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Abstract: Deep learning based visual cognition has greatly improved the accuracy of defect detection,
reducing processing times and increasing product throughput across a variety of manufacturing use
cases. There is however a continuing need for rigorous procedures to dynamically update model-
based detection methods that use sequential streaming during the training phase. This paper reviews
how new process, training or validation information is rigorously incorporated in real time when
detection exceptions arise during inspection. In particular, consideration is given to how new tasks,
classes or decision pathways are added to existing models or datasets in a controlled fashion. An
analysis of studies from the incremental learning literature is presented, where the emphasis is on
the mitigation of process complexity challenges such as, catastrophic forgetting. Further, practical
implementation issues that are known to affect the complexity of deep learning model architecture,
including memory allocation for incoming sequential data or incremental learning accuracy, is
considered. The paper highlights case study results and methods that have been used to successfully
mitigate such real-time manufacturing challenges.

Keywords: deep learning; incremental learning; continuous learning; catastrophic forgetting;
self-healing processes; defect detection; concept drift

1. Introduction

Model-based deep learning has long been viewed as the go-to method for the detec-
tion of defects, process outliers and other faults by engineers who wish to use artificial
intelligence within computer vision-based inspection, security or oversight tasks in manu-
facturing. The data-hungry nature of such deep learning models that have accompanied
the proliferation of AI-enabled data acquisition systems means that the new information
that is either captured or inferred in realtime by sensors, IoT devices, surveillance cameras
and other high definition images must now be gathered and analysed in an ever smaller
time window. Additionally, transfer learning and transformer networks are now providing
researchers with the capacity to build pre-trained networks [1], which, when coupled with
a deep learning framework, enable the generation of diagnostic outputs that give highly
accurate real-time answers to difficult inspection questions, even in those cases where only
relatively small datasets are known to exist a priori. The requirement that data need to be
independently and identically distributed (i.i.d) across the training and test dataset has
arisen with the advent of transfer learning and the availability of pre-trained models that
can be ‘fine-tuned’ for a particular task at hand.

More recently, there has been an emerging trend within the literature that proposes
the use of generative networks and synthetic datasets for inspection [2]. Such procedures
provide a repeatable method whereby a dataset can be augmented in real time with enough
process-specific samples so that the model training step can be continuously updated.
Numerous data augmentation processes have been proposed for the training phase that
optimises the size of the data window required to facilitate accurate decision making in
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a resource-efficient manner [3–5]. As an illustration, in [6], the authors claim that models
trained using generative adversarial network data and fine-tuned using (10% by volume)
randomly selected data gathered in real time from actual MRI analysis exhibits higher
performance in tumour segmentation trials.

Classically, deep learning models were trained based on an underlying assumption
that all the possible exceptions to be detected were available within the dataset a priori.
In such an offline learning setup, sufficient numbers of static images would be collected,
labelled and classified into fixed sets or categories [7]. The generated datasets would be
then further divided into training and test subsets, where the training data would be fed
into the network for sufficiently many epochs and test evaluation performed so that a high
level of confidence would exist that all possible faults could be reliably detected. Such an
approach to defect detection has its roots in the AdaBoost algorithm [8] and papers therein.
Limiting factors in such an approach include that the classifier parameters are generally
fixed and huge amounts of data are required, making the whole process cumbersome and
resource intensive. Furthermore, the response of the model to new error (exception) data is
not likely to be robust.

The pre-design phase that is invariably required for offline training is the most impor-
tant differentiating factor between offline and online or dynamic approaches to detection
or inspection. Online models are tuned using exception data from particular examples of
interest rather than simply being restricted to a larger fixed set [9]. Complete re-training of
existing models is an expensive task. Although retraining can be achieved in stages using
cloud infrastructure while the manufacturing process continues, the streaming nature of
data becomes a constraint in retraining the existing network model when new products are
added or new process defect information comes to light.

The way in which new classes/tasks are added to a deep learning model once it has
been deployed in the field for a specific inspection task is a recurring engineering challenge
for the deployment of AI in manufacturing. Figure 1 is an illustration of process cycle
without incremental learning. In a practical real-world setting, decision loops based on
continuous, temporal streams of data (of which only a narrow subset maybe potentially
actionable) must be considered dynamically so that categorisation, exception handling
and object identification are not pre-designed or classified a priori. In recent times, the
concept of continual or dynamic learning is a recurring significant theme in the literature.
Continual learning is the process of learning wherein a new category can be added or
processed by the same neural network from a continuous stream of data while at the same
time maintaining (or ideally improving) detection accuracy [10]. This concept has been
considered by multiple authors, where the overarching principle for process fault detection
is one of continual, dynamic learning that has been denoted by authors as lifelong or on
the fly.

A particular focus of this review is a consideration of model-based detection in case
studies where a requirement for sustainability through life cycle extension is providing
the impetus for the real-time detection, decision making, refurbishment, rework or re-
manufacture within a process. The objective is to develop self-healing rather than pushing
a ‘Bin’ or ‘End-of-Life’ decision within the process. Reliable defect detection is an important
step in re-manufacturing, most importantly where inspection fails in (possibly recycled)
products that need to be effectively classified so that an improved or refurbished product
can be efficiently graded for market or for an appropriate downstream process task. The
difference in re-manufacturing as opposed to manufacturing is that a dramatically larger set
of variables can affect product sustainability. Moreover, if recycling is a consideration, then
fault/defect decisions that are made can be radically different. Defects need to be detected
and rework/repair work needs to be predicted, possibly using a deep learning model if ap-
propriate, for every new part or device that is inspected. This requires continuous updates
of deployed process models as newer inspection information is gathered. The recycling
of devices help manufacturers reduce their carbon footprints in manufacturing [11]. In
this domain, there is an increased premium placed on dynamic, continual or incremental
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learning that reduces mislabelling, handles new exceptions reliably as they occur and is
robust to a high degree of variation in products that are inspected in real time.

Figure 1. Visual cognition engine development process cycle using deep learning without incremental
learning. The process stages end with model deployment, and the lifelong learning process is incom-
plete without incremental learning algorithms to update the deployed model-based detection system.

This review article is laid out as follows: First, a general summary of inspection
algorithms that use incremental learning is presented in Section 2, Literature Study. This
section discusses incremental learning in manufacturing deployments, and also the question
of imbalance or bias in data handling that can occur due to dynamic streaming. Next, in
Section 3, a comprehensive analysis of the use of incremental learning in model-based
machine learning frameworks that have been deployed for defect detection is presented.
This section also discusses process complexities such as catastrophic forgetting and ensuing
mitigation strategies that have been reported. An analysis of the deployment of incremental
learning in applications where processing takes place at the edge or the use of edge devices
is explicitly considered in Section 4. Section 5 considers process prediction and operator
training challenges with a particular emphasis on the drift phenomenon problem that is a
pressing concern in incremental learning deployments for process prediction applications.
In Section 6, the performance and applicability of different incremental learning algorithms
are considered, with a particular emphasis on the size of the datasets that are necessary and
the related efficiency of the processing that takes place. Finally, Section 7 presents some
conclusions and reflections on future research challenges in this space.

2. Literature Study

Against the backdrop of data engineering challenges that arise in cyber–physical
systems and automated inspection systems within an Industry 4.0 setting, there is an
increased requirement for intelligent agents and processes that can adapt and update
dynamically in uncertain environments [12]. A number of deep learning frameworks have
been proposed in the incremental learning literature as detection and/or classification
steps within a process that are trained on i.i.d datasets, which use batch processing of
well-labelled data. The challenge is one of adapting a model in real time so that it is capable
of reliably incorporating new information while at the same time being stable in terms
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of process performance based on existing information. Table 1 provides a timeline for
recent advances within incremental learning that have particular impact in relation to
manufacturing. The concept of lifelong learning in the context of visual cognition engine
development process cycle is illustrated in Figure 2.

