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Abstract: In this work, we present a Distributed Bayesian Inference Classifier for Large-Scale Systems,
where we assess its performance and scalability on distributed environments such as PySpark. The
presented classifier consistently showcases efficient inference time, irrespective of the variations in
the size of the test set, implying a robust ability to handle escalating data sizes without a proportional
increase in computational demands. Notably, throughout the experiments, there is an observed
increase in memory usage with growing test set sizes, this increment is sublinear, demonstrating the
proficiency of the classifier in memory resource management. This behavior is consistent with the
typical tendencies of PySpark tasks, which witness increasing memory consumption due to data
partitioning and various data operations as datasets expand. CPU resource utilization, which is
another crucial factor, also remains stable, emphasizing the capability of the classifier to manage larger
computational workloads without significant resource strain. From a classification perspective, the
Bayesian Logistic Regression Spark Classifier consistently achieves reliable performance metrics, with
a particular focus on high specificity, indicating its aptness for applications where pinpointing true
negatives is crucial. In summary, based on all experiments conducted under various data sizes, our
classifier emerges as a top contender for scalability-driven applications in IoT systems, highlighting
its dependable performance, adept resource management, and consistent prediction accuracy.

Keywords: Bayesian inference; big data; IoT data engineering; large-scale IoT systems; PySpark

1. Introduction

The emergence of the Internet of Things (IoT) has marked the beginning of a significant
era where the digital and physical worlds merge, leading to an extraordinary increase in
both the amount and speed of data produced by interconnected devices. The Internet of
Things (IoT) has emerged as a transformative force in contemporary society, substantially
impacting various facets of daily life. This technology extends its influence across numerous
sectors, significantly enhancing healthcare delivery, streamlining transportation systems,
and facilitating the evolution of smarter urban environments. Nevertheless, the IoT ecosys-
tem’s rapid expansion is accompanied by a significant increase in data generation, known
as Big Data. This expansion presents a complex challenge, necessitating advanced, scalable,
and efficient data processing techniques.

Current traditional methodologies often struggle to manage the enormity and real-
time processing demands of data originating from IoT sources. This shortfall can lead to less
effective decision-making processes and undermine the overall performance of IoT systems.
The consequences of such inefficiencies in data management within IoT applications are
extensive. They not only impede progress in critical infrastructure sectors but also constrain
the broader scope of innovation, thus obstructing the full realization and benefits that IoT
technology promises to deliver. Given the complex nature of large-scale data analysis in
IoT systems, distributed Bayesian inference arises as a practical and efficient solution in
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this domain. Bayesian methods, which are influential in deriving informed conclusions
and predictions from complex datasets, are widely recognized for their probabilistic un-
derpinnings. An examination of these methodologies within a distributed computation
framework tailored for the massive data systems of the Internet of Things is essential to
this field of study.

The distributed implementation of Bayesian inference simplifies immense datasets
into more manageable elements through the use of a systematic approach. The methodol-
ogy functions within a decentralized framework, enabling the analysis of these segments
simultaneously. The workflow commences with the dataset being segmented, subsequently
undergoing parallel analysis on each segment. To achieve this goal, numerous algorithms
have been developed, such as variational Bayesian (VB) and Markov chain Monte Carlo
(MCMC) methods, which are specifically designed for distributed applications. These tech-
niques, along with neural networks, Gaussian mixture models (GMMs), and generalized
linear models (GLMs), have been applied to a wide variety of modelling scenarios. On
the basis of theoretical and empirical research, the effectiveness of distributed Bayesian
inference algorithms may be comparable to that of conventional, centralized methodologies.
As supported by the results of several research studies in the respective domain [1–4], the
algorithms under consideration demonstrate remarkable effectiveness in terms of both
computational speed and statistical accuracy. These methodologies illustrate the efficacy
of modern computational techniques in handling substantial amounts of data, producing
accurate results that are computationally viable.

This study introduces a Distributed Bayesian Inference Classifier that has been me-
thodically designed to address the unique difficulties associated with Internet of Things
(IoT) systems operating on a large scale. The principal inquiries that direct our research are
as follows: (a) To optimize the management of the substantial volumes of data produced
by Internet of Things (IoT) devices, (b) what is the most efficient approach to disseminating
Bayesian inference across extensive computational networks? (c) What are the performance
metrics of the resultant distributed classifier, encompassing resource utilization efficiency,
scalability, and accuracy?

