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Abstract: With the popularization of better network access and the penetration of personal smart-
phones in today’s world, the explosion of multi-modal data, particularly opinionated video messages,
has created urgent demands and immense opportunities for Multi-Modal Sentiment Analysis (MSA).
Deep learning with the attention mechanism has served as the foundation technique for most state-of-
the-art MSA models due to its ability to learn complex inter- and intra-relationships among different
modalities embedded in video messages, both temporally and spatially. However, modal fusion
is still a major challenge due to the vast feature space created by the interactions among different
data modalities. To address the modal fusion challenge, we propose an MSA algorithm based on
deep learning and the attention mechanism, namely the Mixture of Attention Variants for Modal
Fusion (MAVMF). The MAVMF algorithm includes a two-stage process: in stage one, self-attention
is applied to effectively extract image and text features, and the dependency relationships in the
context of video discourse are captured by a bidirectional gated recurrent neural module; in stage two,
four multi-modal attention variants are leveraged to learn the emotional contributions of important
features from different modalities. Our proposed approach is end-to-end and has been shown to
achieve a superior performance to the state-of-the-art algorithms when tested with two largest public
datasets, CMU-MOSI and CMU-MOSEI.

Keywords: multi-modality; attention mechanism; sentiment analysis; feature fusion; deep learning

1. Introduction

The accessibility of 5G networks and the popularity of social media have given rise
to the ubiquity of opinionated video messages in our cyber world. Amateur users are
producing large numbers of videos on social media platforms such as TikTok and on the
internet to share their sentiments and emotions toward all aspects of their daily lives [1,2].
These multi-modal data consist of at least two modalities, commonly including texts,
acoustics, and images [3]. For instance, videos on TikTok not only contain the creator’s
spoken language but also their body movements and facial expressions with pleasing
background music and special animation effects.

The rich information contained in multi-modal data creates immense opportunities
for different organizations. The ability to digest multi-modal data is beneficial for a variety
of application scenarios that can greatly enhance user experiences and utility. For example,
in autonomous driving, the vehicular control unit can leverage cameras to monitor drivers’
emotions, driving behaviors, and fatigue conditions in real-time and provide necessary
feedback based on the multi-modal signal [4]. This can effectively enhance driving safety
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and reduce accidents. In the field of medical and health services, multi-modal information
(e.g., patient counseling recordings) can be applied for emotion tendency assessments to
assist doctors in their decisions on patient treatments [5]. Social media platforms can adopt
machine learning techniques to automatically poll collective sentiment tendencies on videos
of a given topic, which can then be relayed to other relevant organizations for decision
making [6]. However, with greater possibilities come greater challenges with leveraging
multi-modal data. Unlike single-modality data (e.g., texts) for sentiment analysis, the
diverse modalities contained in multi-modal data both complement and interfere with each
other, making information fusion extremely challenging.

The challenges with fusing multi-modal data mainly lie in the encoding both single-
modality and cross-modality information and the modeling of contextual relationships
among the targeted units of analysis (e.g., utterance). Both tasks require significant com-
puting in an enormous feature space, which invalidates manual feature engineering as
a solution option. Fortunately, deep learning has shown promising potential for model-
ing multi-modal data, particularly for Multi-Modal Sentiment Analysis (MSA) tasks [7].
Various deep learning methods, including CNN, LSTM/GRU, (Self-)Attention, and BERT,
have been leveraged to learn encoding from single and cross modalities [7] and have been
shown to achieve state-of-the-art performances in MSA tasks [7]. However, there is still
no consensus on how to efficiently fuse multi-modal information to remove existing noise
while taking contexts into considerations for optimizing the performance of MSA.

In this work, we propose a novel algorithm based on a mixture of attention variants for
multi-modal fusion in MSA tasks. Our approach divides the multi-modal fusion problem
into two stages: (1) we leverage the self-attention module to maximize the intra-modality
information value, and we use the BiGRU module to maintain inter-utterance contexts
within each modality; (2) after compressing the feature space using a fully connected
module, the tensors resulting from each modality are fed into four different attention
variants for multi-modal fusion. In both stages, we apply the attention mechanism to
distinguish the contributions from each modality, assigning higher weights to useful
features, while reducing irrelevant background interference.

The main contributions of the current work can be summarized as follows: (1) We
present a comprehensive literature review on both single and Multi-Modal Sentiment
Analysis. (2) A novel MSA method, namely the Mixture of Attention Variants for Modal
Fusion (MAVMF), is proposed to solve the multi-modal fusion challenge. (3) Experimental
data on the two largest benchmark public datasets show that our proposed MAVMF
algorithm can effectively extract multi-modal information, and it is shown to demonstrate
improvements when compared with other baseline methods.

In the remaining sections, we provide a comprehensive summary of the sentiment
analysis and new developments in Section 2, introduce our problem definition and pro-
posed algorithm in Section 3, provide the details of the experiments in Section 4, and
present the results in Section 5, followed by a discussion in Section 6 and a conclusion
in Section 7.