Table 1. Overview of research articles in the area of incremental learning in recent years.

Year Contribution to Incremental Learning Research Article Title

2009 Tracking modelling detection—adaptive tracking with
online learning

Online Learning of Robust Object Detectors during
Unstable Tracking

2015 Sparse auto-encoder-based framework for feature extraction
and active learning by gradient descent

A Continuous Learning Framework for Activity
Recognition Using Deep Hybrid Feature Models

2016 Elastic weight consolidation Overcoming Catastrophic Forgetting in Neural Networks

2017 Hedge backpropagation (HBP) method for DNN parameter
update

Online Deep Learning: Learning Deep Neural Networks on
the Fly

2017 New loss function using distillation loss to minimise
catastrophic forgetting

Incremental Learning of Object Detectors without
Catastrophic Forgetting

2019 Comparison of sequential learning tasks based on DNNs A Comprehensive, Application-Oriented Study of
Catastrophic Forgetting in DNNs

2019 Knowledge distillation to mitigate catastrophic forgetting RILOD: Near Real-Time Incremental Learning for Object
Detection at the Edge

2020 Modified cross-distillation loss function method to alleviate
catastrophic forgetting and concept drift Incremental Learning In Online Scenario

2020 Method to efficiently store tensor-quantised representation
of input images and replaying them

REMIND Your Neural Network to Prevent
Catastrophic Forgetting

2021 Online continual object detection benchmark using
continuous data streams in dynamic environments

Wanderlust: Online Continual Object Detection in the
Real World

Figure 2. Visual cognition engine development process cycle using deep learning-integrated incre-
mental learning completes the cycle of lifelong learning. The ideal concept of the lifelong learning
cycle involves process stages including the steps for incremental learning algorithms. This sequential
learning system should maintain high accuracy of the deployed model-based detection system and
update the system with new categories.
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In this context, the authors have considered analogous, subtly different incremental
learning variations such as lifelong supervised learning, continual learning, open-world
learning and online continual learning so that an overarching picture of dynamic, incremen-
tal learning can be established. This concept of adding new classes to an existing model
from streaming data is schematically represented in Figure 3. The continual process of
intelligent adaptive learning from dynamic streams of data where new ’teachable moments’
arise non-deterministically is of special interest in manufacturing since any new exception
data becoming available will need to be acted on and assigned, generally aperiodically.
Such assignment is a challenge that resides at the core of all the aforementioned dynamic
learning paradigms. In particular, the focus here is on case study examples where new
exceptions and categories are learned in real time so that mitigation of the phenomenon
that has been identified as ’catastrophic forgetting’ [10,13–18] is considered.

Consider an ideal case, where for any Class C , where Ci is the ith instance of that class
where learning takes place incrementally:

C = C1, C2, C3, . . . Ci, . . . Cn (1)

Thus, the process of adding information continues incrementally until no new infor-
mation can be gathered. Catastrophic forgetting refers to the practical loss of information
that might occur due to model update or retraining in the attempt of adding a new class
to the existing model so that the size of the class window C is constrained. In a situation
where information from only the n most recent instances of the class is stored reliably, then
any information about the class that has been learned prior to this window might be lost.
When a new class, Cn is learned, the performance on Cn − 1 drops drastically.

In the context of incremental learning in the manufacturing process, the addition of
a new class into a detection system reduces the accuracy in performance for a previously
learned class. In case of mobile phone defect detection, consider a detection model trained
on surface scratches on the phone screen. In an event of a new class being presented to
an already existing high performing model, the process of fine-tuning and updating the
previously working model with the new class (cracks) is adopted. This update in the class
window of the model-based detection system further leads to rapid reduction in accuracy of
detection on phone screen scratches, the previously learned class. This is where the research
for incremental learning is significant in a manufacturing use case. A deep learning model
deployed in a factory setting will be presented with new defect formats or types, and the
model needs to be equipped to incrementally learn the new classes and maintain the high
detection rate on all the class categories learned.

Figure 3. High-level block schematic representing the concept of incremental learning from a
continuous stream of data.

Window sizing within continual learning and the necessary size of the training win-
dow for a specific task has been considered by many authors [19] and references therein.
Strong consensus has emerged that the problem of catastrophic forgetting needs mitigation
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measures [20]. Lifelong learning has been proposed by Thrun et al. as early as 1995, where
a robot agent is desired to optimise to a different control policy for learning a new function
and new environment where functionality can be maximised over time [13]. Classification
attributes such as knowledge bottlenecks where categories in offline learning need to be pre-
designed, engineering bottlenecks where sufficient data on each category need to be collected
and new data collection methodologies such as sensor systems, image acquisition systems and
further concerns about complexity and maintaining precision of once-developed robotic
systems have all been considered. More recently, authors have considered how decisions
that are taken are orchestrated at the edge interface between a physical machine and cloud
infrastructure that might be deployed to support the process.

Knowledge distillation and replay-based methods were a feature of early case study
experiments in incremental learning. In knowledge distillation, learned parameter values,
referred to as ’knowledge’ parameters, are transferred from one neural network model to
a second neural network model by training the new model on a transfer set, despite (or
indeed overcoming) any differences that may exist in model architecture [21]. Maintaining
process knowledge when engaging in model order reduction has been considered by many
authors. Caruana et al. [22] has referred to the concept of model compression and has
introduced knowledge distillation, which is now a proven method for the transfer of
learned parameter data among deep learning models. This transfer is made by using class
probabilities produced by larger models as soft targets in the newer, smaller model, thereby
achieving the generalisation ability in the smaller model otherwise harder to achieve
through training [23].

Model compression is a concept inherently different from model order reduction.
Model compression refers to the process of effectively reducing the network size in memory
leading to faster inference. This reduction in size is achieved by change in model quantisa-
tion, adjusting the floating point variables required for inference. Redundant connections
in an otherwise over-parameterised model can be pruned to reduce model size, but the
number of hidden layers will remain the same. Thus, model compression is different
than the concept of model order reduction. In the context of incremental learning, model
compression comes into context with the adaptation of knowledge distillation as a method
to alleviate catastrophic forgetting.

Replay-based methods are integrated as an effort to alleviate catastrophic forgetting
by replaying the previously learned knowledge [24]. One of the essential requirements for
replay methods is buffer memory to store new exemplars of new classes/tasks to be learned.
The authors in [25] trained a deep neural network with a cross-distilled loss function and
approached incremental learning as a four-stage process. The first stage is preparation of
training data with representative samples, the second stage is the training process for the
selected model, the third stage is fine-tuning with a subset of the data and fourth and final
stage is updating the representative memory with samples from a new class. This work is
important in the current discussion of incremental learning for the concept of representative
memory, which performs two significant operations, selection of new samples and removal
of unused samples. In a class incremental learning method, termed as IL2M (incremental
learning with dual memory) [26], a second memory is introduced to store the statistics of
prediction of previously learned classes in an effort to reduce forgetting. Following on from
Figure 1, Figure 4 illustrates that by the addition of incremental learning operations, process
cycle without incremental learning can be converted into a lifelong learning process cycle.

An end-to-end trainable adaptive expansion network (E2-AEN) network to dynami-
cally generate light-weight modules called adaptively expandable structures (AES) for new
tasks, while maintaining accuracy for previously learned tasks has been proposed by Cao
and collaborators [27]. The proposed network also includes feature adaptors, which play
the essential role of acquiring new concepts and avoid task interference effectively. The
network structure is dynamically changeable by the adaptive gate-based pruning strategy
that is used to reduce the redundant parameters. This method achieves good accuracy with
Pascal VOC [28] and COCO [29] datasets, but the network accuracy has been shown to
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be dependent on representation by the backbone network and the large dataset used in
pre-training this backbone framework.

