a constrained timeframe, and the existing model proves inadequate.
Consequently, there is a need to enhance execution time by incorporating a cleaning phase
after extraction and converting unstructured data to a structured format during the loading
phase. The processing models are summarized in Tables 1 and 2.

Table 1. Summary of ETL processing model comparative analysis.

Model Advantages Disadvantages Framework

ETLMR,
[37], 2013

• Runs separate ETL processes to
achieve parallelization.

• Supports ETL operations for
dimensional schemas.

• It does not support dynamic
partitioning.

• No built-in feature to distribute
jobs across nodes.

MapReduce

CloudETL,
[29], 2014

• It supports different
dimensional concepts.

• Cloud ETL is faster than
Hadoop ++ and ETLMR.

• It does not offer many ETL
transformations.

• Only allows for transformation
in mappers; no reducer-level
aggregations available yet.

MapReduce

P-ETL,
[54], 2014

• It allows multiple tasks to
operate in a parallel way with
MapReduce paradigm.

• P-ETL requires a cluster of
computers to process the data,
which can be expensive.

Hadoop environment

Big-ETL,
[4], 2015

• Improve performance of ETL
operations.

• Enables data partitioning,
lookup table creation, and insert
and update capture processes.

• It requires a significant number
of resources and computing
power.

• The complex transformation can
be difficult to parallelize or
distribute across different nodes.

MapReduce

SETL,
[55], 2017

• It helps identify similarities
between source and destination
schemas, which makes mapping
easier.

• May not work well with diverse
datasets; may require domain
experts to create semantic
models.

LDIF, ODBI, and
Geodint

QETL,
[2], 2017

• It enables efficient reuse of
existing data.

• Its optimization step helps
cheaply extract required data
based on specific features from
the source provider.

• Does not enable efficient reuse
of existing information.

• Poor performance.
• High costs for running queries

multiple times over large
datasets.

• QETL cannot apply
non-multidimensional queries.

QETL Paradigm

BigDimETL,
[30], 2018

• It helps accelerate data handling
by providing distributed storage
capabilities.

• Due to this reliance, it may not
always provide optimal
performance.

MapReduce HBase

DOD-ETL, [56], 2019
• It executes workloads up to

10 times faster, making it more
reliable than others.

• It requires a lot of resources to
run.

• It needs an on-demand data
stream pipeline, distributed and
parallel architecture.

Spark
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Table 1. Cont.

Model Advantages Disadvantages Framework

ScalabelETL,
[34], 2020

• Efficient data analysis for better
corporate decisions.

• Enables feature engineering for
predicting churn and detecting
fraud.

• It cannot be used for real-time
ETL.

Amazon AWS
MapReduce

Big-Parallel-ETL,
[57], 2021

• Merge NoSQL Graph data with
data warehouse to tackle big
data challenges.

• It offers fast, efficient algorithms
for deriving multidimensional
structures from NoSQL Graph
databases.

• Overlooks processing complex
query NoSQL graph database.

• Limited solutions available
compared to MapReduce and
Spark technologies.

MapReduce

OS-ETL
[38], 2023

• High efficiency.
• Open-Scala provides flexibility.

• Complexity.
• Scalability.

Open source, Scala
language

Open-ETL
[39], 2023

• Scalability.
• Efficiency.

• Open-ETL not applied in all
scenarios. Spark

Table 2. Summary of ELT processing model comparative analysis.

Model Advantages Disadvantages Framework

ELTA,
[41], 2014

• It reduces the time spent
during the design phase of a
BI solution.

• High-cost storage. Hadoop and SAP HANA

ELT,
[58], 2018

• Cost-effective.
• High performance in

managing large data.
• Combines different database

models.

• Architecture has scalability
issues.

• Complexity causes
performance degradation.

• Requires management to
maintain efficiency.

Hadoop and Spark

D-ELT,
[44], 2019

• Enables instant analysis
without storing unused
transformations.

• Minimizes pre-processing
overhead

• Longer processing time.
• May cause disk swapping. MapReduce

ELTL,
[59], 2019

• Simplifying large dataset
analysis with reduced
complexity and processing
time.

• Improved decision-making.

• High costs. Tableau, Hortonwork, and
Hive

ELTL,
[40], 2020

• Simplified access to diverse
data types in a single location
without manual database
management.

• High costs. Spark

4. ECLT Model

In this part, we describe the ECLT model for processing text data, mining needed data,
and converting them to a structured format for parallel big data processing using Spark.
The primary purpose of ECLT is to reduce the execution time and transform big data from
text to tabular data. The ECLT technique is a Python-based model that is implemented atop
Spark. Unlike the ELT and ETL models, ECLT can handle millions of text lines without
wasting time or memory.
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The ECLT model is shown in Figure 1 and categorized into four phases: (1) extraction
phase, (2) cleaning phase, (3) loading phase, and (4) transformation phase. The upcoming
subsections thoroughly explore each of these four phases. These four phases will be
explained in depth in the following subsections.
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4.1. Extraction Phase

The primary goal of this phase is to retrieve textual data using read text and collect
functions during full extraction, and subtract and union operations during incremental
extraction. This phase serves as the initial step in ECLT. If it is the first ingestion, the
extraction will be full, whereas if the data have previously been extracted and stored in the
Spark RDD, it will be incremental. The datasets provided as inputs for this phase are in
text format.