2. Related Work

Before we entered into the video age in social media, text data dominated the Sentiment
Analysis (SA) sphere and were considered the default data modality in SA. However,
research on SA using only text data can suffer from issues like having an “emotional gap”
and “subjective perception” [3], leading to unsatisfactory results in SA tasks. Compared
with text-only data, user-recorded videos convey emotional information through subscripts
(e.g., texts), images and the acoustic signals embedded in them. The popularity of video
data gave rise to MSA, in which various modalities are leveraged to corroborate each other
and provide a better recognition performance [8]. Since the effective extraction of features
within single modalities serves as the foundation and prerequisite for MSA tasks, it is
necessary to use feature extractors to extract internal features within each modality. In
addition, since the fusion of multi-modal features is critical to the success of MSA tasks,
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effective fusion algorithms are at the core of MSA research. From these two perspectives,
we cover both single- and multi-modality SA in this section.

2.1. Single-Modality Sentiment Analysis
2.1.1. Text Sentiment Analysis

When conducting a text sentiment analysis (TSA), we aim to discover the emotional
attitudes expressed by the authors by analyzing the emotions within the text. Before the
advent of text analysis technology, people had to manually read and analyze the emotions
conveyed in text, resulting in a significant increase in their workload. In addition, manual
classifications are prone to human error. Therefore, the use of automation technology to
infer text sentiments can significantly improve the label efficiency in TSA.

TSA tasks can be categorized into word-level, sentence-level, and document-level
inferences [9]. Document-level SA focuses on the overall emotional tendency, which is
obtained by assigning different sentiment contributions to different sentences and aggregat-
ing the sentiment tendencies of all sentences in the document. Sentence-level SA focuses on
each individual sentence in a document and studies the emotional polarity of the sentence
based on the sentiment contributions of the words within the sentence. Word-level SA
focuses on each word that appears in a sentence and directly determines its emotional
polarity through sentiment lexicons.

All TSA methods can be simply divided into rule-based and machine-learning-based
methods [10]. The rule-based approaches use predesigned rules, such as sentiment lexicons,
to determine text sentiments. For example, sentiment lexicons may define the polarity scores
of emotion words, and the overall sentiment polarity is determined by aggregating the
positive and negative scores of the words. The one with the higher score is selected as the
final sentiment polarity. The performance of rule-based SA methods largely depends on the
accuracy of the scoring for each word and the comprehensiveness of the lexicon set. Due to
its simplicity in implementation, rule-based SA methods are widely adopted by researchers
and practitioners [11]. For instance, Thelwall et al. [12] proposed the SentiStrength algorithm;
Saif et al. [13] developed the SentiCircles platform for SA on Twitter; Li et al. [14] constructed
a lexicon to effectively enhance the sentiment analysis performance; Kanayama et al. [15]
proposed a syntactic-based method for detecting the sentiment polarity; and Rao et al. [16]
conducted a sentiment analysis based on the document topic classification.

The machine-learning-based SA methods aim to automate SA tasks by using super-
vised models. For example, Chen et al. [17] proposed a novel SA algorithm to extract
sentiment features from mobile app reviews and used Support Vector Machines (SVMs) for
sentiment classification. Zhao et al. [18] used supervised algorithms to perform a binary
classification on product review data, classifying the comments into positive and negative
categories. Kiritchenko et al. [19] proposed a SVM algorithm for short and informal texts.
Silva et al. [20] applied ensemble learning by combining various classifiers such as random
forests and SVMs. More recently, deep learning approaches have emerged as a new av-
enue of research in TSA. Kim et al. [21] used Convolutional Neural Networks (CNNs) for
SA and was able to demonstrate an excellent performance. Makoto et al. [22] combined
spatial pyramid pooling with max pooling and used gated neural networks to classify
user review texts. Meng et al. [23] proposed a multi-layer CNN algorithm and was able
to prove its superiority through experiments. Jiang et al. [24] combined long short-term
memory (LSTM) networks [25] with CNNs to handle the dependency on distant sentences.
Luo et al. [26] introduced a gated recurrent neural network (RNN) to enhance the contextual
relationships between words and texts. Minh et al. [27] proposed three variants of neural
networks [28] to capture the long-term dependencies of information.

2.1.2. Image Sentiment Analysis

Image Sentiment Analysis (ISA) mainly focuses on the modeling of users’ facial expres-
sions and postures contained in an image to infer their emotional tendencies.
Colombo et al. [29] first proposed an automatic emotion retrieval system that effectively ex-
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tracts image features and performs emotion classification. Singh et al. [30] applied the CNN
with domain specific fine tuning to classify sentiments on Flickr images. Yang et al. [31]
created a learning framework that explores only the affective regions in an image and
combined it with a CNN to classify the sentiment for an image. Yang et al. [32] proposed a
weakly supervised coupled CNN with two branches to leverage localized information from
an image for ISA. Kumar et al. [33] constructed a visual emotion framework for emotion
feature extraction using the Flickr dataset. Truong et al. [34] developed item-oriented and
user-oriented CNNs to better capture the interaction of image features with the specific
expressions of users or items for the inference of user review sentiments. You et al. [35]
extracted features from local image regions and conducted an ISA by incorporating an
attention mechanism into the proposed network. Wu et al. [36] proposed a scheme for
ISA that leverages both the inference on the whole image and subimages that contain
salient objects. Zheng et al. [37] introduced an “Emotion Region Attention” module, while
Li et al. [38] proposed a novel SentiNet model for ISA.

2.1.3. Speech Emotion Analysis

Compared to text and image SA tasks, the development of Speech Emotion Analysis
(SEA) has been relatively slow. SEA focuses on analyzing emotions based on factors such as
the tone, bandwidth, pitch, and duration of user speech [39]. Since deep learning techniques
have been shown to improve the speech recognition performance [40], researchers have
proposed various neural-network-based models to enhance the accuracy of speech emotion
recognition [41–43].