Figure 4. Development of a visual cognition engine using deep learning and the integration of incre-
mental learning blocks to complete the lifelong learning process for a model-based detection system.

Further, end-to-end architecture for class-incremental learning with knowledge dis-
tillation in [30] used Faster-RCNN [31] as the backbone and adapted it to incremental
learning using domain expansion to include newly added classes of objects and knowl-
edge distillation to maintain accuracy of previously learned classes. The highest accuracy
achieved by this method is 72% on newly added classes, but on previously learned classes,
the performance is still lower by more than 10% of the original, thereby indicating the
challenge of catastrophic forgetting and hence being not feasible for real-time deployment.
In [32], incremental end-to-end learning is used for further data collection closer to the
data collected by the human individual in an attempt to perform online learning in the
autonomous driving domain. The method is reported to achieve 70% accuracy in previ-
ously unseen data, but the discussion did not include model architecture or any mitigation
technique for loss of previously learned information.

To address the challenge of forgetting, authors in [33] have proposed a unified frame-
work for classification problems where new and old classes are treated uniformly and
the average incremental learning accuracy increased by 6% and 13% on CIFAR-100 [34]
and ImageNet [35], respectively. The work reduces the imbalance between old and new
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classes and proposes a method to preserve effectively previously learned information. The
challenge of increasing the type and number of newly learned classes within model-based
incremental learning is a significant and central challenge that has been identified by multi-
ple authors. Data imbalance has been identified as an issue when a model is being trained to
distinguish between different types and numbers of classes. The authors in [36] addressed
this issue using a bias correction method, where a diagnosis parameter is used to measure
how a classifier is biased towards new data. An optimisation is proposed to measure the
bias parameters within a fully labelled and connected layer of the classification model. The
method is shown to have achieved high accuracy when tested using the ImageNet [35] and
MS-Celeb-1M-10000 [37] datasets, but issues have been shown to exist for examples where
smaller class numbers are known to exist. The problem of dataset imbalance requires par-
ticular attention when wishing to apply incremental learning in inspection and is discussed
in Section 2.1.

2.1. Treating Imbalanced Data in Inspection

When it comes to carrying out inspection, a myriad of non-destructive evaluation
(NDE) methods have been reported. These can include, inter alia, material inspection or
defect detection using techniques such as ultrasonic inspection, or any computer vision
techniques that do not cause damage to the component under inspection [38]. Apart from
the increased efficiency in defect detection, deep learning frameworks are not widely used in
this domain, owing to the difficulty in augmenting trained models, which require significant
retraining and redeployment. The authors in [39] analyse the case of anomaly detection in
video surveillance using spatio-temporal auto encoder networks to illustrate the difficulties
in detection of previously unknown anomalous behaviors, even to human operators. The
complexities in detecting and dynamic adaptations to new defect categories and further
evolving behaviors are challenged by the limitations in incremental learning methodologies.

Several studies have found that, when considering traditional classifiers with pre-
defined categories, machine learning algorithms showcase better performance in classifica-
tion even with imbalanced data, significantly simplifying the process of data cleaning and
balancing [40]. Data imbalance in defect detection is a particular issue when the number
of defective components is low as a proportion of an overall batch size. In an effort to
mitigate the risks due to non-stationary imbalanced data streams, Chen et al. [41] proposed
a recursive ensemble approach (REA) where they estimate the similarities between the
minority/defective class in previous and current batches. Traditional classifiers were built
on the assumption of equal/fair distribution of instances of all different classes identified
in the dataset [40]. When this is not true within a sample set, the question of corrective
action or model updates becomes more complex.

A variety of data sampling methods have been proposed to handle imbalanced datasets
by balancing the sample distributions for the classes that are under consideration [42].
Clearly, such a balancing approach is difficult to achieve successfully in real time, particu-
larly when quite small batch size windows can exist. Under-sampling eliminates random
samples of majority classes in an attempt to balance the class instances within the dataset.
Drawbacks with this approach are known to be an increased risk of missing important
instances or exceptions in the dataset. Random over sampling has been used as a method to
increase the occurrences of random minority instances. The engineer can choose to control
oversampling rates, particularly when increased or novel failure classes are identified at the
output layer. The Synthetic Minority Oversampling Technique, SMOTE [43], is a synthetic
sampling data generation technique where the kth-nearest neighbour of every minority
sample is calculated, followed by taking random samples according to the over-sampling
rate set by the engineer. A new minority class can be generated by interpolating between
the minority class instances and selected neighbours, particularly when new defects are
identified at the output layer. In synthetic sample data cleaning, a Tomek-Link is proposed
as an under-sampling method in Batista et al. [44] where Tomek-Link is denoted as the
distance between the two samples under consideration, using the methodology proposed
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in [45]. The Tomek- Link method removes instances belonging to majority classes from
the task window until all minimally distanced pairs of nearest neighbour points belong to
the same class [40]. In [46], an AI-tuned application example that combines SMOTE and
Tomek-Link generates better results on imbalanced datasets for an inspection process [46].

Another way of dealing with imbalanced data is referred to in the literature as cost
sensitive learning, where each misclassification is assigned a cost within a classification
matrix. By setting diagonal matrix elements to zero, the effect of a misclassification error
can be computed [47]. Boost algorithms have been proposed as another type of classification
cost sensitivity method, where weights on misclassifications are increased and decreases on
the weights for correctly classified examples are considered in each iteration. This has been
shown to improve classification performance especially on rare inspection classes that are
more often misclassified due to imbalance (or bias) in the data. Ada-Boost and Rare-Boost
are further developments that add weights to misclassified samples, Rare-Boost weighs the
proportion by which false positives are distinguished when measured against true-positive
and true-negative samples.

To address the imbalance in text data for incremental learning, Jang et al. [48] have
proposed a training architecture, sequentially targeting where the entire training data
corpus is divided into mutually exclusive partitions to balance data distribution and
adapting it to predefined performance distribution targets. A target distribution in this
context is a distributional parameter setting where the trained model is tuned to achieve
the best learning outcome. In an imbalanced setting, where there is no pre-defined target
distribution, all classes will be given equal importance. The need for a pre-defined target
distribution for so-called forced incremental learning has been observed to yield a model
that gives better performance while incrementally learning individual tasks than with a
learning process for multiple tasks that are taken together in static fashion [48].

3. Incremental Learning Frameworks for Deep Learning

Deep learning models are often trained using standard backpropagation, where the
training corpus that is available is fed in its entirety into a model in batches. This is not
a favoured approach in defect detection where new defects can arise aperiodically in a
manufacturing setting. The problem is exacerbated if re-manufacturing is required. In
areas where data are available as a dynamic stream, the amount of data will incrementally
grow, making the storage space insufficient. Network depth is an important factor when
dynamically learning complex patterns in an incremental fashion. Deep, parameter-rich
models face the problem of slow convergence during the training process [49], but data-
driven real-time inspection methods powered by deep learning models have been shown
to exhibit significantly improved efficiency in manufacturing use cases [50].

3.1. Incremental Learning in Manufacturing

With the advent of intelligent machines, human-machine collaboration in decision
making has evolved into a ‘peer-to-peer’ interaction of cognition and consensus between a
human and the machine, contrary to the ‘master–slave’ interaction, which existed decades
ago [51]. Incremental learning benefits significantly from new-found methods of collabora-
tion based on cognitive intelligence. Human-in-the-loop hybrid intelligence systems codify
required human intentions and future decisions for the downstream tasks, which cannot
be directly derived by machines. Having built automated production lines and factory
settings, there has been the realisation that humans are necessary to provide an effective
control layer, yet humans are often considered as an external or unpredictable component
in an ML loop [52]. This is where human-in-the-loop oversight becomes important so that
operator safety mechanisms can be safely incorporated within inspection loops. When
humans interact with machines in heavily automated Industry 4.0-type factory settings,
data gathering, storage and distillation are required to transform data into information for
modelling purposes, thereby facilitating further automated inspection and the creation of
intelligent, self-healing systems [53,54]. The operation of transforming streaming data into
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trainable information by selection of exemplars representing new class/category needs ex-
pert human oversight. The training stage incorporates storage of processed data, methods
to alleviate catastrophic forgetting and further training with new categories. Schematic
representation of incremental learning operations for manufacturing environment is given
in Figure 5.