To investigate these inquiries, we conduct an exhaustive empirical investigation in
addition to a comprehensive theoretical analysis to evaluate the performance of our Dis-
tributed Bayesian Inference Classifier. The scalability of the system is assessed using
datasets that span significant time intervals and faithfully depict the dynamic and het-
erogeneous nature of IoT data. Our evaluation primarily centers around several critical
performance indicators (EPIs). These encompass classification accuracy, memory con-
sumption, inference time, and CPU utilization. These metrics provide insight into the
classifier’s capacity to process substantial quantities of data seamlessly. Recognizing the
critical role that specificity plays in IoT applications, we place considerable emphasis on it
as a fundamental element of our analysis. It is of utmost importance to precisely identify
true negatives, as classification errors, specifically false positives, can yield substantial
consequences in practical Internet of Things situations and implementations.

Our primary objective in this study was to make a substantial contribution to the
expanding domains of Big Data and the Internet of Things (IoT). Our objective is to
improve the capabilities of IoT systems by creating a scalable and efficient solution for
data management and analysis. The result will enable these systems to achieve higher
levels of intelligence and self-sufficiency. Moreover, our approach not only presents new
opportunities for future research into enhancing the management of data in the Internet
of Things but also has impacts across a broader range of academic areas. The proposed
advancements in distributed inference systems could have significant implications for
various critical domains such as machine learning, distributed computation, and data
analytics. This highlights the wide-ranging potential influence that our research may have.

The organization of our paper is methodical, allowing for a coherent exposition
of our findings. Following this introduction, Section 2 reviews relevant literature on
Bayesian inference within distributed frameworks and the Big Data challenges typical
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to IoT systems. Section 3 outlines the foundational concepts of the Distributed Bayesian
Inference Classifier, detailing its computational framework and the Bayesian principles it
is based on. Section 4 describes the experimental setup, specifying the datasets used and
the metrics established for performance evaluation. Section 5 offers a detailed analysis
of the results, emphasizing the classifier’s capability to efficiently manage large datasets.
Finally, Section 6 concludes the paper, summarising our research findings and suggesting
directions for future exploration in this area.

2. Background and Related Work

Distributed Bayesian inference is becoming increasingly well-known within the do-
main of the Internet of Things (IoT), mainly because of its wide-ranging applications in
object classification, target monitoring, and medical diagnosis, among others. Since the
majority of IoT systems are distributed and operate with constrained resources, critical
information is likely to be stored on a limited number of nodes at any given time. Therefore,
for effective inference, the notion of Information-Driven Distributed Sensing (IDDS) as-
sumes paramount importance, as it directs the allocation of resources toward the detection
and transmission of valuable data [5].

There exists a multitude of studies dedicated to distributed Bayesian inference in
IoT ecosystems [5]. An example of such research is the development of a centralized
(C-IDDS) and distributed (D-IDDS) algorithm that utilizes exponential family distributions
to facilitate efficient Bayesian inference. Both are online algorithms, characterized by
their adaptability to stochastic system conditions without foreknowledge. The researchers
demonstrated, through a detailed theoretical evaluation, that these proposed algorithms
deliver an asymptotically optimal system-wide utility. This theoretical proposition was
further substantiated by real-world testing on an established testbed.

Another study delves into the opportunities and challenges associated with approxi-
mate Bayesian deep learning for smart IoT frameworks [6]. The authors propose potential
solutions to mitigate model storage requirements and enhance computational scalability,
such as model pruning and distillation methods. Additionally, the study underscored the
significance of Bayesian inference as a theoretical base for developing uncertainty-aware,
robust deep learning-centric intelligent IoT systems.

A different study presents a pragmatic approach that identifies removable connections
in ResNet without considerably affecting the model’s efficacy, facilitating distribution
in scenarios with resource constraints. This outcome forms the basis for formulating
a multi-objective optimization problem focused on latency minimization and accuracy
maximization considering the available resources [7]. The experimental results indicate
that an adaptable ResNet architecture can diminish shared data, energy consumption, and
latency during distribution while preserving high accuracy.