2.2. Multi-Modal Sentiment Analysis

Existing and emergent social media platforms have enabled common users to post
self-recorded videos to share their day-to-day living experiences and sentiments on any
subject. This led to an explosion of multi-modal information on the internet and created
tremendous opportunities for MSA [44]. Morency et al. [1] created the YouTube dataset
and constructed a joint model to extract multi-modal features for SA. Poria et al. [45]
applied single-modality feature extractors (e.g., CNN on text embeddings and Part-of-
Speech taggings) on the visual, audio, and textual channels and trained a multi-kernel
learning classifier for MSA. Zadeh et al. [2] introduced a multi-modal lexicon to better
capture the interactions between facial gestures and speech. They also published the CMU-
MOSI [46] dataset, which became the first benchmark dataset to support research in MSA.
Zadeh et al. [47] presented a tensor fusion network model, which learns the interactions
within and between text, vision, and acoustic channels. Chen et al. [48] proposed a novel
SA model that comprises a gated multi-modal embedding module for information fusion
in noisy environments and an LSTM module with temporal attention for higher-resolution
word-level fusion.

The aforementioned works only considered the fusion of information between modal-
ities without considering the dependencies between contexts. In order to improve the
performance of MSA, Poria et al. [49] introduced an LSTM-based framework that captures
the mutual dependencies between utterances using contextual information. In another
study, Poria et al. [50] proposed a user-opinion-based model that combines the three modal-
ity inputs using a multi-modal learning approach. Zadeh et al. [51] proposed multiple
attention blocks to capture information from the three modalities.

More recently, Wang et al. [52] proposed a novel Text Enhanced Transformer Fusion
Network (TETFN) method that learns text-oriented pairwise cross-modal mappings to
obtain effective unified multi-modal representations. Yang et al. [53] applied BERT to
translate visual and audio features into text features to enhance the quality of both visual
and audio features. Wu et al. [54] extracted bi-modal features from the acoustic–visual,
acoustic–textual, and visual–textual pairs with a multi-head attention module to improve
video sentiment analysis tasks. Wang et al. [55] created a lightweight Hierarchical Cross-
Modal Transformer with Modality Gating (HCT-MG) for MSA through primary modality
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identification. He et al. [56] proposed the Multi-Modal Temporal Attention (MMTA) algo-
rithm, which considers the temporal effects of all modalities on each uni-modal branch to
balance the interactions between unimodal branches and the adaptive inter-modal balance.
Mai et al. [57] leveraged the contrastive learning framework both within modalities and
between modalities for the MSA tasks.

Although these scholars have achieved promising results, there is still room for im-
provement. In SA tasks, within-modality representations are as important as inter-modality
information fusion. The aforementioned research methods do not fully address the ex-
traction of modality-specific features or the fusion of information between modalities.
Particularly, the interaction and fusion of multi-modal features may lead to the presence of
redundant information in the target network, making it challenging to focus on important
information. Therefore, it is critical to identify the contributions of features from different
modalities to SA at each stage of the deep learning network, which is the goal of our
proposed MAVMF algorithm.

3. Method
3.1. Problem Definition

In this work, videos are considered the source of multi-modal data for sentiment
analysis. A video usually contains a series of consecutive image frames, and a user’s
emotional tendency can be different or related in consecutive frames. Because of this,
the video is processed into video utterances, each of which contains the same emotional
tendency of the user, as shown in Figure 1. We aim to perform a sentiment analysis on the
utterance level in a given video.

Assuming a dataset contains m videos, D = [V1, V2, . . . , Vm]. For the i-th video, Vi, the
video is composed of ni video segments or utterances, Vi = [ui1, ui2, . . . , uini ], where ui1
denotes the first utterance in Vi, and ni denotes the total number of utterances in Vi. For
each utterance uij, 1 ≤ i ≤ m, and 1 ≤ j ≤ ni, contains a feature vector uij = [tij, vij, aij],
representing three modalities, i.e., tij is the text feature representation, vij is the visual
feature representation, and aij is the audio feature representation.

Assuming there are C classes of emotional categories for the user’s video, the goal
is to label the emotional category of each video utterance. In order to perform sentiment
classification, the utterances in the video, except for uij, are considered to be the context of
uij, and the accuracy and F-1 score are used as the evaluation metrics for the model.

Figure 1. Selected samples from the CMU-MOSI dataset. Each sample represents an utterance from
the given video. The output labels were obtained by using our proposed MAVMF algorithm.

3.2. Model

The MAVMF algorithm can be divided into five steps from an end-to-end pipeline
as shown in Figure 2: (A) single-modal feature representation, (B) single-modal attention,
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(C) contextual feature extraction, (D) multi-modal feature fusion, and (E) sentiment classifi-
cation. The concrete architecture of MAVMF is illustrated in Algorithm 1. We employ ⊙ for
the dot product, ⊗ for element-wise multiplication, and ⊕ for feature concatenation in all
formulas in the below sections.

Figure 2. MAVMF architecture. (A) Preprocessing the input multi-modal data. (B) Single-modality
self-attention and the reduced-attention module for the text and visual modalities. (C) BiGRU + fully
connected dense layer(s). (D) Four attention and self-attention modules for modal fusion. (E) Con-
catenation + fully connected dense layer(s) with the softmax activation function for predictions.