Figure 5. Representation of incremental learning in a visual cognition engine using deep learning.

The challenge of the proportion of defective components being significantly lower
than healthy parts during inspection and reliable deep learning model update with the
new types of products and defects in the manufacturing setting has been considered in [55].
Current trends appear to focus on the concepts of model updating, retraining and online
learning that are capable of updating deployed models online in real time, even when new
recycled products are added into a production line. The one-stage detector framework
EfficientDet, presented in [56] proposes a family of eight models (D0–D7) that can be used
used in a particular deployment experiment depending on the availability of resources,
accuracy and complexity of the data. Minimum amounts of quality data are needed to
update a particular model in real time if stipulated model accuracy is to be maintained for a
manufacturing process. [57] observes that the frequency of data generation and storage in a
smart manufacturing setting needs to be determined a priori in any modelling experiment.
Long term data averaged at appropriate intervals are best suited for modelling rather than
a high volume of rapid data points, which demand more storage capacity.

Intrusion detection and network traffic management systems is another sector that
uses online learning for real-time identification of newer threats based on traffic flow pat-
terns [58]. This idea of online learning is also crucial in a factory floor with automated
systems, sensors and IoT devices. In [59], a restricted Boltzmann machine (RBM) and a
deep belief network are used in an attempt to learn and detect new attacks online. The
RBM network is proposed as an unsupervised feature extractor. Restricted Boltzmann
machine networks and auto-encoder networks are known to be suitable for feature extrac-
tion problems with unlabelled data. The ability of deep auto-encoder networks to learn
hierarchical features from unlabelled data is taken advantage of in incremental learning [18].
Shi et al. [60] developed a multi-stage incremental learning approach based on knowledge
distillation for online process monitoring. In a machine learning-based process monitoring
application, in-situ monitoring and dynamic decision making are shown to be capable only
via incremental learning of new anomalies or intrusion attacks.

In [61], authors Lopez-Pez et al. developed a model referred to as GEM, gradient
episodic memory, for continual learning, which alleviates forgetting and helps beneficial
knowledge transfer to previously learned tasks. The authors were interested in a more
‘human-like’ learning setting where the number of tasks is large, the number of learning
examples is small, the examples are presented to the observer as few times as once, and the
performance is measured in terms of knowledge transfer and forgetting. They introduced
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two attributes to measure the above criteria, backward transfer (BWT) and forward transfer
(FWT). Backward transfer is the effect new learning has on the previously learned tasks,
hence, if this backward transfer is negative, it implies loss of data learned and points to
catastrophic forgetting. Forward transfer, on the contrary, is the influence of previously
learned tasks on the new learning. Positive forward transfer refers to a gain where the
previously learned data are helpful in improving the learning process or accuracy of newly
learned data. From the experiments, authors inference that the GEM model minimises
backward transfer: reduces catastrophic forgetting, but the forward transfer is negligible. A-
GEM [62], averaged gradient episodic memory, ensures that the average episodic memory
loss over the previous task does not increase at each training step.

Active learning has been in ceaseless research in many classification systems, informa-
tion retrieval and streaming data applications, in which it has been found to require more
storage for the continuous update of these classifiers [18]. Continuous learning problems
in machine learning using ensemble models were a common stream of research where new
weak classifiers were trained and added to the existing ones as new data are available and
outputs from these are weighted to arrive at the final classification decision. The challenges
here will be the increase in the number of weak classifiers after more iterations or updates
in the model.

Research in neural networks advances by drawing more interest into the concepts of
incremental learning and catastrophic forgetting [63]. Categories of incremental learning
algorithms developed in recent research are given in Figure 6. Among the two modes
of training using gradient descend, online mode could be more appropriately used for
incremental training with weight changes being computed for each instance as new training
samples are added, as opposed to batch mode training where weight changes are com-
puted over all accumulated instances. The elastic weight consolidation (EWC) algorithm
proposed by the authors constrains the weight update for important tasks from previous
learning, with the importance of the task being assessed from the probability distribution
of data and prior probability being used to calculate conditional probability. This log
probability calculated is taken as the negative of the loss function, which then is accounted
as the posterior probability distribution for the entire dataset. The posterior probability
of previously learned tasks hence extracted form the basis of constraining weight update
for these previously learned tasks. The authors in [64] follow the idea of learning without
forgetting (LWF) to avoid catastrophic forgetting, which has given promising results in the
problem of image classification. In this, the probability vector of output of old classes from
the new models is maintained in the same range as that of the old model. Distillation loss
on the old classes and cross-entropy loss on the new class are jointly optimised, which in
turn gives good performance on the classification task of the new as well as old classes.

Figure 6. Categories in incremental learning [14,65].

Continual learning methodologies have been classified into three groups in [16]. They
are expansion-based, regularisation-based and rehearsal-based methods. Expansion-based
methods keep sub-networks or branches or expand existing networks where distinct
parameters are given to distinct tasks to identify them during inference. Regularisation-
based methods limit the change of parameters for previously learned tasks. Rehearsal-based
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methods are mainly focused to alleviate catastrophic forgetting by storing past-task data in
a limited buffer and replaying them.

3.2. Catastrophic Forgetting

Catastrophic forgetting has been a well-known concern in the field of deep learning. It
is a condition that is known to arise when a neural network loses information that has been
previously learned when it is subjected to re-training or a training phase is revisited due to
new information gained on subsequent or downstream tasks [24,63,66,67]. Shmelkov et al.
describe catastrophic forgetting as “an abrupt degradation of performance on the original
set of classes when the training objective is adapted to new classes” [68]. The reason for
this degradation in performance of previously learned information is often attributed to
the stability–plasticity dilemma. McCloskey and Cohen have observed this problem of new
learning interfering with the existing trained knowledge in neural networks in their research
involving arithmetic fact learning using neural networks in their 1989 study [69]. The
researchers conducted experiments based on retroactive interference observed in human
learners when a neural network is subjected to arithmetic facts. The neural network used
in their study was a 3-layer network with 1024 output arithmetic units. Their explanation
for this issue was that the new learning builds new propositional structures in the network,
which in turn causes disruption in the retrieval of previously learned data. The most
important conclusion from these experiments that is still observable in the neural network
applications literature is that gradient descent algorithm performance is not ideally suited
to the adjustments that are necessary when new actionable data are collected.

3.3. Stability–Plasticity Dilemma in Neural Networks

The stability–plasticity dilemma in neural networks has been studied as another
direct reason for a drop in performance of previously learned tasks; stability refers to
retaining the encoded previously learned knowledge in neural networks, and plasticity
refers to the ability to integrate new knowledge into these neural networks [14]. Effects
of incremental learning on large models and pre-trained ones have been studied by Dyer
et al., and their finding was that compared to the randomly initialised models, large pre-
trained models and transformer models are more resistant to the problem of catastrophic
forgetting [70]. Improved performance in deep learning models has been undeniably tied
to the larger size of the training dataset and deeper model size. The empirical studies
have been largely conducted on language models, GPT [71] and BERT [72], which are
pretrained using the large corpora of natural language text and thereby falls into category
of unsupervised pretraining. As opposed to language models, image models are pre-trained
in a supervised manner.