Figure 2 illustrates the progression of this phase within ECLT, which involves data
extraction by determining whether it is the initial ingestion or a full extraction. In cases
where it is not the first-time ingestion, the incremental extraction approach is employed,
and both approaches entail reading the text data into the Spark RDD. Upon completion of
this phase, unstructured text data are loaded into the RDD.
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Algorithm 1 presents the pseudo-code that introduces the isFirstIngestion flag to track
whether it is the first ingestion or not. Initially, the flag is set to true. If it is indeed the first
ingestion (isFirstIngestion is true), the algorithm reads the text file using spark.read.text(F)
and assigns the resulting RDD1 to Txt_RDD, which is then cached in memory. Caching the
RDD using the “cache()” function allows for improved performance by avoiding redundant
computations, as it will be reused multiple times. The processedData is used to keep track
of the data that have already been processed.

Subsequently, we update the isFirstIngestion flag to false, indicating that subsequent
iterations will not be the first ingestion. During each ingestion, the text file is read into
RDD1. The “subtract()” function is then employed to extract new or updated records by
subtracting the processedData set from RDD1. If there are indeed new or updated records
(newRecords.count() > 0), we check if Txt_RDD already exists. If it does, we merge the
newRecords with the existing Txt_RDD. However, if Txt_RDD is null, we set it as the initial
RDD. After updating Txt_RDD, we cache it in memory using “Txt_RDD.cache()”. Finally,
we update the processedData by performing a union operation with newRecords. This
allows the combination of RDDs from multiple ingested files into a single RDD without
overwriting or duplicating the data. In the case of incremental extraction, only the updated
data will be processed and added to Txt_RDD, while the previously processed data will
be skipped.

Algorithm 1. Extraction

Input: F // text file
Output: Txt_RDD // unstructured text data

1. var isFirstIngestion = true // Flag to track if it is the first ingestion
2. var processedData = Set () // Set to track the already processed data
3. For each data in F do
4. RDD1←Spark.read.text (F)
5. If isFirstIngestion then
6. Txt_RDD←RDD1
7. Txt_RDD. Cache () // Cache the RDD in memory
8. processedData←RDD1.collect(). toSet () // Collect and store all records as processed data
9. isFirstIngestion = false // Update the flag to false for subsequent iterations
10. Else
11. newRecords←RDD1.subtract(processedData) // Incremental extraction for subsequent ingestions
12. If newRecords. Count () > 0 then
13. Txt_RDD. Union (newRecords) // Union the RDDs if it is not the first ingestion
14. Txt_RDD. Cache () // Cache the RDD in memory
15. processedData←processedData. Union (newRecords. Collect (). toSet ()) // Update the

processed dataset
16. End If
17. End If
18. End For
19. Return Txt_RDD
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4.2. Clean Phase

The objective of this phase is to perform cleansing on the extracted text data stored
in SparkRDD. Often, the text data contain irrelevant characters, symbols, or extraneous
information. By cleansing the text dataset, we can eliminate unnecessary data and ensure
that it consists solely of relevant information. It is common for text data extracted from
various sources to contain spelling or grammar errors. Cleansing the text dataset involves
addressing these issues to ensure consistency and enhance the overall quality of the dataset.
Furthermore, the dataset may contain incomplete data, requiring the task of imputing
missing values. In numerical data, missing values are typically filled using calculations
such as the mean or median. However, in our case, since the data are textual, we employ
the most frequent value approach to fill in the missing data. Duplicate items within a
text dataset can introduce distortions in subsequent steps of the ECLT model. To ensure
data quality and prevent such distortions, the cleansing process includes identifying and
removing duplicate items. Cleaning the text dataset is crucial in preparing the data to create
a cleaner, more consistent, and standardized dataset. This, in turn, improves the accuracy
and effectiveness of the ECLT model.

Figure 3 depicts the progression of phase two within the ECLT framework. This phase
holds significant importance in our model for several compelling reasons. Firstly, by elimi-
nating irrelevant data, the feature space undergoes reduction, resulting in a more focused
and streamlined set of features for the subsequent loading phase. Secondly, this reduction
in feature space leads to notable improvements in model execution time, particularly when
dealing with larger datasets. Thirdly, the elimination of redundancy enhances data accuracy
and consistency, thereby enhancing ECLT performance and facilitating faster query execu-
tion during the transformation stage, which represents the final step. Lastly, the process
of filling in missing values enhances the overall quality and reliability of the text data,
rendering ECLT a robust model better suited for data processing. While the cleaning of text
data itself may require some processing time, the time saved during subsequent phases,
such as loading and transformation, can be substantial. By the conclusion of this phase, all
text data are thoroughly cleansed and loaded into a new RDD, ready for further processing.
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Algorithm 2 provides the pseudo-code that initiates an iteration through each line in
the Txt_RDD dataset using a for loop. To address duplicated data, the algorithm employs
the dropDuplicates() function, ensuring that each line remains unique. Furthermore, it
checks for irrelevant data, such as digits, within the text dataset using the find() function,
and subsequently removes unrelated data using the filter() function. The algorithm also
examines missing values by utilizing the isna() function. In cases where incomplete data are
encountered, the line is split into separate elements using the split() function. The algorithm
then creates a counter object to tally the frequency of each element in Txt_split and identifies
the most common element using the Counter.Most_common(Txt_count) function.