3.2.1. Single-Modal Feature Representation

Due to the distinct semantic spaces of the text, image, and audio, different feature
extractors should be used to extract the features within each modality. We adopt the
following single-modal feature extractors that were chosen by other studies for the CMU-
MOSI and CMU-MOSEI datasets. Specifically, for the CMU-MOSI dataset, we use the
utterance-level features provided by Poria et al. [49] as inputs to the MAVMF model; for
the CMU-MOSEI dataset, we employ the CMU-multi-modal data SDK [51] tool to extract
the corresponding text, audio, and video features as inputs to the MAVMF model.
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Algorithm 1: MAVMF architecture
Input : text t, audio a, visual v of train data U and test data R
Output : predictions for R
Procedure TRAIN(U,R):

Unimodal:
Train BiGRU and dense layers with t, a, and v
t←− Sel f _Atten(t)
Xt ←− getBiGRUFeatures(t)
Dt ←− Dense(Xt)
v←− RAtten(v)
Xv ←− getBiGRUFeatures(v)
Dv ←− Dense(Xv)
Xa ←− getBiGRUFeatures(a)
Da ←− Dense(Xa)

Multimodal:
Fusion of text, audio, and visual features
SL_SAttent ←− SL_SAtten(Dt)
SL_SAttenv ←− SL_SAtten(Dv)
SL_SAttena ←− SL_SAtten(Da)
Bi_Attenta ←− Bi_Atten(concat(Dt, Da))
Bi_Attentv ←− Bi_Atten(concat(Dt, Dv))
Bi_Attenav ←− Bi_Atten(concat(Da, Dv))
Tri_Attentva ←− Tri_Atten(concat(Dt, Dv, Da))
Sel f _Attentva ←− sel f attention(Tri_Attentva)

Fuse feature and classification:
D ←− concat(Dt, Dv, Da)
OSL_SAtten ←− concat(SL_SAttent, SL_SAttenv, SL_SAttena)
OBi_Atten ←− concat(Bi_Attenta, Bi_Attentv, Bi_Attenav)
Oout ←− concat(D, OSL_SAtten, OBi_Atten,
Tri_Attentva, Sel f _Attentva)

output←− so f tmax(Oout)

Procedure TEST(R):
R is passed through the learned model to obtain the results
Y ←− MAVMF(t, a, v)

3.2.2. Single-Modal Attention

The attention mechanism enables the target network to prioritize high-contributing
features and disregard interference from the background information. This section pri-
marily focuses on the single-modal attention modules, which employ distinct attention
mechanisms to encode image and text features independently, enhancing the extraction of
single-modal features. The single-modal attention module comprises two components: the
reduced-attention (RAtten) block for the visual modality and the self-attention (Sel fAtten)
block for the text modality. The structure of the single-modal attention module is illustrated
in Figure 2B.

The RAtten Block. The RAtten block employs channel attention and spatial attention
to encode the internal features of the image, enhancing features that significantly contribute
to emotions while suppressing background features. The image’s feature vector sequen-
tially passes through the channel attention and spatial attention modules, capturing the
importance of each channel and feature map in the image. The specific process can be
expressed as follows:

Fa = F⊗ σ(Dense(AvgPool(F))) (1)



Big Data Cogn. Comput. 2024, 8, 14 8 of 19

Fv = Fa ⊗ σ(Conv(Fa)) (2)

F is the image information extracted by the preprocessing method described in
Section 3.2.1, AvgPool is one-dimensional global average pooling, Dense represents the
fully connected layer, σ represents the Sigmoid function, Fa represents the output of the
image features F after passing through the channel attention, Conv represents a one-
dimensional convolution operation, and Fv represents the output of the spatial attention.

The Self_Atten Block. The Self_Atten block applies the self-attention mechanism
to encode text features, which can take into account the mutual influences among video
segments. Since words in the same sentence in a video have different semantic associations,
the self-attention mechanism can calculate the semantic associations between a word in
a sentence and other words in the same sentence, providing them with different weights.
This process can be expressed as follows:

mi = xi ⊙ xT
i (3)

ni = so f tmax(mi) (4)

oi = ni ⊙ xi (5)

ai = oi ⊗ xi (6)

ti = xi ⊕ ai (7)

xi represents the text feature vectors extracted by the preprocessing method described
in Section 3.2.1, ai is the output after self-attention and represents the importance of the
different words in each utterance, ti is the output of the text features after passing through
the Self_Atten block.

3.2.3. Contextual Feature Extraction

In order to capture the contexts and dependencies between utterances in each modality,
we feed the single-modal attention features extracted in Section 3.2.2 for both the visual and
text modalities and the preprocessed acoustic features to a BiGRU module separately. The
BiGRU module consists of two Gated Recurrent Units (GRUs) with opposite directions,
which can effectively capture the spatio-temporal information between video clip sequences
and can also capture the forward and backward long-term dependencies between video
clip sequences. The working principles of BiGRU can be expressed as follows:

rt = σ(Wrxt + Urht−1 + br) (8)

zt = σ(Wzxt + Uzht−1 + bz) (9)

h̃t = tanh(rt ∗Uht−1 + Wxt + bh) (10)

ht = (1− zt) ∗ ht−1 + zt ∗ ht (11)

xt is the input feature sequence of the current node, ht−1 is the hidden layer state of
the previous GRU unit of the current node; rt and zt are the reset gate and update gate of
the GRU unit; Wr , br , Wz , bz , Ur, and Uz are the weight parameters of the target network;
σ is the corresponding sigmoid function of the network; and ∗ represents the multiplication
of the corresponding feature vectors.