Lastly, a research paper proposes ApDeepSense, an efficient and effective method
for deep learning uncertainty estimation suitable for resource-limited IoT devices [8].
ApDeepSense estimates output uncertainty by utilizing an implicit Bayesian approxima-
tion that correlates neural networks with deep Gaussian processes. It was shown that
the implementation of an innovative layer-wise approximation approach, as opposed to
traditional sampling-based methods that require significant computational resources for
uncertainty estimation, can significantly decrease the execution time and energy usage
associated with uncertainty estimation.

The utilisation of distributed Bayesian inference is crucial for enabling intelligent
inference in Internet of Things (IoT) systems. In a variety of scholarly articles, algorithms
and methodologies to enhance the scalability and effectiveness of Bayesian inference in
IoT systems have been proposed. These encompass methodologies such as approximate
Bayesian deep learning, adaptive ResNet architecture, and deep learning uncertainty
estimation [9].

The field of the Internet of Things (IoT) has experienced a notable transition in recent
times towards the implementation of distributed Bayesian inference to improve the scala-
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bility of systems, as evidenced by numerous research initiatives. Ullah et al. emphasize
the notion of context-aware Bayesian inference in an innovative manner. By integrating
multi-sensor data, the aforementioned approach generates a reliable and precise inference
model, thereby streamlining the integration of vast quantities of data from various ori-
gins [10]. Meanwhile, the work in [11] presents a novel methodology for implementing
decentralized data flows in the Internet of Things (IoT) systems through the utilization of
DX-MAN semantics. Through the reduction of intricate data transmission control among
numerous coordinating entities, this approach substantially enhances the overall efficiency
of the system.

In order to address the complexities associated with distributed co-simulation in cloud
environments particularly for IoT systems, [12], employs domain-specific languages and
CoHLA. This methodology enhances the management of vast amounts of IoT data and
streamlines cloud-based simulations through adherence to HLA and FMI standards [12].
Quasi-Deterministic Transmission Policy (QDTP) is suggested by [13] as a potential res-
olution to the Massive Access Problem (MAP) associated with the Internet of Things. By
utilizing QDTP, a methodology based on diffusion analysis, the likelihood of missing
crucial data deadlines is effectively diminished, thereby enhancing the dependability and
efficacy of Internet of Things systems. Based on the results of previous research, Internet
of Things systems may be made much more functional and scalable by using strategic
techniques, such as distributed Bayesian inference.

A detailed analysis of the difficulties of applying distributed Bayesian inference to
large-scale Internet of Things systems as in [14] reveals several important variables. The
study highlights that the variety of IoT data sources is a key obstacle. A suggested analytical
framework with two tiers is designed to handle data obtained from the Internet of Things,
considering the challenges discussed in [15]. This strategy effectively reduces the existing
uncertainty by incorporating detailed events into Bayesian networks. In another interesting
work related to the security in distributed Internet of Things (IoT) systems, the authors
provide a novel perspective on this domain and countermeasures as they developed and
introduced a set of methodologies to guarantee secure distributed inference [16]. Ultimately,
ref. [17] presents an alternative method that employs a trust model grounded on Bayesian
decision theory.

2.1. Bayesian Inference in Wireless Sensor Networks

Bayesian inference-based wireless sensor networks (WSNs) help people make deci-
sions faster and get around problems. Studies show that WSN is used to find outliers,
find and fix faults, find the cause of a problem, and figure out how much trust to put in
something. A study in [18] shows that Bayesian reasoning could improve the performance
of wireless sensor networks by finding and solving problems. When sensor readings are
checked and fixed, WSN data are more accurate and reliable. Using the Bayesian method,
new sensor data can be used to test theories and figure out how unclear something is. This
makes sure that mistakes are found and fixed correctly, which protects network data.

In another study [19], it was discovered that Bayesian reasoning is needed to find
outliers in Wireless Sensor Networks (WSNs). Bayesian inference networks find parts of
sensor data that depend on each other in certain situations. Bayesian networks that show
how sensor measures are connected make it possible for technology to find data points
that do not fit with expected trends. Bayesian inference uses statistical reasoning and
the network of sensor characteristics that are linked to figure out how likely it is that an
observation is not normal. This system needs to work well to find problems that could be
caused by monitors that are not working correctly or strange conditions in the surroundings.
Also, ref. [20] discovered that Bayesian reasoning is very important for making network
nodes believe each other in Wireless Sensor Networks (WSN). Bayesian fusion lets us figure
out how reliable a network node is by combining different trust factors. The program
analyses and includes trust data, including uncertainty from various trust characteristics.
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Sensor data, previous knowledge, and statistical models are used in Bayesian inference to
synthesize information. This association helps provide accurate evaluations.