For the question of task-incremental or task-specific learning that often occurs in
AI-enabled inspection, a neural network will receive sequential batches of data assigned
to a specific task, the second is class-specific learning, for which the neural networks
are most widely used equally in research and industry. The authors further divide task-
specific incremental learning into three categories based on the storage and data usage
in sequential learning: (a) replay method, (b) regularisation-based method, (c) parameter
isolation method. Replay methods store samples in raw format or use generative models
to generate samples. The rehearsal method is one among the replay methods where the
neural network is retrained on a subset of selected samples for new tasks, but this method
can lead to over-fitting. The authors in [14] also check constraint optimisation as another
method where constraints are only given for new tasks. Regularisation-based methods
are the second type used in incremental learning. The data-focused ones use knowledge
distillation to mitigate forgetting where previous task outputs are used as soft labels. In the
third type, the parameter isolation method is where more sub-modules or branches could
be added to the architecture such that a task is allocated to a specific part, and this part can
be masked in further training sessions. In replay-based methods, GEM [61] is a research
work that is based on task-incremental learning where new task updates are constrained
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so as not to interfere with previously learned tasks. GEM uses a first-order Taylor series
approximation to project gradient direction of the previous tasks to probable outlier regions.
A-GEM [62] is an improved version of GEM where the average gradient episodic memory
loss of previously learned knowledge is reduced. Incremental learning methods have been
categorised based on techniques used in Figure 7. The algorithms given as abbreviations in
the following Figure 7 are: iCaRL [73], ER [74], SER [75], TEM [76], CoPE [77], DGR [78],
PR [79], CCLUGM [80], LGM [81], GEM [61], A-GEM [62], GSS [82], EWC [63], IMM [83],
SI [84], R-EWC [85], MAS [86], Riemannian Walk [87], LWF [64], LFL [88], EBLL [89],
DMC [90], PackNet [91], PathNet [92], Piggyback [93], HAT [66], PNN [19], ExpertGate [94],
RCL [95], DAN [96].

Figure 7. Examples of incremental learning algorithms classified by authors in [14].

3.4. Methods to Alleviate Catastrophic Forgetting

Different methods to address the problem of catastrophic forgetting has been stud-
ied. Studies based on architectural change such as adding or reducing branches or dual
architectures were also studied alongside replay methods, reducing overlap of the tasks
information have all been explored.

3.4.1. Replay Methods

Generative models are used to generate synthetic data or stored sample data are
used to rehearse the model by providing this as input during the training of a new task.
Due to the reuse of stored examples of data or generated synthetic data, this learning
process is prone to over-fitting, hence constrained optimisation has been proposed [14].
iCaRL [73] is one of the earliest replay-based methods developed in 2017, which uses a
nearest class prototype classifier algorithm to mitigate forgetting and has been viewed as a
benchmark since its introduction. iCaRL used the nearest mean of exemplars for feature
representation, reducing the required number of exemplars per class for replay and feature
representation from stored exemplars combined with distillation to alleviate catastrophic
forgetting. REMIND [65] is another replay-based method where quantised mid-level CNN
features were stored and used for replay. Encoder-based lifelong learning (EBLL) [89]
is an autoencoder-based method to preserve previously learned features related to the
old task as an effort to alleviate forgetting. Replay-based methods such as REMIND [65],
ER [74], SER [75], TEM [76] and CoPE [77] are all further replay-based methods. Among
replay-based methods is the concern for storage of previous samples and the number of
instances used in replay to cover the input space. Generative adversarial networks (GAN)
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have been used in generating samples, which could be used in conjunction with real images,
and this can be used for replay, termed as pseudo-rehearsal, which has also been used in
incremental learning applications [78–81].

3.4.2. Regularisation Methods

Among the research in regularisation-based methods, De Lange et al. [14] divided it
into two types: data-focused methods and prior-focused methods. Parameter regularisation
and activation regularisation methods are the ones already researched to mitigate the
problem of loss of previously learned information [64,85,87,88,90]. Data-focused methods
use knowledge distillation from a previous model into the new model trained for the
new task. The knowledge distillation process is used here to transfer knowledge, and it
also helps mitigate the catastrophic forgetting during training for new tasks. The output
from the model trained for a previous task is used as a soft label for those previously
learned tasks. Regularisation-based methods vary the plasticity of weight depending
on the importance of the new task as compared to the old task, previously learned [65].
Methods such as EWC [63], GEM [61] and A-GEM [62] use regularisation methods, but in
GEM and A-GEM, regularisation along with replay methods are used. In EWC, weights
are consolidated into a Fisher information matrix, which gives parameter uncertainty
based on tractable approximation. Compared to EWC, synaptic intelligence (SI) [84]
collects individual synapses-based task-relevant information to produce a high-dimensional
dynamic system of parameter space over the entire learning trajectory in the effort to
alleviate catastrophic forgetting. MAS [86] is a regularisation-based method where changes
to previously learned weights are regulated by penalising parameter changes using hyper-
parameter optimisation, where importance of weights are estimated from the gradients
of the squared L2-norm for output from previous tasks. IMM [83] matches moments of
posterior distribution of neural networks in an incremental priority for first and second
training tasks and uses further regularisation methods including weight transfer, L2-norm-
based optimisation and also dropout methods [63].

3.4.3. Parameter Isolation Methods

Parameter isolation methods isolate and dedicate parameters for each specific task to
mitigate forgetting. When new tasks are learned, previous tasks are masked either at unit
level or at parameter level. This strategy of using a specific set of parameters for specific
tasks may often lead to restricted learning capacity for new tasks [14]. New branches
can be grown for new tasks given there is reduced constraint in network architecture. In
such cases, parameter isolation is achieved by freezing previous task parameters [92–96].
PackNet [91] assigns network capacity to each task explicitly by using binary masks. In
hard attention to task [66], task embedding is implemented by the addition of a fraction of
previously learned weights to the network, which then computes conditioning mask using
these high-attention vectors. The attention mask is used as a task identifier for each layer
and utilises this information to prevent forgetting. In PNN [19], the weights are arranged
in column-wise order respective to the new task with random initialisation of weights.
Transfer between columns is enabled by adaptors, which are non-linear lateral connections
between new columns created with each new task, thereby reducing catastrophic forgetting.

In a study related to class incremental learning, the authors of [97], Xu et al., di-
vided the methods into three categories: (a) replay-based method, (b) regularisation-based
method and (c) architecture-based method. The methods are tested on a deep learning-
based computer vision for a hyper spectral image (HSI) use case example. The first two
categories have been previously considered as task-incremental learning approaches. The
third category is denoted as an architecture-based method. This method is a class of
parameter-isolation where new branches can be created and a new learning phase is created
to distinguish new and old inspection tasks. Progressive neural networks [19], dynami-
cally expandable networks [98], adaptation by distillation [99] and dynamic generative
memory [100] are a few methods using expanding architecture-based methods to miti-



Big Data Cogn. Comput. 2024, 8, 7 15 of 28

gate catastrophic forgetting. The sub-network for each classification task is learned to
prevent catastrophic forgetting. Knowledge distillation is the most important addition to
the incremental learning framework brought forward by the authors where classification
performance of old classes is maintained by training the network with old knowledge. The
total loss is obtained from so-called soft targets that have been developed on old classes,
and network features of old classes are saved to avoid performance degradation in these
old classes when new classes are created.

4. Incremental Learning for Edge Devices

In 2019, Li et al. studied incremental learning for object detection at the Edge [101].
The increased use of deep learning models for object detection on Edge computing devices
was accelerated by one-stage detectors such as YOLO [102], SSD [103] and RetinaNet [104].
A deep learning model deployed at the Edge needs incremental learning to maintain the
accuracy and robust performance in object detection in personalised applications. The
algorithm termed as RILOD [101] is a method for incremental learning where the one stage
detection network is trained end-to-end using a comparatively smaller number of images of
the new class within the time span of a few minutes. The RILOD algorithm uses knowledge
distillation, which has been used by several researchers to avoid catastrophic forgetting.
Three types of knowledge from old models were distilled to mimic the output of previously
learned classes on tasks such as object classification, bounding box regression and feature
extraction. A pipeline for real-time data collection for dataset construction and automatic
labelling of these collected images based on category and bounding box annotations have
also been developed.