To better handle the heterogeneity within each modality and fully explore the internal
correlations of single-modal features, the representation of each modality obtained from
the above BiGRU module is unfolded temporally and fused through fully connected dense
layer(s). This can be expressed as follows:

Dt = tanh(WtBt + bt) (12)

Da = tanh(WaBa + ba) (13)
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Dv = tanh(WvBv + bv) (14)

Bt, Ba, and Bv are the output features of the text, audio, and video after going through
the BiGRU module; Wt, bt, Wa, ba, Wv, and bv are the weight parameters of the target
network; Dt ∈ Ru×d, Da ∈ Ru×d, Dv ∈ Ru×d are the fully connected layer’s text, acoustic,
and visual information; u represents the total number of sentences; and d represents the
number of neurons in the fully connected layer.

3.2.4. Multi-Modal Feature Fusion

This module comprises attention modules at four different levels and dimensions:
(1) the sentence-level self-attention module; (2) the bi-modality attention module; (3) the
tri-modality attention module; and (4) the self-attention module on (3). It is based on the
outputs from Section 3.2.3.

(1) SL_SAtten Module. The contribution of internal features in each modality to users’
emotional tendencies is often different. For example, in the sentence, “The weather is
really good today! I really like this kind of weather”, the word “like” contributes more
to the users’ emotions than the word “weather”. Therefore, we propose a sentence-level
self-attention mechanism, referred to as SL− SAtten, to select the emotional contributions
of words within the modality at the sentence level. Taking the text modality as an example,
we assume there are u sentences in the text modality in total. For each sentence xi, where
1 ≤ i ≤ u, the working principle of the SL_SAtten module is as follows:

mi = xi ⊙ xT
i (15)

ni = so f tmax(mi) (16)

oi = ni ⊙ xi (17)

ai = oi ⊗ xi (18)

T = a1 ⊕ a2 . . .⊕ au (19)

OSL−SAtten = T ⊕V ⊕ A (20)

Here, ai is the output of the discourse xi after self-attention, indicating the importance
of different words in each utterance. Then, we concatenate all of the outputs to obtain the
corresponding text feature T. In the same vein, you can obtain the corresponding visual
feature V and the corresponding audio feature A. By concatenating the text, visual, and
audio features, you can obtain the final output of the SL_SAtten module OSL_SAtten.

(2) The Bi_Atten Module. In order to improve the interactions between pairs of
modalities in video data, a bi-modality attention module is proposed. This module aims
to integrate two different modalities from different semantic spaces by enhancing the
connections between them while eliminating the interference from background information
in them, and thus the learning process will be able to focus on the associations between
them. Taking text and visual modalities as an example, we suppose Dt and Dv are the
output feature vectors of the text and visual modalities after going through the context
feature extraction module, so its working principle is as follows:

m1 = Dt ⊙ DT
v (21)

n1 = so f tmax(m1) (22)

o1 = n1 ⊙ Dv (23)

a1 = o1 ⊗ Dt (24)

m2 = Dv ⊙ DT
t (25)

n2 = so f tmax(m2) (26)
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o2 = m2 ⊙ Dt (27)

a2 = o2 ⊗ Dv (28)

OBC−Atten(vt) = a1 ⊕ a2 (29)

OBC_Atten(vt) is the output feature vector fused from the video and text modalities,
which can be used for subsequent emotion classification. In a similar way, we can ob-
tain OBC_Atten(av) for acoustic and visual modalities and OBC_Atten(at) for acoustic and
text modalities.

(3) The Tri_Atten Module. In order to model the interactions among all three modali-
ties in a video, a tri-modal attention is proposed. Assuming the text, visual, and acoustic
feature vectors after the context feature extraction module are Dt, Dv, and Da, respectively,
we first concatenate and fuse the text and image, text and acoustic, and image and acoustic
modality information. Then, we use a fully connected network to map the information
to the same semantic space, thereby initially fusing the information between different
modality pairs. The process is shown in the following formulas:

FTV = tanh((DT ⊕ DV)Wtv + btv) (30)

FTA = tanh((DT ⊕ DA)Wta + bta) (31)

FAV = tanh((DA ⊕ DV)Wav + bav) (32)

Wtv, Wta, Wav, btv, and bta, bav are the weights and biases of the fully connected layer,
and FTV , FTV , FTV ∈ Ru×d represents the pairwise fused feature vectors, where d is the
number of neurons in the fully connected layer.