The results of our investigation strongly demonstrate the feasibility of using Bayesian
inference in large-scale Internet of Things infrastructures. An effective method to im-
prove the efficiency of implementing the Bayesian inference process is by using PySpark, a
Python package particularly built for distributed computing. PySpark can handle large
amounts of data produced by IoT-connected devices. Moreover, in addition to the afore-
mentioned capabilities, it facilitates system optimization, anomaly detection, real-time
decision-making, and defect tolerance. Through the utilization of PySpark’s scalable and
distributed architecture, it becomes viable to perform Bayesian inference on computing
clusters, concurrently analyze data produced by the Internet of Things (IoT), and effectively
manage the substantial resources necessary for the deployment of large-scale IoT systems.

2.2. Apache Hadoop

The groundbreaking contributions of Doug Cutting and Mike Cafarella were primarily
responsible for the establishment of Apache Hadoop in 2006, which constituted a signif-
icant milestone in the field of data processing. The principal deliverable of the group
was the conception and execution of the groundbreaking distributed file system Hadoop
Distributed File System (HDFS). Hard Disc Foundation Stream (HDFS) was intentionally
engineered to operate as a centralized repository, overseeing the management of every
worker node—including the input data, intermediate outputs, and final outputs of the
MapReduce framework. Hadoop gained the ability to process and distribute data in real-
time as a result of the expansion of its functionalities made possible by the implementation
of this novel data storage methodology. Furthermore, the inventive architecture of HDFS
streamlines the initiation phase of MapReduce processes by facilitating the prompt retrieval
of vital data by worker nodes. The proposed architectural decision significantly enhances
the system’s performance and scalability, as well as the data management efficiency within
the Hadoop ecosystem.

Significant enhancements to the administration of malfunctioning nodes were imple-
mented as an additional noteworthy consequence of the HDFS architectural framework.
The system is additionally fitted to facilitate prompt data recovery and task redistribution
to other operational personnel in the case of a node failure. In addition to its high efficiency,
the HDFS infrastructure facilitates the smooth incorporation or removal of worker nodes
while MapReduce tasks are being executed. As Apache Hadoop’s evolution unfolded, its
capabilities were further enhanced, incorporating support for Apache Spark’s distributed
software. Once again, the HDFS was leveraged as a unified memory space for handling
input, output, and intermediary data (Apache Hadoop). Such unwavering commitment to
continual innovation and enhancement fortifies Apache Hadoop’s position as a leading
entity in the realm of big data management and processing.

2.3. Spark

Apache Spark is a distinguished distributed data processing framework, developed
under the Apache umbrella. Initiated in 2009 by Matei Zaharia and his team, it formally
became a part of the Apache Software Foundation in 2013.

Spark was conceptualized to overcome some of the challenges posed by the MapRe-
duce model, an earlier computational model in distributed data processing. One of the
main challenges faced by MapReduce was its reliance on disc storage for the storage of
intermediate data on worker nodes. This dependence led to considerable latency, especially
in situations involving real-time data streams. This latency was caused by the employee’s
reliance on routine data transfers between their main memory and disc. Furthermore, the
MapReduce design introduced execution delays for reduced functions, which hindered
the framework’s capacity to attain optimal parallelism for specific tasks. Spark integrates
robust distributed datasets (RDDs), which are data structures that have been carefully
engineered to optimize worker nodes’ utilization of random-access memory (RAM). RDDs
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are fundamental constituents of the architecture of Spark. A multitude of significant advan-
tages are offered by RDDs due to their memory-centric design. The advantages encompass
accelerated processing, heightened parallelism, and the capacity to manage and transmit
real-time data, in addition to the capability to process large data sets. By expediting the
processing of immense quantities of data, the implementation of this novel approach to
optimizing data structure design increases the efficacy of data processing endeavors. RDDs
play a vital role in mitigating the intricacies linked to big data processing by effectively
overseeing both batch and real-time data processing. This underscores their importance
within the Spark ecosystem.

Although Spark and MapReduce are both capable of functioning on the Hadoop
Distributed File System (HDFS), their respective environments are solely examined in
the context of this study. This focus, however, suggests potential avenues for future
explorations in integrating both architectures to optimize large-scale data management.