In DeeSIL [105], fixed representations for class are extracted from a deep model and
then used to learn shallow classifiers incrementally, which makes it an incremental learning
adaptation for transfer learning. Since feature extractors replace real images, memory
constrain for new data is addressed, hence making it a possible candidate for Edge devices.
Train++ [106] is an incremental learning binary classifier for Edge devices, though it is based
on training ML models on micro-controller units. In [107], a task adaptive incremental
learning, TeAM for convolutional neural networks (CNN) is proposed as a method to
transform large CNN models into optimised forms as to work in Edge devices and a global
aggregation of collaborative models on local devices into a global model, thereby making
incremental learning possible. Hussain et al. [108] proposed learning with sharing (LwS)
as a method for incremental learning in deep learning framework optimised for Edge
devices, which involves cloning of the initial DNN framework except the output layer
and freezing all those layers excluding fully connected (FC) layers. These cloned layers
and FC layers combined with new output layers are used in the next stage of training,
effectively transferring previously learned data. The authors report 75.5% accuracy with
Mobile-NetV3 [109] on the ImageNet dataset.

Rapid development of Edge Intelligence with optimisation of deep neural networks
led to increased use of model-based detection in computer vision applications. Due to its
huge reduction in size as well as reduction in computational costs, the model quantisation
is the most widely used optimisation method among all the other types of optimisation
and compression techniques for deep learning.

To analyse comparative performance of visual cognition-based deep learning models
on a GPU-accelerated device versus a resource-constrained Edge device, Raspberry Pi,
we conducted a case study [110]. The emphasis of the study is to assess the detection
time and accuracy of deep learning models optimised for Edge functionality. The SSD
inception network trained on the INRIA [111] dataset is the reference experiment for the
model optimisation criteria. This is included as the first model in both Tables 2 and 3.
In 2014, Szegedy et al. and a team from Google proposed GoogLeNet (22 layers), which
consists of inception modules. This later came to be widely known as Inception Net [112].
The architecture of these networks were further modified in 2015, which led to versions
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Inception-v2 and Inception-v3 [113]. MobileNets were lighter networks and were also
designed by Google engineers for mobile vision applications [114].

Table 2. Comparison of SSD models on the GPU vs. the Raspberry Pi used in the person detection
case study, evaluated on the basis of detection time and IOU value [110].

Object Detection Model Time for Detection (ms) IOU Value

SSD-Inception-v2-coco(GPU) 3.247 0.8034
SSD-Mobilenet-v1-coco(GPU) 2.119 0.7699
SSD-Mobilenet-v2-coco(GPU) 1.811 0.713
SSDLite-Mobilenet-v2-coco(GPU) 1.332 0.6337
SSD-Inception-v2-coco(Rasp-Pi) 2.309 0.7081
SSD-Mobilenet-v1-coco(Rasp-Pi) 1.027 0.7829
SSD-Mobilenet-v2-coco(Rasp-Pi) 0.813 0.7378
SSDLite-Mobilenet-v2-coco(Rasp-Pi) 0.648 0.591

Table 3. Comparison of SSD models on the GPU vs. the Raspberry Pi used in the person detection
case study based on precision and recall value of detection [110].

Object Detection Model Precision Recall

SSD-Inception-v2-coco(GPU) 1.0 0.8
SSD-Mobilenet-v1-coco(GPU) 1.0 1.0
SSD-Mobilenet-v2-coco(GPU) 1.0 0.8
SSDLite-Mobilenet-v2-coco(GPU) 0.8 0.8
SSD-Inception-v2-coco(Rasp-Pi) 1.0 1.0
SSD-Mobilenet-v1-coco(Rasp-Pi) 1.0 1.0
SSD-Mobilenet-v2-coco(Rasp-Pi) 1.0 0.8
SSDLite-Mobilenet-v2-coco(Rasp-Pi) 0.66 0.8

The detection models were trained on TensorFlow Object Detection API on a local
GPU accelerated device running TensorFlow-GPU version 1.14, Python 3.6 and OpenCV
3.4 as the package for image analysis. The GPU used for training was GPU GeForce RTX
2080 Ti, after which TensorFlow-lite graph was exported as the frozen inference graph.
This was then converted into flat-buffer format before integrating into Raspberry Pi 4,
the resource constrained device used for detection experiments. The Raspberry Pi 4 runs
Raspbian Buster-10 OS, with an integrated Raspberry Pi Camera Module V2 for real-time
image capture in detection experiment. The Raspberry Pi camera is 8 megapixels, single
channel, and has a maximum frame rate capture of 30 fps. The camera module connects to
Raspberry Pi 4 via 15 cm ribbon cable which attaches the Pi Camera Serial Interface port
(CSI) to the module slots on the Pi.

The inference time of TensorFlow Lite model were compared against that of larger
models in the Figure 8, and the results were promising. In industrial application where
accuracy is a concern, a 10% reduction in accuracy could lead to higher number of erroneous
products, causing huge loss in a mass production system. For an acceptable floor rate
of above 70% accuracy within 3 ms detection time, the winning candidate models are
the quantised versions of SSD-Inception-v2 and SSD-Mobilenet. SSD-Mobilenetv1, the
framework designed for mobile and Edge devices, is the best performing with a detection
rate of 78% and detection time of 1 ms in this detection experiment. The IOU values fall to
the value of 59% with low precision of 0.66 for SSDLite-Mobilenet model, which makes
it unsuitable for industrial application with the previously defined criteria. In a person
identification operation, floor rate of detection above 70% is a sufficient and standard
engineering performance requirement for cell-based manufacturing environment.

The comparative study was performed to establish that performances comparable to
the GPU-accelerated device RTX 2080Ti could be achieved on a Raspberry Pi, a resource-
constrained Edge computing device used in the experiment. The Raspberry Pi was chosen
as the resource-constrained experimental device because of its versatility to be retrofitted
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into any manufacturing setting for dynamic decision making. The factory floor prototype
setting in the research facility where the study was conducted further utilised Raspberry
Pi in numerous edge processing applications. The developed system was a component of
a larger detection system, one of which was an operator safety detection mechanism and
hence not stand-alone. The detection algorithm when needing to be retrofitted into larger
mechanism needed seamless communication with the counterparts and hence TensorFlow-
based operations were preferred to PyTorch.

Figure 8. Graph for comparison of detection time vs. IOU value for all the models used. The graph
clearly shows comparable detection time in a GPU-accelerated device vs. Edge device (in ms) [110].

5. Process Prediction and Operator Training

Concept drift is another type of problem that occurs in continual learning [15,18],
which needs mention for the completeness of challenges in continual learning. Concept drift,
also known as model drift, is the change in the statistical properties of a target variable that
occurs due to the change in streaming data with the addition of new products/defects [115].
Data drift is found to be one of the factors leading to concept drift. Data drift is the
change in distribution of input data instances, which result in variation of predictive results
from the trained model. Concept drift can happen over time when the definition of an
activity class previously learned might change in the future data streams when the newer
models are trained from the streaming data. In the manufacturing setting, maintaining
and improving machining efficiency is directly related to the quality of manufacturing end
products [116]. Yu et al. studied process prediction in the aspect of milling stability and the
effect of damping caused by tool wear in the manufacturing setting. This is an application
of incremental learning from the sequential stream of data available and heavily based
on concept drift, one of the imminent challenges in incremental learning. The concept
drift in this application is the stability domain change, which in turn makes change to the
stability boundary. Taking into consideration the time frame in which the sequential data
are available, the concept drift is identified as four types:

• sudden drift: introduction of a new concept in a short time
• gradual drift: introduction of new concept gradually over a period of time to replace

the old one
• incremental drift: the change of an old concept to a new concept, incrementally over a

period of time
• reoccurring drift: an old concept reoccurs after a certain period of time.
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In [117], Li et al. made the attempt to combine the incremental learning paradigm with
incremental SVM to propose a double incremental learning algorithm for time series pre-
diction. Incremental learning to update predictive models has been studied by the authors
of [118] in relation to COVID-19 data to predict variables to characterise the pandemic. This
methodology also considers three important points in incremental learning, the complete
dataset is not available at the time of creating the model, alleviate catastrophic forgetting
and maintaining a balance for the stability–plasticity trade-off. It is also interesting to note
that this incremental learning methodology is time series analysis-based as opposed to the
deep learning-convolutional neural network-based ones that have been gaining popularity
in recent years of research.