In order to further extract effective features, the feature vector of the third modality is
multiplied by the results of the pairwise fused feature vectors obtained in
Equations (30)–(32) to produce the matrix Ck(k = 1, 2, 3). Then, the so f tmax function is
used to calculate the attention distribution of the feature vector fusion results Pk(k = 1, 2, 3),
forming the tri-modal attention module Tk(k = 1, 2, 3), and finally, we obtain the tri-modal
fusion information TriATV ,TriVTA,TriTAV through matrix multiplication operations. This is
then concatenated to form a feature vector OTri_Atten, which is the output of the Tri_Atten
module. The process is shown in the following formulas:

C1 = FA ⊙ FT
TV (33)

C2 = FV ⊙ FT
TA (34)

C3 = FT ⊙ FT
AV (35)

P1 = so f tmax(C1) (36)

P2 = so f tmax(C2) (37)

P3 = so f tmax(C3) (38)

T1 = P1 ⊙ FA (39)

T2 = P2 ⊙ FV (40)

T3 = P3 ⊙ FT (41)

TriATV = T1 ⊗ FTV (42)

TriVTA = T2 ⊗ FTA (43)

TriTAV = T3 ⊗ FAV (44)

OTri_Atten = TriATV ⊕ TriVTA ⊕ TriTAV (45)

C1, C2, C3 ∈ Ru×u, T1, T2, T3 ∈ Ru×d, and OTri_Atten ∈ Ru×3d.



Big Data Cogn. Comput. 2024, 8, 14 11 of 19

(4) Self_Atten Module. The output of the Tri_Atten module may carry redundant
features. To filter out redundant information, we apply a self-attention module for feature
selection. This process is shown in the following formulas:

mi = OTri_Atten ⊙OT
Tri_Atten (46)

ni = so f tmax(mi) (47)

oi = ni ⊙ xi (48)

ai = oi ⊗ xi (49)

OSel f _Atten = xi ⊕ ai (50)

OSel f _Atten is the output feature vector of the Self_Atten module.

3.2.5. Multi-Modal Sentiment Classification

Finally, the multi-modal sentiment classification module concatenates and combines
the feature vectors obtained above and uses a fully connected layer to integrate and classify
sentiments based on both inter-modal and intra-modal information. It is shown as follows:

out = Dv ⊕ Dt ⊕ Da

⊕OSL−SAtten ⊕OCS−SAtten

⊕OBC−Atten(vt)⊕OBC−Atten(at)

⊕OBC−Atten(av)⊕OSel f−Atten

(51)

output = so f tmax(out) (52)

output is the final output information for the MAVMF model.

4. Experiments

The experiments were conducted on a Windows system using an NVIDIA GeForce
RTX 2060 graphics card with 8G running memory. Python was used as the programming
language with the Keras framework. The effectiveness of the MAVMF model was validated
on the two benchmark datasets, CMU-MOSI and CMU-MOSEI.

4.1. Data

(1) The CMU-MOSI dataset includes 93 videos sourced from YouTube, covering topics
such as movies, products, and books. There are a total of 2199 utterances, each of which is
labeled as positive or negative. In the experiment, we used training and test sets containing
62 and 31 videos, respectively.

(2) The CMU-MOSEI dataset includes 3229 videos with a total of 22,676 utterances,
each with an emotional score in the range of [−3,+3]. For the purpose of sentiment
classification, utterances with a score of greater than or equal to 0 were labeled as positive,
while those with scores less than 0 were labeled as negative. In the experiment, we used
training, test, and validation sets containing 2250, 679, and 300 videos, respectively. Detailed
information about the CMU-MOSI and CMU-MOSEI datasets is shown in Table 1:

Table 1. The details of the CMU-MOSE and CMU-MOSEI datasets.

Description CMU-MOSI CMU-MOSEI
Training Set Test Set Training Set Test Set

# Video 62 31 2250 679
# Utterance 1447 752 16216 4625

# Pos Utterance 709 467 11498 3281
# Neg Utterance 738 285 4718 1344
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From the detailed information about the CMU-MOSE and CMU-MOSEI datasets
presented in Table 1, it is apparent that the number of positive utterance samples in these
two datasets is greater than the number of negative utterance samples, leading to an
imbalance in the distribution of positive and negative samples. Therefore, the accuracy and
F-1 scores are used as evaluation metrics for the models.

4.2. Parameter Tuning

During the experiments, we investigated the impacts of different learning rates and
batch sizes on the model performance. The learning rates chosen were 0.05, 0.01, 0.005,
and 0.001, and the batch sizes chosen were 32 and 64. The parameters that yielded the best
results were used for the final model. The final parameter settings used for the MAVMF
model are shown in Table 2:

Table 2. Experimental parameter settings.

Parameter Value

BiGRU unit 300
BiGRU dropout 0.5

fully connected unit 100
fully connected dropout 0.5

activation function tanh
learning rate 0.001

batch processing 32
number of iterations 64

optimization function Adam
loss function categorical cross-entropy

4.3. Baseline Models

To compare the performances of the MAVMF model in the MSA tasks, for the CMU-
MOSI dataset, we used the following baseline methods:

(1) GME-LSTM [48]: This model is composed of two modules. One is the gated multi-
modal embedding module, which can perform information fusion in noisy environ-
ments. The other is an LSTM module with temporal attention, which can perform
word-level fusion with a higher fusion resolution.

(2) MARN [51]: This model captures the inter-relationships among text, images, and
speech in a time series through multiple attention modules and stores the information
in a long short-term hybrid memory.

(3) TFN [47]: This model encodes intra-modal and inter-modal information by embedding
subnetworks within a single modality and tensor fusion strategy.

(4) MFRN [58]: This model first stores the modality information through a long short-
term fusion memory network and fully considers the information of other modalities
when encoding a certain modality, thereby enhancing the modality interactivity.
Then, it further considers the information of other modalities when encoding a single
modality through a modality fusion recurrent network. Finally, further information
fusion is achieved through the attention mechanism.