3. Methodology
3.1. Objectives and Contributions

The primary aim of our study is to thoroughly assess the scalability of the EVCA
Classifier [21], an innovative MCMC classifier that combines Bayesian machine learning
and Apache Spark for distributed data analysis. Here, we focus on evaluating its ability
to maintain high accuracy and efficiency while accommodating various test set sizes,
showcasing its adaptability and robustness in practical applications. By analyzing diverse
test set volumes, we aim to prove EVCA’s suitability for handling large, complex datasets,
along with the dynamic nature of distributed IoT data.

This experiment directly addresses our concern about the effective distribution of
Bayesian inference across computational networks to process the immense data influx arising
from IoT devices. Our research sheds light on the potential of this classifier in the domains of
big data management and environmental data analysis, with broader implications not only
in academic fields like statistics, mathematics, and physics but also in real-world scenarios
where the need for correct True Negative prediction is extremely important.

3.2. Tools and Technologies Used

For the processing of the data used, the implementation of the classification mod-
els used, along with their evaluation we have utilized a variety of Python and Apache
Spark libraries:

Pyspark: Spark’s Python API that simplifies distributed data analysis and Machine Learn-
ing tasks.

• Spark SQL: A programming interface for structured and semi-structured data
management with SQL-like syntax. In our research, it has been used for data
preprocessing and manipulation.

• Spark MLlib: Library for development of scalable machine learning models.
Here we have utilized its built-in Logistic Regression algorithms, along with its
predefined classification metrics.

Here we set the master URL to run the Spark application in local mode, utilizing
all available cores on the machine for parallel processing. The memory allocation
for the driver program and executors are both set to 5 gigabytes. Lastly, we de-
termine the number of cores assigned to each executor, allocating 6 cores for our
application. These configuration settings ensure efficient execution and utilization of
computational resources.

nupmy: Provides the necessary tools and functionalities to efficiently implement the numeri-
cal computations involved in Bayesian Logistic Regression, such as array operations.

pymc3: High-level intuitive interface for probabilistic programming in Python [22].
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pandas: High-performance data manipulation and analysis tool for structured data. Here
it is used to handle the data and allow for use with other libraries for scientific
computing and machine learning.

matplotlib: Used to visualise data.

scikit-learn: Used to obtain classification metrics when working with pandas data frame
and predictions with numpy.

psutil: Used to retrieve system information, such as CPU and Memory Usage.

time: Used to compute Inference time for each test set and Classification method.

3.3. Study Limitations

The limitations of our current study are primarily rooted in the compatibility chal-
lenges between PyMC and PySpark. Our research heavily relies on MCMC sampling, a
fundamental Bayesian Inference tool, to make accurate predictions and classifications. The
integration of these components into PySpark presented inherent obstacles. As a result, we
had to think of an alternative approach, wherein we defined, trained, and generated the
MCMC sample trace using a combination of pandas data frames, numpy, and PyMC. This
trace was then stored and loaded into the PySpark environment, where it was utilized to make
predictions. While this workaround allowed us to conduct our study effectively, it underscores
a significant limitation in the current state of distributed machine learning technology and
Apache Spark for Bayesian machine learning using MCMC sampling techniques.

3.4. Data Collection and Cleaning

This analysis utilizes a dataset that spans from January 2001 to April 2018, encom-
passing hourly air pollutant concentration data for Spain’s capital, Madrid. The data are
publicly accessible through Madrid’s Open Data website and Kaggle [23,24]. Analyzing
this dataset holds significant practical and environmental relevance, as Madrid is among
the European cities with the poorest air quality and a notably high mortality rate associated
with nitrogen dioxide and carbon monoxide [25]. This underscores the imperative need to
enhance air quality, beginning with a comprehensive understanding through data analysis.

The dataset is structured into separate CSV files, each dedicated to a specific year,
and it contains information about various air pollutants. These pollutants consist of Sulfur
Dioxide—SO2, Carbon Monoxide—CO, Nitrogen Dioxide—NO2, Particles smaller than
2.5 µm—PM2.5, Particles smaller than 10 µm—PM10, O3 (ozone), Toluene—TOL, Benzene—
BEN, Ethylbenzene—EBE, Total Hydrocarbons—TCH, and Non-methane hydrocarbons
or volatile organic compounds—NMHC. These data points originate from 18 measurement
stations located across Madrid, with each station’s readings forming columns within the
respective files. The aforementioned contaminants are measured using a variety of techniques,
including fluorescence, infrared spectroscopy, chemiluminescence, and microbalances, which
frequently employ sensors and other Internet of Things methodologies [26].