Research directly related to incremental learning using deep learning has been con-
ducted by Pierre et al. in [119], where they use correction-based incremental learning in the
domain of autonomous vehicles. The algorithm has been tested in relation to truck platoon-
ing in simulation and laboratory. The back drop of this project is the inaccuracies that arise
from limited/scarce training data near decision boundaries. Driving scenarios such as sud-
den emergency stop, swerving through multiple curves and drifting off the road are such
scenarios under consideration, which can be considered as new instances of interest for the
deep learning model. This can be considered as an anomaly in a normal driving situation
and could be mapped to a new type of defect occurring in a manufactured component, and
the model has to look out for further instances in the manufacturing process.

Correction-based incremental learning augments negative samples into the training
set, which were previously classified as positive samples (false positives) to improve the
decision boundary. This experiment is also research in incremental learning but without
convolutional neural networks for object detection applications. Fully connected layers in
neural network architecture are trained in stochastic gradient descent manner with fewer
samples that strategically improve the decision boundary for the required task. In the study
conducted by Ramos et al. [120], incremental learning based on artificial neural networks
are again used to predict industrial electricity consumption by a facility using real-time data
and forecasting algorithms. Sequential training data are updated every midnight during the
forecast process, where the forecast process is supported by periods split by 5 min intervals.
Yu et al. [121] worked with fault diagnosis in the industrial process using incremental
learning, again using deep learning framework they termed as the broad convolutional
neural network, BCNN. In this method, the abnormal samples collected are combined as
a matrix from which non-linear structure and fault tendency are captured by performing
convolution operation on the obtained data matrix. Weights of models are calculated from
these extracted features to develop the BCNN framework. This methodology permits the
feature extraction of any new faults arising in the manufacturing setting and effectively
incremental learning on these new faults without retraining.

When considering the paradigm shift from Industry 4.0 to Industry 5.0 use case
studies, the impact on people and organisation as well as the technological advances that
are proposed must be considered. The main implementation challenges that have been
reported in Industry 4.0 applications have been in relation to security, resilience, the ability
to withstand disruptions and catastrophic events, operator training and efficient use of
digital data from sensors. Industry 4.0 and 5.0 are both aimed at an important dimension
of efficient use of energy and technology [122]. Humans create and manage the production
systems, hence humans are the main drivers of activities and creators of infrastructure,
but the processes in the production will be automated, and any human operator will
only be considered as the human-in-the-loop to assist the automated systems. This role
of the operator will include selecting the samples from the sequential data acquired by
the sensors and labelling or pre-processing for incremental learning techniques. Industry
5.0 prioritises human–machine interaction as opposed to the introduction of robots and
automated systems into the manufacturing process in Industry 4.0 [123].
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6. Discussion and Analysis

Incremental learning has been researched under two criteria, class incremental learning
and task incremental learning. A timeline of state-of-the-art incremental learning algorithms
is given in Figure 9. In [24], Mittal et al. studied class incremental learning in an attempt to
alleviate catastrophic forgetting. They also used metrics such as ‘class-incremental learned
models, Class-IL’ as referred by them to evaluate the performance. The metrics used are
average incremental accuracy, forgetting rate and feature retention. The three important
attributes of the class-IL system in their experiment are a memory buffer for storage of
examples from old classes, forgetting constraint to mitigate catastrophic forgetting and, the
most important element, learning of new classes while balancing old classes.

Figure 9. Timeline analysis of state-of-the-art incremental learning experiments.

From the experiments conducted by the authors in [70], catastrophic forgetting has
an inverse relation to model scale. Pre-trained vision transformer (ViT) [124] models and
pre-trained ResNet both suffer less when the model size is large. Large models suffer less
forgetting. The technique used in this analysis, termed as ‘forgetting frontier’, is a measure
of the maximum performance on new data learned for a given stable model performance
for old data. A comparison of accuracy loss against model parameter size is given in
Table 4.

Table 4. Analysis of the effect of model scale on catastrophic forgetting.

Models Parameters Dataset Accuracy Loss (%)

ViT-xs 5.7 M CIFAR10 6.5
ViT-Base 86.7 M CIFAR10 <0.5
ResNet18 11 M CIFAR10 40

ResNet200 62.6 M CIFAR10 <0.8

However, Sarwar et al. observed incremental learning as computationally expen-
sive [125]. Their approach focused on using network sharing in the unique clone-and-
branch technique, where the cloned layers provide a better starting point to the weights
as opposed to randomly initialised ones and hence result in faster learning kernels and
faster convergence. The evaluation was based on energy–accuracy trade off, taking into
consideration the architecture of the deep convolutional neural networks and complexity
of gradient computation and weight update stages.

Regarding the state-of-the-art incremental learning algorithms, there was immense
advancement in the research resulting in various benchmark algorithms in the year 2017.
iCaRL [73] achieved average accuracy of 68.6%, LWF [64] and EWC [63] with 61%, GEM [61]
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with 65.4% and IMM [83] and SI [84] were a few of the most significant among them. Since
the inception in 2017, iCaRL [73] has become the bench mark against which numerous class
incremental learning algorithms have been analysed. The difference of class-based and
task-based is trivial when it comes to learning and weight update criteria from the deep
learning perspective. Figure 10 shows the performance analysis of important incremental
learning algorithms developed in recent years. In the year 2017 alone, four more significant
algorithms were proposed, with average accuracy in the range 64% to 73% among class
incremental learning applications. A comparison in accuracy of recently developed incre-
mental learning algorithms with regard to models used and dataset of evaluation is given
in Table 5. Table 6 provides important details of benchmark datasets used for pre-training
and fine-tuning detection models widely used in the incremental learning research.

Figure 10. Performance analysis graph for the important algorithms in the domain of incremental
learning over recent years.

Incremental learning has also been evaluated based on the loss of information for
previously learned tasks. In the correction-based incremental learning approach, the
percentage of autonomy and mean time to failure were used in analysis, where autonomy is
the percentage of time the system operates without the need for correction or intervention
from a human operator [119]. The mean time to failure is the average time the system
operates without failure between correction or intervention.

Table 5. Comparison of recent research in incremental learning algorithms based on the dataset used
and average accuracy.

Method Models Dataset Used Average Accuracy (%)

A0F0 1 [70]

Activity learning framework

KTH 98.0
A1F1 1 [70] KTH 96.1

A0F0 TRECVID 66.65
A1F1 TRECVID 64.56
A0F0 VIRAT 62.6
A1F1 VIRAT 61.8
A0F0 UCF50 53.8
A1F1 UCF50 44.3

Random Memory [17] YOLOv5 CORe50 69.08

Tracking Modelling
Detection [126] TMD, online detector Caviar 72, 64
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Table 5. Cont.