Big Data Cogn. Comput. 2024, 8, 17 12 of 26

Algorithm 2. Cleaning

Input: Txt_RDD // raw data
Output: Cleaned_RDD // cleaned data

1. For each line item in Txt_RDD
2. If line is duplicated then
3. drop Duplicated ()
4. Else If Txt_RDD. Find (irrelevant data) then
5. Txt_RDD. Filter (line) // to remove irrelevant data
6. Else If Txt_RDD. Isna () then // detect missing value
7. {
8. Txt_split←RDD. Split (lines) // split the line into small parts as words
9. Txt_count←Counter (Txt_split) // count the number of words
10. Counter. Most_common (Txt_count) // detect the most frequent words
11. Txt_RDD. Fillna (Most_common (Txt_count)) // complete the missing value with the

most frequent word in RDD
12. }
13. Else
14. Break;
15. End If
16. Cleaned_RDD←Txt_RDD
17. End for
18. Return Cleaned_RDD

Finally, the missing values in Txt_RDD are filled with the most common element
found using the fillna() function.

Figure 4 illustrates the architecture for handling dirty data within the text dataset.
When working with text data, common issues such as duplicate entries arise. To address
this, the recommended approach is to remove duplicates using the RDD.DropDuplicates()
function and store the unique lines in the cleaned RDD. Similarly, when identifying ir-
relevant data within the text dataset, the RDD.find() function is utilized, followed by
the removal of unwanted data using the RDD.filter() function, resulting in the cleaned
RDD. Text data may also contain incomplete information, requiring a strategy for filling in
the missing values. While various techniques exist for this purpose, such as calculating
means, medians, or most frequent values, in our model, focused solely on text, the most
appropriate solution is the most frequent technique. Firstly, the RDD.isna() function is
employed to identify missing data. Secondly, the text lines are divided into words using
the RD. Split() function. Thirdly, the RDD.counter() function calculates the frequency of
each word obtained from the split function. Finally, the RDD. Counter.Most_Common()
function is used to determine the most frequently occurring word in the text. Subsequently,
the RDD.fillna() function is applied to fill the missing data with the most frequent word,
and the result is stored in the cleaned RDD.
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4.3. Loading Phase

The primary objective of this phase is to load the cleaned data into a lakehouse and
convert the text data into a structured columnar file. Since Hive does not have its own
Hadoop Distributed File System (HDFS), the cleaned data RDD needs to be transformed
into a data frame. Additionally, the detection of regex patterns extracts the relevant data
from the text and creates an empty table in Hive with a number of columns based on the
regex pattern. Finally, the results of the regex pattern are stored in the created Hive table,
and the structured data are saved in the Parquet format. By the end of this phase, the
data are successfully loaded into a table within the lakehouse. Figure 5 showcases the
progress of the third phase in ECLT, which involves storing the data frame of cleaned data
in the lakehouse and applying regular expression patterns. After the creation of the Hive
table, the data are copied into this table. Consequently, at the conclusion of this phase, the
structured and cleaned data within the table are ready for transformation.
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Algorithm 3 provides the pseudo-code for the process, starting with the definition of a
variable regular expression pattern to be applied to the dataset. The pattern is designed
to extract specific elements, such as dates (\d{2}-\d{2}-\d{4}) and alphabetic characters
[A-Za-z]. It is a flexible pattern that can vary depending on the dataset. In the lakehouse,
the algorithm checks if the table “S” exists within the lakehouse (LH) only once. If the
table does not exist, it creates “S” with the specified columns based on the number of
parts in the regex pattern (two columns). The RDD is converted to a data frame using
Cleaned_RDD.toDF() to enable storing the cleaned data in the lakehouse. An empty data
frame, Df_matches, with the same schema as “S” is created. The regex pattern is then
applied to the data frame “Df” using the rlike() function, which filters the data frame
based on the pattern. The resulting matches are stored in the data frame “Df_matches”.
Subsequently, the data frame “Df_matches” is appended to the existing table “S” in the
lakehouse. This is accomplished using the append mode in the write operation, with data
being inserted into the table using the insertInto() function. Finally, the text data are stored
in the data lakehouse in the Parquet file format, which enhances data read/write speed
and reduces storage requirements.

Algorithm 3. Loading

Input: Cleaned_RDD // cleaned data, LH // lakehouse
Output: S // structured table

1. Regex pattern = ” \d{2}-\d{2}-\d{4} [A-Za-z]”
2. If table does not exist then
3. Create S (date, category) // initially create two columns, and according to the dataset, more

columns can be created.
4. End if
5. Df← Cleaned_RDD.toDF () //convert cleaned data rdd into DataFrame
6. Df_matches← Df.filter(col(“text”).rlike(Regex pattern)) // Apply the regex pattern to Df and store

the matches in Df_matches
7. Df_matches. write.format (“parquet”). mode(‘append’). insertInto(‘S’). save (LH) // Append

Df_matches to the table S in LH
8. Return S

Figure 6 illustrates the process of converting the cleaned text dataset into a structured
table during the loading phase. Following the data cleaning phase, the new RDD is
prepared for loading into the lakehouse. Initially, the regular expression pattern is defined
to partition the text into smaller parts. This pattern is not fixed but varies based on the
specific dataset and the desired data extraction. The figure assumes the regex pattern has
multiple parts, labeled as part 1, part 2, part 3, and so on up to part “n”. The pattern is then
applied to the cleaned text, resulting in separate statements for each part. This process is
repeated for each part until all statements are extracted. Finally, a Hive table is created, with
the number of columns determined by the number of parts in the pattern. The extracted
statements are stored in this table, facilitating structured storage of the text data.
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4.4. Transformation Phase