These pollutants play a critical role in the computation of the Air Quality Index
(AQI) for a specific hour, which is a vital tool for evaluating the health consequences of
air pollution. Numerous factors, including pollution sources and vehicular traffic, are
susceptible to the sensitivity of this index, which is derived from air quality sensor data.
The European Environment Agency classifies air quality into six discrete grade levels. The
aforementioned levels span a spectrum from “excellent” to extremely poor”, as illustrated
in Table 1. These levels are determined by analyzing the concentrations of particulate
matter (PM), sulphur dioxide (SO), nitrogen dioxide (NO2), and PM2.5. Through the
utilization of this categorization framework, individuals are empowered to augment their
understanding of air quality and render informed judgments that protect the welfare of the
general public. One can obtain a precise depiction of the health hazards linked to the air
quality in a specific area by ascertaining the air quality classification through the utilization
of the highest recorded value of the pollutants in question. This information must be utilized
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to inform efforts to mitigate the negative health effects associated with air pollution; thus,
strict adherence to European standards for the index cannot be overstated.

Table 1. AQI Categories and Index Ranges.

Pollutant Good Fair Moderate Poor Very Poor Extremely
Poor

PM2.5 0–10 10–20 20–25 25–50 50–75 75–800

PM10 0–20 20–40 40–50 50–100 100–150 150–1200

NO2 0–40 40–90 90–120 120–230 230–340 340–1000

O3 0–50 50–100 100–130 130–240 240–380 380–800

SO2 0–100 100–200 200–350 350–500 500–750 750–1250

We implemented the PySpark.sql and PySpark.mllib modules of the PySpark frame-
work to facilitate the data compilation process. Absent values were managed with extreme
care to detail during the preparatory phase by employing time-based interpolation as a
technique. Despite the atypical sampling intervals employed, this approach was indis-
pensable in maintaining the dataset’s integrity and accuracy. To achieve a comprehensive
understanding and analysis of the evolution of air quality trends during a specified time
period, it was essential that the data’s inherent temporal patterns be preserved.

An additional column, designated AQI_Index, was affixed to each document to classify
them in accordance with the Air Quality Index (AQI) associated with the most severe level
of five different pollutants. An additional column denoted as AQI_GenPop_Index, was
incorporated to symbolize binary AQI values that indicate the suitability of the air quality
for the general population. We addressed outliers within pollutant columns using the
interquartile range (IQR) technique, considering the data’s skewed nature. Conclusively,
we employed z-score normalization on the pollutant columns to standardize their measure-
ments, ensuring a mean of 0 and a standard deviation of 1. Subsequently, we performed
sampling to create datasets equivalent to 1 year, 3 years, 6 years, 9 years, 12 years, and
15 years from the preprocessed data. The one-year sample was designated as the training
set, while the remaining six subsets were employed for testing (as shown in Tables 2–4).

Table 2. Bayesian Logistic Regression Predictions using Pyspark: Classification Metrics, Inference
Time, Memory and CPU usage for Testing sets containing data over a period of 3, 6, 9, 12, 15, and
18 years, respectively.

Years Size (MB/GB) Time (ms) Mem. (KB/MB) CPU (%) Acc. Spec. CM
TP, FN, FP, TN

3 215.0 MB 72.5 4 8.6 0.878833 0.995 214524, 75434, 1432, 342993

6 430.0 MB 71.87 16 0.5 0.8791466 0.995 428407, 150330, 2955, 686663

9 645 MB 81.02 124 5.8 0.87882 0.995 642918, 226464, 4468, 1031852

12 860.2 MB 60.44 400 0.99 0.87904 0.995 855640, 300986, 5774, 1373713

15 1.05 GB 72.59 524 0.29 0.879097 0.995 1071448, 376486, 7233, 1718625

18 1.26 GB 80.8 992.0 0.80 0.8791344 0.995 1285186, 451604, 8679, 2062755
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Table 3. Classic(Frequentist) Logistic Regression Predictions using PySpark: Classification Metrics,
Inference Time, Memory and CPU Usage for Testing Sets.