(5) Multilogue-Net [59]: Based on a recurrent neural network, this model captures the
context of utterances and the relevance of the current speaker and listener in the
utterance through multi-modal information.

(6) DialogueRNN [60]: This model tracks the states of independent parties throughout
the dialogue process and processes the information through a global GRU, party GRU,
and emotion GRU units and uses it for emotion classification.

(7) AMF-BiGRU [61]: This model first extracts the connections between contexts in each
modality through the BiGRU, merges information through cross-modal attention, and
finally uses multi-modal attention to select contributions from the merged information.

For the CMU-MOSEI dataset, we have the following baseline methods:
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(1) MFRN [58]: As described above.
(2) Graph-MFN [62]: This model’s concept is similar to that of the MFN model, except

that Graph-MFN uses a dynamic fusion graph to replace the fusion block in the MFN
model.

(3) CIM-Att [63]: This model first uses the BiGRU to extract the intra-modal context
features, inputs these context features into the CIM attention module to capture the
associations between pairwise modalities, and then concatenates the context features
and CIM module features for sentiment classification.

(4) AMF-BiGRU [61]: As described above.
(5) MAM [64]: This model first uses the CNN and BiGRU to extract features from the text,

speech, and image signals and then applies cross-modal attention and self-attention
for information fusion and contribution selection.

5. Results
5.1. CMU-MOSI

Table 3 presents a comparison of the experiments between the MAVMF model and
the chosen baseline models on the CMU-MOSI dataset. The MAVMF model shows some
improvements in both the classification accuracy and F-1 score. Specifically, the accuracy of
the MAVMF model is increased by 5.81%, 5.21%, 5.21%, 4.21%, 1.12%, and 2.51%, 0.26%
when compared to the GME-LSTM, MARN, TFN, MFRN, Multilogue-Net, DialogueRNN,
and AMF-BiGRU models, respectively. The F-1 score of the MAVMF model is increased by
8.8%, 5.2%, 4.3%, 4.3%, 2.1%, 2.36%, and 0.18% when compared to the GME-LSTM, MARN,
TFN, MFRN, Multilogue-Net, DialogueRNN, and AMF-BiGRU models, respectively.

Table 3. Comparison of the performance with different models.

Network Model CMU-MOSI
Accuracy (%) F-1

GME-LSTM [48] 76.50 73.40
MARN [51] 77.10 77.00

TFN [47] 77.10 77.90
MFRN [58] 78.10 77.90

Multilogue-Net [59] 81.19 80.10
DialogueRNN [60] 79.80 79.48
AMF-BiGRU [61] 82.05 82.02

MAVMF 82.31 82.20

5.2. CMU-MOSEI

Table 4 presents a comparison of the experiments conducted between the MAVMF
model and the chosen baseline models on the CMU-MOSEI dataset. The MAVMF model
shows some improvements in both the classification accuracy and F-1 score. Specifically,
the accuracy of the MAVMF model is increased by 3.2%, 4.2%, 1.3%, 2.26%, and 0.1%
when compared to the MFRN, Graph-MFN, CIM-Att, AMF-BiGRU, and MAM models,
respectively. The F-1 score of the MAVMF model is increased by 2.08%, 2.48%, 1.88%, 1.3%,
and 0.58% when compared to the MFRN, Graph-MFN, CIM-Att, AMF-BiGRU, and MAM
models, respectively.
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Table 4. Comparison of the performance on different models.

Network Model CMU-MOSEI
Accuracy (%) F-1

MFRN [58] 77.90 77.40
Graph-MFN [62] 76.90 77.00

CIM-Att [63] 79.80 77.60
AMF-BiGRU [61] 78.48 78.18

MAM [64] 81.00 78.90
MAVMF 81.10 79.48

5.3. Modality Analysis

In order to further analyze the impacts of features from different modalities on the
classification performance of the MAVMF model, experiments were conducted on the
CMU-MOSI dataset for both bi-modal and tri-modal feature sets. The experimental results
are shown in Figure 3. We use T, V, and A to represent the text, visual, and acoustic
modalities, respectively.

Figure 3. Visualization of the impacts of the modalities on the performances of the baseline algorithms
and MAVMF.

From the above results, when compared to the selected baseline models, the clas-
sification accuracy of the text plus acoustic modalities is increased by 0.53–1.09%, the
classification accuracy of the text plus visual modalities is increased by 0.27–2.35%, and
the classification accuracy of the acoustic plus visual plus text modalities is increased
by 0.4–2.51%. Apart from the fusion results for the video and acoustic modalities, the
MAVMF model achieves the best performance for all other modality fusion methods. The
fusion result for the acoustic and visual features is the worst, reflecting that the emotional
expression polarity of the acoustic and visual modalities is weaker than that of text and that
these modalities may be affected by background noise. This is consistent with the experi-
mental results presented in the literature [65]. In addition, in MSA tasks, the classification
performance obtained by fusing all three modalities is the best. This proves the necessity of
leveraging multi-modal information in SA.