Method Models Dataset Used Average Accuracy (%)

Online Continual Object
Detection [7] Faster RCNN OAK dataset 40.92

HAT [66] AlexNet architecture [127] Permuted MNIST 98.6
CIFAR100 90

REMIND [65] ResNet-18 ImageNet 85.5
CORe50 97.8

Fast R-CNN + EWC [68] B (16–20) COCO 54.8
B (11–20) PASCAL VOC 67.1

CVT [16] CVT
CIFAR100 75.76

Tiny ImageNet 36.74
ImageNet100 42.61

RILOD [101] RetinaNet iKitchen 67.9

Partial Network Sharing [125]

ResNet18

ImageNet

70.73
ResNet34 86.65

DenseNet121 64
MobileNet 62

iCaRL [73] ResNet32 CIFAR100 68.6

Incremental Learning in
Online Scenario [15,101] ResNet18 Food-101 57.83

GEM [61] MNIST FCN (100 ReLU units) 89.5
CIFAR100 ResNet18 61.2

A-GEM [62] MNIST FCN (100 ReLU units) 89.1
CIFAR100 ResNet18 62.3

1 A0F0—no active learning and infinite buffer; A1F1—active learning and fixed buffer.

Table 6. Details of dataset used: balanced benchmark datasets and fine-tuning datasets.

Dataset for Pre-Training Backbone Architecture

Dataset Total Images Train Set & Test Set Categories

ImageNet 14,197,122
80,000 noun synsets in

WordNet, 500–100 images in
each synset [35]

5247

Pascal VOC 10,000,000

The train/val data have 11,530
images with 27,450 ROI
annotated objects and

6929 segmentations [28]

10,000

COCO 328,000 165,482 train, 81,208 val and
81,434 test images [29] 91

Google Open Images V4 9,178,275

30,113,078 image-level labels,
15,440,132 bounding boxes,
374,768 visual relationship

triplets [128]

600
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Table 6. Cont.

Dataset for Pre-Training Backbone Architecture

Dataset Total Images Train Set & Test Set Categories

JFT 300 M 375M labels, on average each
image has 1.26 labels [129] 18,291

Dataset for Fine Tuning and Experimentation

MNIST 70,000, 28 × 28 60,000—Train images,
10,000—Test images 10

Fashion MNIST 70,000, 28 × 28 60,000—Train images,
10,000—Test images 10

CIFAR-10 60,000, 32 × 32 50,000—Train images,
10,000—Test images 10

CIFAR-100 60,000, 32 × 32 500—Train images, 100 test
images per class. 100 (20 superclass)

Tiny ImageNet 100,000, 64 × 64 RGB
500—Train images, 50—val
and 50 test images for each

class
200

Core50 164,866, 128 × 128 11 sessions × 50 objects ×
(300) frames per session [130] 50 objects, 10 class

Dataset for Fine Tuning and Experimentation

SVHN 604,300, 32 × 32 RGB
73,257—Train images,

26,032—Test images and
+531,131 train samples

10 (Digit classification)

The discussion on incremental learning cannot be completed without accounting for
the benchmark datasets used in pre-training complex, cumbersome deep learning architec-
tures for faster convergence and better generalisation. The deep learning frameworks serve
as the backbone for tasks such as detection, segmentation and classification [131–133]. The
most widely used method of pre-training as an initialisation method for computer vision
tasks is the supervised pre-training [133] using ImageNet with 1.2 M images [35]. Further
datasets used in pre-training deep learning architectures include COCO (Microsoft COCO:
Common objects in context) [29], PASCAL-VOC [28], OpenImages [128] and JFT [129],
which was an internal Google dataset with more than 300 M images that are labeled with
18,291 categories, later published in 2017 [21].

While there is an ongoing debate whether pre-training is necessary for all types of
tasks, incremental learning approaches in the literature are found to have used pre-trained
models, which were later fine-tuned for specific detection or classification experiments.
The datasets used in research studies included in this review article were generic datasets
such as MNIST [134], FashionMNIST [135], SVHN [136], CIFAR-10 [137], CIFAR100 [34],
Tiny ImageNet [138], which is a strict subset of the large ImageNet dataset, CORe50 [130]
and a few task-specific datasets available. MNIST is a hand-written digits dataset. Task
agnostic incremental learning is yet in the infancy stage of experimentation, and the
incremental learning accuracy on real-world datasets is very low, which implies that
real-world experimentation of this technique is under process or not yet available for the
research community. The classes/tasks being learned from streaming data can also lead to
concept drift as discussed above when there is change in data distribution. Accounting for
all those factors, despite all the different types of methods and models studied in the area
of incremental learning, there is no clear winner model that can produce state-of-the-art
comparable results in an online real-time deployment [15].
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7. Conclusions

This paper is a review into the continuous learning aspect of deep learning models and
common challenges that arise in inspection and summarises recent research to mitigate such
challenges. Continuous learning is a significant research concern for AI-enabled inspection,
and model-based detection challenges are becoming ubiquitous in visual cognition aspects
in manufacturing. Typically, research efforts have focused on mitigating specific challenges
such as catastrophic forgetting, storage and replay of exemplars from previous tasks and the
computation of weights that are applied to new classes that can develop over time. More
recently, the literature has focused on computational challenges associated with increasingly
complex datasets, structures and architectures that arise in modern manufacturing. This
leads to uncertainty in relation to knowledge requirements and also incremental learning
challenges from the often large amounts of sequential data that are available. This area of
research is still in its infancy, and there is no general agreement on the benchmark testing
procedure that should be adopted for a particular inspection challenge. Although a wide
range of deep learning techniques exist for object detection, there exists no de facto method
that can be generally applied to the question of incremental learning in a defect detection
process step that incorporates the use of computer vision. Defect detection and analysis
poses challenges for incremental learning algorithms, and in the future, equal emphasis
will need to be placed on the twin challenges of how a deployed neural network will
be updated dynamically and also reducing the impact of catastrophic forgetting in such
use cases.
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22. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 535–541.
23. Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep mutual learning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4320–4328.
24. Mittal, S.; Galesso, S.; Brox, T. Essentials for class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3513–3522.
25. Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Schmid, C.; Alahari, K. End-to-end incremental learning. In Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 233–248.
26. Belouadah, E.; Popescu, A. Il2m: Class incremental learning with dual memory. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 583–592.
27. Cao, G.; Cheng, Z.; Xu, Y.; Li, D.; Pu, S.; Niu, Y.; Wu, F. E2-AEN: End-to-End Incremental Learning with Adaptively Expandable

Network. arXiv 2022, arXiv:2207.06754.
28. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
29. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September
2014; Proceedings, Part V 13; pp. 740–755.

30. Hao, Y.; Fu, Y.; Jiang, Y.G.; Tian, Q. An end-to-end architecture for class-incremental object detection with knowledge distillation.
In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019;
pp. 1–6.

31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; Volume 28.

32. Kwon, J.; Khalil, A.; Kim, D.; Nam, H. Incremental end-to-end learning for lateral control in autonomous driving. IEEE Access
2022, 10, 33771–33786. [CrossRef]

33. Hou, S.; Pan, X.; Loy, C.C.; Wang, Z.; Lin, D. Learning a unified classifier incrementally via rebalancing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–19 June 2019; pp. 831–839.

34. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Totonto: Toronto, ON, Canada, 2009.

http://dx.doi.org/10.1016/j.neucom.2011.02.011
https://link.springer.com/book/10.1007/978-3-031-01575-5
https://link.springer.com/book/10.1007/978-3-031-01575-5
http://dx.doi.org/10.3390/e22111190
http://www.ncbi.nlm.nih.gov/pubmed/33286958
http://dx.doi.org/10.1016/0921-8890(95)00004-Y
http://dx.doi.org/10.1109/TMM.2015.2477242
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/ACCESS.2022.3160655


Big Data Cogn. Comput. 2024, 8, 7 25 of 28

35. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2009; pp. 248–255.

36. Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; Fu, Y. Large scale incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2019; pp. 374–382.

37. Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In Proceedings
of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part III 14; pp. 87–102.
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