The primary objective of this phase is to transform the data in a way that facilitates
business intelligence usage or analytics. It is not necessary to transform all the extracted
data; only the data relevant to the analysis step need to be transformed. The specific data to
be transformed are determined based on the requirements of the business intelligence (BI)
analysis. Transformations can take the form of functions or actions. Transformations are
lazily evaluated, meaning they are not executed immediately when called, but rather create
a plan for executing the operation when an action is triggered. Actions, such as count(),
collect(), aggregate(), and reduce(), help reduce the time required for the transformation
process. Figure 7 depicts the progress of the fourth phase in ECLT. Once the transformation
is applied, the result becomes immutable. However, when an action is applied to the
transformed data table, the time consumption decreases, leading to a more efficient system.
The result is then ready for further analytics.
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From the previous phase, we have a structured table “S” with two columns, such
as “date” and “category”. Algorithm 4 provides the pseudo-code for this phase. It be-
gins by creating an empty table to store the transformed data. Next, an iteration loop
is created to process each row in the input table “S”. Within this loop, an empty row
called “Transformed_row” is created to store the transformed values for each column.
The “ConvertToDate()” function is utilized to convert the input date string to a desired
date format, specified as “dd-mm-yyyy”. The transformed date is stored in the variable
“transformed_date”, which is then assigned to “Transformed_row[‘date’]”. The input
category string is converted to lowercase using the “lower()” function to ensure consis-
tent case formatting for the transformed category. The “StripWhitespace()” function is
applied to remove leading and trailing whitespace from the transformed category, helping
standardize the category values. The results of these functions are stored in the variable
“transformed_category”, which is then assigned to “Transformed_row[‘category’]”. At the
end of each iteration, the transformed row is inserted into the transformed table. Various
operations such as count() on the category column to calculate the frequency of category
occurrences or filter() on the date to display specific dates can be applied. By the end of this
phase, the data are transformed, enriched, and structured for analysis and visualization.
Business intelligence users and decision-makers can easily make informed decisions based
on these prepared data.
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Algorithm 4. Transformation

Input: S// Structured table
Output: TS // Transformed structured table

1. TS← Empty_table // create an empty table for storing the transformed data.
2. For each row in S
3. Transformed_row← Empty_row // Create an empty row for storing the transformed values.
4. transformed_date← ConvertToDate(date, “dd-mm-yyyy”) // Apply transformations to the “date”

column.
5. Transformed_row[“date”]← transformed_date // Store this variable to the empty row called date.
6. transformed_category← category.lower() // Convert the category to lowercase
7. transformed_category← StripWhitespace(transformed_category) // Remove leading and trailing

whitespace
8. Transformed_row[“category”]← transformed_category // Store this variable to empty row called

category.
9. TS← AppendRow(TS, Transformed_row) //Add the transformed row to the transformed table.
10. End for
11. Num_catg← Category.count() // Count the number of categories repeated.
12. Specific_date← filter(lambda x: x ==“dd-mm-yyyy”, date) // Display text with specific date
13. Return TS

5. Performance Evaluation

In this section, we compare the execution time of the ECLT model with the most
commonly used models, namely ETL, ELT, ELTL, ELTA, and DELT, in order to evaluate
the performance of the ECLT model. The ELTL model utilizes Spark, while the DELT
model employs MapReduce to measure the execution time. To ensure a fair and accurate
comparison among ETL, ELT, ELTL, ELTA, and DELT, we implemented them in the same
environment as the ECLT model. To measure the execution time of the ECLT model, we
utilized a single node with an Intel (R) Core (TM) i7-5500U CPU running at 2.40 GHz. The
node was equipped with two cores, 16 GB of RAM, 1 TB of SSD, and 1 TB of HDD. The
operating system installed on the node was Windows 10, and the software stack included
Hadoop 2.7.0, Hive 3.1.3, Spark 3.3.1, and Python 3.9. By conducting the performance
evaluation in this standardized environment, we ensured that the comparison of ETL, ELT,
ELTL, ELTA, and DELT was based on the same specifications.

5.1. Dataset

In this part, we provide the features of the datasets utilized in the evaluation. The
proposed model (ECLT) was tested using the two most popular datasets for text data in big
data. Table 3 shows the properties of the datasets used in execution time evaluation. The
first dataset is the Spark log data dataset [60], which was collected and examined in [61]
to serve academic researchers. The second dataset is the Wikipedia article dataset [62],
which is increasing by over 17,000 articles per month, and the articles were compressed
without media.

Table 3. Characteristics of the datasets used in enhancing execution time.

Dataset Type Size Description

Spark Log
https://github.com/logpai/loghub/tree/master/Spark

accessed on 13 September 2023
Text 33,236,604 lines Stored in 3852 files

Wikipedia Articles
https://en.wikipedia.org/wiki/Wikipedia:

Database_download
accessed on 6 January 2024

Text 6,767,054 articles Containing over 4.3 billion
words

https://github.com/logpai/loghub/tree/master/Spark
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
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5.2. Experiment and Result

This section will present the experimental results of the ECLT model in comparison to
the ETL, ELT, DELT, ELTL, and ELTA models, focusing on the aspect of execution time. We
applied the log data and Wikipedia article datasets to our model and others to measure the
execution time.