5.4. Ablation Study

To understand the impacts of the different modules applied in the MAVMF model, we
conducted experiments on variants of the MAVMF model using the CMU-MOSI dataset
and analyzed the experimental results. We included the following MAVMF variant models:

(1) MAVMF_Concat: This includes Modules A and E, as shown in Figure 2.
(2) MAVMF_SAtten: This includes Module A, the self-attention module in Module B
for the text modality, and Module E, as shown in Figure 2. (3) MAVMF_RAtten: This
includes Module A, the reduced-attention module in Module B for the visual modality, and
Module E, as shown in Figure 2. (4) MAVMF_RAtten_SAtten: This includes Module A,
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Module B, and Module E, as shown in Figure 2. (5) MAVMF_BiGRU: This includes Module
A, Module B, Module C, and Module E, as shown in Figure 2. (6) MAVMF_SL-SAtten:
This includes Module A, Module B, and Module C, a sentence level self-attention module,
and Module E, as shown in Figure 2. (7) MAVMF_Bi-Atten: This includes Module A,
Module B, and Module C, a sentence level self-attention module, a dual modality cross
modal attention module, and Module E, as shown in Figure 2. (8) MAVMF_Tri-Atten :
This includes Module A, Module B, Module C, a sentence level self-attention module, a
dual-modality cross-modal attention module, a tri-modality cross-modal attention module,
and Module E, as shown in Figure 2. (9) MAVMF_Self-Atten: This includes Module A,
Module B, Module C, Module D, and Module E, as shown in Figure 2.

Table 5 compares the proposed MAVMF model with its variant on the CMU-MOSI
dataset. From the experiments, we see that the multi-modal sentiment classification ac-
curacy of the MAVMF model gradually improves after adding each module. The text
self-attention module, visual reduced-attention module, single-modality attention module,
bidirectional gated recurrent unit module, sentence-level self-attention module, dual-
modality cross-modal attention module, tri-modality cross-modal attention module, and
self-attention module contribute 2.27%, 2.53%, 4.26%, 5.32%, 0.4%, 0.4%, 0.26%, 0.4%, and
0.53% to the classification accuracy, respectively. The marginal improvements become
smaller as the complexity of the model increases.

Table 5. Comparison of the performance on different models.

Network Model CMU-MOSI
Accuracy (%) F-1

MAVMF_Concat 70.74 71.01
MAVMF_SAtten 73.01 73.05
MAVMF_RAtten 73.27 73.24

MAVMF_RAtten_SAtten 75.00 74.95
MAVMF_BiGRU 80.32 80.21

MAVMF_SL-SAtten 80.72 81.09
MAVMF_Bi-Atten 81.12 81.10
MAVMF_Tri-Atten 81.38 81.41
MAVMF_Self-Atten 81.78 82.06

MAVMF 82.31 82.20

6. Discussion

Multi-Modal Sentiment Analysis tasks are commonplace in a diverse array of ap-
plication scenarios. Video-based social media platforms, in particular, have empowered
general users to generate an unprecedented amount of multi-modal data such as texts,
audios, images, and the various combinations of them, which have enabled developers
and practitioners to create multi-modal artificial intelligence systems that have already
transformed our lives and work, as has been witnessed in the current wave of generative
AI applications.

The work in this paper provides new insights into the fusion of multi-modal data
for more general tasks beyond sentiment analysis. Our proposed MAVMF algorithm
systematically explore the vast feature spaces that are generated by different modalities
and their inherent spatial and temporal relationships. Unfortunately, when compared
with other AI tasks such as image recognition and machine translation, the task of fusing
multi-modal information for sentiment analysis remains an unsolved problem.

Currently, the underpinning theory regarding how different text, audio, and visual
modalities complement or interfere with each other has not been formalized. However, one
future direction in terms of solving the multi-modal fusion challenge could be relying on
computation power, similar to what we have observed in large language models (LLMs).
Doing this without leveraging a larger network with higher computation power may pose
limits on the current performance of our proposed method. In other words, we did not
consider constraints on the algorithm speed given a limited computation capacity, as the
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full MAVMF model combines features from all proposed modules shown in Figure 2.
However, we believe that, as computation is becoming cheaper and more accessible over
time, there should be a focus on network design and modal fusion that encompasses all
possible interactions among different modalities.

In our next step, we plan to investigate the performance of large foundation models in
MSA tasks. Given that the current state-of-the-art performance in the existing literature
on MSA tasks is still in the 80% range, we will first focus on improving the accuracy and
robustness of novel algorithms for MSA tasks. Through pretraining with large amounts of
unlabeled text and image data, foundation models have implicitly encoded large amounts
of human knowledge in their weight parameters. It may be possible to adopt them when
addressing MSA tasks. Certainly, we can also explore knowledge distillation techniques on
successful foundation-model-based algorithms to obtain compact apprentice models for
more resource constraint scenarios in MSA tasks.

7. Conclusions

To address the effective extraction of single-modal features and the efficient integra-
tion of multi-modal information, we propose an MSA algorithm, MAVMF. First, feature
extractors are used to capture single-modal information. Then, for single-modal features,
a reduced-attention module is used to encode the image, while a self-attention module
is used for text. Subsequently, a bidirectional GRU and a fully connected network are
applied to extract context-aware discourse features, capturing the context information
between discourses in each modality. A sentence-level self-attention module is then used
to model different types of modality information. At the modality level, dual-modality
and tri-modality attention modules are applied to merge information, and a self-attention
module is used to select features with significant contributions to reveal sentiment tenden-
cies. Experiments on public datasets prove that, when compared to other deep learning
algorithms, the MAVMF model has a better or comparable classification performance.
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