Test Set
(Years)

Test Set
Size

Inference
Time (ms)

Memory
Usage CPU Acc. Spec. TP FN FP TN

3 215.0 MB 73.11 28.0K 5.7% 0.8922 0.868 239995 49467 19025 327071

6 430.0 MB 166.62 32.0K 2% 0.8924 0.868 479963 98741 37702 651614

9 645 MB 80.15 180K 6.1% 0.8922 0.868 719446 148657 56547 978703

12 860.2 MB 64.86 132.0K 5.3% 0.8922 0.868 959656 197645 75929 1305684

15 1.05 GB 96.1 184.0K 5.5% 0.8924 0.868 1199943 246919 94539 1631224

18 1.26 GB 138.62 664.0K 1% 0.8923 0.868 1440301 296489 113412 1958022

Table 4. Bayesian Logistic Regression Predictions using Pandas Df and numpy: Classification Metrics,
Inference Time, Memory and CPU Usage for Testing sets containing data over a period of 3, 6, 9, 12,
15, and 18 years, respectively.

Test
Set (Yrs) Size Time

(ms)
Memory

(MB) CPU (%) Acc. Spec. TP FN FP TN

3 215.0 55.694 15,300 0.6 0.8709 0.945 291511 53600 28218 260712

6 430.0 85.869 30,800 0.7 0.8712 0.945 582671 106754 56533 521564

9 645.0 143.675 43,600 4.1 0.8712 0.945 873587 160375 84546 782416

12 860.2 147.869 59,200 8.5 0.8713 0.945 1167395 214209 112668 1045064

15 1050 175.82 73,700 8.7 0.8712 0.945 1458769 267570 141097 1305656

18 1260 268.03 89,600 5.7 0.8712 0.945 1750169 321265 169295 1567495

3.5. Experiment

The EVCA Classifier implements Bayesian Logistic Regression with MCMC sampling
to classify AQI safety categories into “safe” or “hazardous” and the Apache Spark envi-
ronment is then used to scale up the analysis for larger datasets. Unlike traditional logistic
regression, which relies on a fixed set of parameters and assumes complete and accurate
data, this classifier uses a probabilistic approach to combine prior beliefs with observed
data to produce a posterior distribution of parameters. This allows for more robust and
flexible modeling, reduced overfitting, and improved prediction accuracy. It also esti-
mates uncertainty, present in real-world data, which is important in high-consequence
decision-making.

In [21], the model is trained using a small data frame from 2017 and then tested on data
from all eighteen years. Then, the same test and train sets are used to perform Frequentist
Logistic regression in Spark. The results show that the frequentist and Bayesian logistic
regression models have similar metrics for the specific data; however, the Bayesian model
performs better in terms of the recall/specificity metric. It predicts fewer false negatives
and positives, making it more effective at identifying true negative values, thus ensuring
that the AQI is not misclassified as safe. This suggests that Bayesian machine learning
can be a useful tool for environmental data analysis, particularly in high-consequence
decision-making scenarios where uncertainty needs to be taken into account.

To assess EVCA’s scalability, we train the model using the data of the one-year subset
and perform MCMC sampling to obtain a trace which is then used to make predictions
using Pyspark, similarly as in [21]. Here, the classifier’s performance is tested across
different time intervals, specifically 3, 6, 9, 12, 15, and 18 years. The classifier is assessed for
a decision threshold set at 0.505, which is noted to be an ideal threshold as shown in [21].

For each of the test subsets, the experiment records a set of classification metrics,
including accuracy and recall/specificity(as the cost of false negatives is very high in this
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case). This will help us determine the classification efficacy of our model, regardless of the
volume of data handled. Our experimental approach is also designed to comprehensively
evaluate the classifier’s performance across the different-sized subsets, considering infer-
ence time, memory usage, and CPU utilization. These metrics are directly aligned with
our objectives, as they enable a thorough assessment of the EVCA classifier’s capability to
distribute Bayesian Inference across extensive computational networks for large-scale IoT
data processing. The experiment is repeated for two comparison scenarios:

a The Bayesian classifier’s performance is assessed in two different environments: one
using Pyspark and another using the Numpy and Pandas libraries, likely to compare
the performance of different implementations.

b Bayesian vs. Frequentist Logistic Regression Classifier using Pyspark: comparison
of the performance of the Bayesian logistic regression classifier with the frequentist
logistic regression classifier, both implemented using Pyspark.