5.2.1. Spark Log Dataset

Figure 8 shows the conversion of cleaned log data text to a table. The regex pattern
used is “([0-9]{2}/[0-9]{2}/[0-9]{2}) ([0-9]{2}: [0-9] {2}: [0-9]{2}) [a-zA-Z] * ([a-zA-Z0-9.] *):
(.*)$”. This pattern has five parts. The first part is [0-9]{2}/[0-9]{2}/[0-9]. Here, {2} is a
date that has a number from 0 to 9 and just two digits, even the year. The second part,
[0-9]{2}: [0-9] {2}: [0-9] {2}, is time that has hours, minutes, seconds, and also two digits. The
third part, [a-zA-Z]*, is the log level, which only has characters from a to z, whether they
are uppercase or lowercase and * is used to match zero or more instances of the character
that came before it. The fourth part ([a-zA-Z0-9.] *) is the action of the event that could
be characters, so a-z, or could be digits, so 0-9, or both. The fifth part (. *) is the content
of the remaining text. Each timestamp in these data represents an action and has a set of
information about this action separated by spaces. In the log text, the first line has the
15/09/01 18:16:44 INFO executor. The executor runs task 806.0 in stage 0.0 (TID 513). The
first part is the date, the second part is the time, the third part is the log level, the fourth
part is an action, and the final part is the remaining text.
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Figure 8. Loading cleaned log data into table.

Figure 9 illustrates the execution time for each phase of the ECLT (extraction, cleaning,
loading, and transformation) model when working with a data size of 1 TB. Initially, we
executed the required programs on a single node and employed an “if” condition during
the extraction of log data. This condition was used to identify the first ingestion of all data,
while subsequent ingestions only updated the data. The extraction phase took 5.31 s to
complete. The cleaning phase, which followed extraction, consisted of two steps. The first
step involved detecting outliers or errors, while the second step focused on fixing the errors
or removing outliers. After the detection functions such as filtering and the fixing functions
like dropping were performed, this step took 17.69 s. In the loading phase, the cleaned data
were stored in a data lake and transformed from unstructured to structured data. During
the creation of an empty table in Hive, we specified a regular expression pattern to parse
the text and store the data in the table, ensuring their structure and quality. This step took
8.6 s. The final phase, transformation, involved taking the structured data, conducting
simple aggregations, and converting column types to suitable formats. This phase required
10.2 s.
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Figure 9. Execution time of ECLT model in each phase in log dataset.

Figure 10a presents a comparison of execution times for the ETL, ELT, ECLT, ELTL,
ELTA, and DELT models using the same 1 TB data size. We applied each model separately
to ensure accurate results. The recorded execution times were as follows: The ETL model
had the longest execution time of 521.34 s, indicating it is not suitable for handling big data
due to its time-consuming nature. The ELT model recorded a time of 315.8 s as it stored
the data after extraction before the transformation process began. The ELTA model took
283.16 s, demonstrating that despite the addition of an analysis stage after the conversion
stage, the conversion process only prepared the data for analysis at a specific moment.
The ELTL model recorded a time of 254.74 s because it stored the transformed data again
in the data warehouse. The DELT model achieved a time of 129.66 s due to its delayed
stage, making it a favorable choice. Finally, the ECLT model outperformed the others by
recording a time of 41.8 s.

Figure 10b focuses on a comparison of memory usage between the ECLT model and
the other models. The ETL model consumed 75% of the highest recorded memory, while
the ELT, ELTL, ELTA, and DELT models consumed 68%, 32%, 45%, and 18% respectively.
Remarkably, the ECLT model outperformed all other models by consuming only 9% of
memory, resulting in significant memory savings.

5.2.2. Wikipedia Dataset

Figure 11 shows the conversion of the Wikipedia article dataset text to a table. The
regex pattern used is “\|\s*Last\s*edited\s*=\s*(.*?)\s*}} ˆ=+\s*(.*?)\s*=+.*? \[\[Category:
(.*?)\]\] (.+?)”. This pattern has four parts. The first part is “\|\s*Last\s*edited\s*=
\s*(.*?)\s*}}”. The date of the last revision can be found at the bottom of every page. The
second part, “ˆ=+\s*(.*?)\s*=+.*? \”, is the title, which is the name of the subject of the
article. Sometimes the article topic has no name; it may be a description of the topic. There
are no two articles with the same title. The third part, “[\[Category:(.*?)\]\]”, is the category
to which the topic has been assigned in the article that is found at the bottom of the article
and * is used to match more instances of the character that came before it, which means
that the category might have subcategories. The fourth part (.+?) is the remaining content
of the article.
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Figure 10. Comparison between ECLT and other models in log dataset. (a) Execution time between
ECLT and other models. (b) Memory usage between ECLT and other models.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 20 of 27 
 

 
Figure 11. Loading cleaned article data into table. 

 
Figure 12. Execution time of ECLT model in each phase in Wikipedia dataset. 

Figure 13a presents a comparison among the ECLT, ETL, ELTL, DELT, and ELTA 
models using Wikipedia articles. It is evident that ECLT achieves faster execution times 
than all other models. ETL recorded a time of 863.2 s, while ELT and ELTL recorded times 
of 704.65 s and 471.79 s, respectively. Notably, DELT achieved a time of 250.4 s, which is 
nearly half the time recorded by ELTA, which was 544.31 s. It is important to note that 
ETL, with its three phases instead of four, recorded the longest execution time. 

In Figure 13b, a comparison of memory usage is made among the ECLT, ETL, ELTL, 
DELT, and ELTA models. ELTA consumes 66% of memory, which is more than twice the 
amount consumed by DELT, which is 29%, primarily due to execution time. As expected, 
ETL consumes a high percentage (89%), while ELT consumes 82%. Remarkably, ECLT 
only consumes 16% of memory for execution, reaffirming its superior performance over 
all other models. 

  

Hive Table Columns
Last Modified 

Date Title Category Content

English Institute of Sport article

16/11/2023 English Institute of
Sport

Sport in
Manchester

The English 
Institute....

" \|\s*Last\s*edited\s*=\s*(.*?)\s*}} ^=+\s*(.*?)\s*=+.*? \[\[Category:(.*?)\]\] 
(.+?)  "

^=+\s*(.*?)\s*=+.*? \
[\[Category:(.*?)

\]\] 
\|\s*Last\s*edited\s*=\s*

(.*?)\s*}} (.+?) 

14.87

56.2

24.6 23.93

0

10

20

30

40

50

60

Extraction Cleaning Loading Transformation

Ex
ec

ut
io

n 
M

em
or

y 
(s

)

Figure 11. Loading cleaned article data into table.

Figure 12 illustrates the execution time of the ECLT (extraction, cleaning, loading, and
transformation) process when applied to 1 million articles. In the extraction phase, ECLT
extracted the articles from the dataset, which took approximately 14.8 s. Subsequently,
the data underwent a cleaning process. During this phase, we identified and removed
repeated data and external links. We also addressed missing values by completing them.
To streamline the scope, we excluded table content and section headers. The cleaning phase
was completed in 56.2 s. Moving on to the loading phase, the cleaned data were processed
using a regex pattern and stored in a Hive table within a lakehouse. This phase recorded a
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time of 24.6 s. Finally, the transformation phase, which focuses on preparing the necessary
data for BI users or analysts, took 23.93 s to execute.
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Figure 12. Execution time of ECLT model in each phase in Wikipedia dataset.

Figure 13a presents a comparison among the ECLT, ETL, ELTL, DELT, and ELTA
models using Wikipedia articles. It is evident that ECLT achieves faster execution times
than all other models. ETL recorded a time of 863.2 s, while ELT and ELTL recorded times
of 704.65 s and 471.79 s, respectively. Notably, DELT achieved a time of 250.4 s, which is
nearly half the time recorded by ELTA, which was 544.31 s. It is important to note that ETL,
with its three phases instead of four, recorded the longest execution time.
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Figure 13. Comparison between ECLT and other models in Wikipedia dataset. (a) Execution time
between ECLT and other models. (b) Memory usage between ECLT and other models.

In Figure 13b, a comparison of memory usage is made among the ECLT, ETL, ELTL,
DELT, and ELTA models. ELTA consumes 66% of memory, which is more than twice the
amount consumed by DELT, which is 29%, primarily due to execution time. As expected,
ETL consumes a high percentage (89%), while ELT consumes 82%. Remarkably, ECLT
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only consumes 16% of memory for execution, reaffirming its superior performance over all
other models.

6. Discussion

Table 4 presents the average execution times in seconds for the ECLT model and other
models across different dataset sizes. Considering the log dataset, the results indicate that
the ECLT model achieved the best performance, recording 41.8 s for the 1 TB dataset. In
comparison, the DELT model achieved an intermediate performance with a recorded time
of 129.66 s, while the ETL model exhibited the worst performance, taking 521.43 s. The
ECLT model demonstrated outstanding performance and proved to be well suited for
handling log data with millions of lines. This success can be attributed to the thorough data
cleaning process, which identifies errors, eliminates duplicates, and filters out irrelevant
information effectively. Furthermore, the ECLT model excels at handling large amounts of
data by splitting text into smaller segments and storing them in a structured table without
causing memory leaks due to increased size. It is a scalable model capable of processing
substantial data volumes.

Table 4. Average time (in seconds) on ECLT models and other models in different sizes.

Wikipedia Article Dataset/Size (Million) Spark Log Dataset/Size (TB)

Model 1 2 3 1 1.25 1.5

ELT 704.65 1306.9 2062.84 315.81 422.4 617.92
ETL 863.2 1694.7 2984.15 521.34 702.5 918.33

ELTL 471.79 920.64 1723.33 254.74 375.1 398.6
DELT 250.4 476.12 883.47 129.66 175.23 206.3
ELTA 544.31 959.11 1963.22 283.16 334.81 423.84
ECLT 119.6 234.79 553.8 41.8 62.25 84.2

For instance, when the dataset size was increased to 1.5 TB, the ETL model exhibited
the highest execution time, recording 918.33 s. This is because all of the extracted data are
transformed and then loaded into a data warehouse. The ELTA and ELTL models recorded
times of 398.6 and 423.84 s, respectively. Although these times were lower than those of
ETL and ELT, they were still higher than that of DELT. On the other hand, DELT recorded
a time of 206.3 s, which is lower than that of ECLT. Despite the increase in log data size
to 1.5 TB, the ECLT model achieved the shortest execution time, outperforming all the
compared models.

Shifting focus to the Wikipedia dataset, when we scaled the dataset to 2 million articles,
all models exhibited nearly twice the execution time, including ECLT. However, ECLT
still demonstrated the lowest execution time. Figure 14a,b clearly illustrate that memory
consumption increases significantly when the data are scaled, with ECLT surpassing all
other models in memory usage and performance.

The ECLT model stands out as the optimal solution for efficiently processing text
data within a short timeframe, utilizing the Spark framework. Spark enables parallel
processing of data and facilitates the conversion of text into a structured Hive table with
clean data. By leveraging tools such as Apache Kafka and Apache Nifi, the integration of
ECLT into the data flow of a platform is feasible. This integration involves configuring
Kafka consumers to extract raw text data and utilizing Nifi processors to execute the
cleaning, loading, and transformation phases. Additionally, ECLT can seamlessly integrate
with major cloud providers like Amazon Web Services (AWS) or Microsoft Azure. By
defining data pipelines that incorporate the ECLT process, businesses can leverage the
pre-built connectors, data transformation capabilities, and scalable infrastructure offered
by these cloud services, simplifying the integration of ECLT into existing frameworks.
By applying the ECLT approach to text data, businesses and researchers gain valuable
insights from unstructured data. They can leverage sentiment analysis to understand
customer attitudes and entity extraction to extract pertinent entities for research purposes.
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Through the ECLT approach, unstructured text data can be transformed into structured
formats compatible with existing analytical tools and models. This enables more data-
driven decision-making based on a comprehensive understanding of the text data. The
utilization of Spark and Hive in automating the ECLT process allows organizations to
expedite their data processing activities. This enhancement significantly improves decision-
making capabilities by increasing efficiency in processing and analyzing large volumes of
text data.
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However, there are certain limitations to our approach that should be acknowledged.
First, the proposed ECLT approach can be used on textual data only and relies on the
definition of application-dependent RegEx; performance evaluation could be dependent
on the adoption of the Spark environment, for which alternative approaches might not be
optimized. Secondly, our application of ECLT is focused solely on batch data processing
and does not encompass real-time data processing. Lastly, the accuracy of the ECLT
process heavily depends on the quality of the dataset used. If the initial text data contain
errors or inconsistencies, the overall quality of the structured data produced could be
adversely impacted.

For future work, we recommend exploring the integration of the ECLT process into
real-time data processing frameworks that handle streaming text data. Additionally, it
would be beneficial to investigate and develop more advanced text cleaning techniques to
address specific challenges such as misspellings or language-specific issues. Comprehensive
evaluations and benchmarking studies should be conducted to assess the effectiveness of
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the ECLT process in various domains and datasets. These efforts will contribute to further
refining and enhancing the ECLT approach for text data processing.

7. Conclusions

The Extract–Transform–Load (ETL) process holds significant importance in data man-
agement and analytics. It involves extracting data from various sources, transforming
them into a suitable format, and ultimately loading them into a data warehouse or data
lakehouse. These data storage solutions play a crucial role in handling big data, which
are vast and complex information that traditional data processing programs struggle to
handle efficiently. A data lakehouse represents a concept that combines the capabilities of a
data lake and a data warehouse, enabling the storage of both structured and unstructured
data in their original formats. Consequently, ETL operations play a vital role in ensuring
that valuable insights can be derived from the extensive data stored in data warehouses or
data lakes.

In this paper, we have extensively investigated the effectiveness of the ECLT (Extract–
Clean–Load–Transform) process for text data processing. Our focus was primarily on
its ability to extract, clean, load, and transform data from various sources. Through our
investigation, we discovered the remarkable efficiency and performance of the ECLT
process, particularly when dealing with large-scale datasets.

The first phase of the ECLT process, extraction, allowed us to seamlessly access and
retrieve text data from diverse sources. Leveraging advanced techniques within the ECLT
framework, we successfully handled data from log files, Wikipedia articles, and other
textual resources. The flexibility of the ECLT process in accommodating multiple data
sources proved to be a significant advantage, enabling us to work with a wide range of
text data. The subsequent cleaning phase of the ECLT process was crucial in addressing
the inherent challenges associated with textual data, such as noise, misspellings, and
inconsistencies. By applying various cleaning techniques, including handling missing
values, removing irrelevant characters, and eliminating duplicates, the ECLT process
effectively improved the quality and integrity of the extracted text data. This step played a
pivotal role in ensuring the reliability and accuracy of subsequent analyses. Furthermore,
the loading phase of the ECLT process demonstrated its efficiency in seamlessly integrating
the cleaned text data into a data lakehouse architecture. Leveraging its compatibility
with data lakehouse technologies like Apache Parquet, the ECLT process facilitated the
smooth transition of the cleaned text data into a scalable table and accessible storage
system. This capability proved instrumental in managing and querying vast volumes of
text data, ensuring their availability for subsequent transformations and analyses. Finally,
the transformation phase of the ECLT process showcased its superior performance when
compared to alternative models. The ECLT process exhibited exceptional efficiency and
effectiveness in transforming the text data, further enhancing their value for downstream
analysis and decision-making. Overall, our research highlights the significant advantages
of the ECLT process in text data processing, emphasizing its efficacy in extraction, cleaning,
loading, and transformation. These findings contribute to the body of knowledge in data
processing and provide valuable insights for future research and practical applications.

Through our experiments using log datasets and Wikipedia datasets, we conducted a
thorough evaluation of various models to compare their execution times. The results consis-
tently demonstrated that the ECLT (Extract–Clean–Load–Transform) process outperformed
all other models. The advanced processing capabilities of the ECLT process, combined
with its support for distributed computing, enabled faster and more efficient transforma-
tions of text data. The reduction in execution time signifies the practical benefits of the
ECLT process, particularly in time-sensitive applications where real-time decision-making
is critical.

In conclusion, our research emphasizes the significant advantages and capabilities
of the ECLT process in handling text data from multiple sources. The ECLT process
exhibited remarkable efficiency in loading data into a data lakehouse, and its superior
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performance in reducing execution time was evident through rigorous experimentation
with log and Wikipedia datasets. The findings of this paper provide compelling evidence
for the effectiveness of the ECLT process, establishing it as a valuable tool for practitioners
and researchers engaged in text data processing and analysis.

Author Contributions: Conceptualization, M.S.F. and L.A.; Data Curation, M.S.F.; Formal Anal-
ysis, A.Y.; Investigation, A.Y.; Methodology, A.Y.; Project Administration, M.S.F.; Software, A.Y.;
Supervision, M.S.F. and L.A.; Validation, L.A.; Visualization, A.Y.; Writing—Original Draft, A.Y.;
Writing—Review and Editing, M.S.F. and L.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sources are contained within the article in [60,62].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dhaouadi, A.; Bousselmi, K.; Mohsen, G.; Monnet, S.; Hammoudi, S. Data Warehousing Process Modeling from Classical

Approaches to New Trends: Main Features and Comparisons. Data 2022, 7, 113. [CrossRef]
2. Santoso, L. Yulia Data Warehouse with Big Data Technology for Higher Education. Procedia Comput. Sci. 2017, 124, 93–99.

[CrossRef]
3. Alqarni, A.; Pardede, E. Integration of Data Warehouse and Unstructured Business Documents. In Proceedings of the 15th

International Conference on Network-Based Information Systems, Melbourne, VIC, Australia, 26–28 September 2012; ISBN
1467323314.

4. Diaz-Chito, K.; Ferri, F.J.; Hernández-Sabaté, A. An Overview of Incremental Feature Extraction Methods Based on Linear
Subspaces. Knowl. Based Syst. 2018, 145, 219–235. [CrossRef]

5. Rahm, E.; Do, H.H. Data Cleaning: Problems and Current Approaches. IEEE Data Eng. Bull. 2000, 23, 3–13.
6. Simitsis, A.; Skiadopoulos, S.; Vassiliadis, P. The History, Present, and Future of ETL Technology. Invited Talk. 2023. Available

online: https://dblp.org/rec/conf/dolap/SimitsisSV23.html (accessed on 25 January 2024).
7. Bose, S.; Dey, S.K.; Bhattacharjee, S. Big Data, Data Analytics and Artificial Intelligence in Accounting: An Overview. In Handbook

of Big Data Research Methods: 0; Edward Elgar: Northampton, MA, USA, 2023; p. 32. [CrossRef]
8. Ernst & Young. Changing the Way Businesses Compete and Operate. Insights on Governance, Risk and Compliance, EY Building

a Better Working World. 2014. Available online: https://dl.icdst.org/pdfs/files2/8e7f03e2a5c148145615328ec03b2e33.pdf
(accessed on 25 January 2024).

9. Bochkay, K.; Brown, S.V.; Leone, A.J.; Tucker, J.W. Textual Analysis in Accounting: What’s Next? Contemp. Account. Res. 2023, 40,
765–805. [CrossRef]

10. Leow, K.-R.; Chew, L.; Ong, L.-Y. A New Big Data Processing Framework for the Online Roadshow. Big Data Cogn. Comput. 2023,
7, 123. [CrossRef]

11. Emmanuel, I.; Stanier, C. Defining Big Data. In Proceedings of the International Conference on big data and advanced Wireless
technologies, Blagoevgrad, Bulgaria, 10–11 November 2016; pp. 1–6.

12. Naeem, M.; Jamal, T.; Diaz-Martinez, J.; Butt, S.A.; Montesano, N.; Tariq, M.I.; De-la-Hoz-Franco, E.; De-La-Hoz-Valdiris, E.
Trends and Future Perspective Challenges in Big Data. In Advances in Intelligent Data Analysis and Applications; Pan, J.-S., Balas,
V.E., Chen, C.-M., Eds.; Springer: Singapore, 2021; pp. 309–325.

13. Martins, A.; Abbasi, M.; Martins, P.; Sá, F. BigData Oriented to Business Decision Making: A Real Case Study in Constructel.
Comput. Math. Organ. Theory 2021, 28, 271–291. [CrossRef]

14. El Aissi, M.E.M.; Benjelloun, S.; Loukili, Y.; Lakhrissi, Y.; Boushaki, A.E.; Chougrad, H.; Elhaj Ben Ali, S. Data Lake Versus Data
Warehouse Architecture: A Comparative Study. In Proceedings of the 6th International Conference on Wireless Technologies,
Embedded and Intelligent Systems, WITS 2020, Fez, Morocco, 14–16 October 2020; Volume 745, pp. 201–210.

15. Liu, R.; Isah, H.; Zulkernine, F. A Big Data Lake for Multilevel Streaming Analytics. arXiv 2020, arXiv:2009.12415.
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