4. Results and Analysis

Scalability analysis is fundamental in machine learning, as it assesses the perfor-
mance and efficiency of models or algorithms when faced with larger data sizes, increased
computational resources, or more complex problems. Given the substantial variations in
real-world datasets and the escalating computational demands associated with such highly-
detailed problem scenarios, achieving scalability is key, in order to ensure the reliability
and efficiency of machine learning systems. In this study, we conducted a comprehensive
scalability analysis to assess the ability of our Classifier to handle varying data sizes and
computational resources. The analysis primarily examined two critical elements: the ability
to scale data and to scale computation.

To assess the robustness of the model, we conducted experiments utilizing unseen data
of different sizes to ascertain whether it could effectively manage extensive and heteroge-
neous testing sets without experiencing a decline in performance. The model’s architecture
is founded upon the Markov Chain Monte Carlo (MCMC) Classifier, a technique that guar-
antees optimal memory and computational resource allocation while managing substantial
quantities of data. The performance metrics and outcomes of these assessments are detailed
in Table 2.

Moreover, our principal objective was to evaluate the computational scalability of
our system. This required an evaluation of the system’s capability to effectively employ
augmented computational resources. We implemented PySpark to facilitate the distribution
of the computational burden and the efficient execution of parallel computing strategies
by classifying newly acquired test data. This methodology was instrumental in maxi-
mizing resource utilization, particularly when larger test datasets and computationally
demanding assignments were encountered. In Table reftab:bayes-pandas, a comparison
between this method and a model evaluated with pandas and numpy is detailed. This
comparison highlights the disparities in efficacy and resource consumption between the
two methodologies.

4.1. Data Scalability

Inference Time: The evaluation of the scalability of our classifier commences with a com-
prehensive analysis of the Inference Time across a multitude of test sets. It is note-
worthy to mention that the prediction times exhibit consistency, notwithstanding
fluctuations in the test sets’ dimensions or composition. The aforementioned consis-
tency underscores the effectiveness of the classifier in handling a wide range of data
scenarios. The duration values for the 12-year and 9-year test sets are 60.44 ms and
81.02 ms, respectively. The consistent and efficient performance of the classifier is
underscored by the negligible fluctuation in execution time, which is independent of
the test set’s magnitude. When assessing scalability, the classifier’s capacity to sustain
comparatively consistent prediction durations is an essential criterion. This finding
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suggests that the classifier exhibits satisfactory performance when evaluated on more
extensive datasets, without experiencing a significant duration increase in execution.

Memory Usage: As shown by the data in Table 2, memory consumption rises in direct
proportion to the size of the test set. This finding is in line with anticipated outcomes,
considering that more memory is needed to store and process larger datasets. How-
ever, it is crucial to acknowledge that the growth in memory usage does not exhibit
a direct proportionality to the test set’s size. To provide an example, the increase
in memory usage from 645 MB to 860.2 MB is significantly less noticeable than the
corresponding increase of 430.0 MB in the size of the test set. The data quantity
exhibits a nonlinear arithmetic relationship with the observed trends in memory
utilization. This indicates that the correlation is being affected by factors other than
the amount of data. It may be inferred from this that factors like model complexity
and execution details could impact memory needs.

When working with large amounts of data, using PySpark for machine learning
and classification might lead to memory usage issues. Spark is able to do this by
dividing the data into smaller, more manageable pieces, which allows for distributed
processing over a vast network of computers. The demands on processing and
memory storage grow in proportion to the size of the dataset since more segments are
formed as the dataset grows in size. Additionally, Spark’s memory usage is affected
by the many data operations and transformations it does. It must be recognized that
the amount of data written does not always correlate directly with the rise in memory
use. This variety sometimes results from the convergence of several factors, including
the complexity of the model used and the specific nuances of its implementation.

CPU Usage: Examining the CPU usage across test sets of different sizes is crucial for assess-
ing our classifier’s performance. Our primary finding implies that CPU utilization
remains relatively constant across different sizes of test sets. Computing power con-
sumption is reliably efficient, as shown by the CPU utilization percentages ranging
from 0.29 to 5.8% in the 15-year and 9-year test sets. No matter how much the test
data becomes, our classifier’s CPU use stays the same. This indicates that it efficiently
employs the available processing power without experiencing a substantial escalation
in resource requirements. Thus, it is well-suited for scalability in computational
systems where efficient resource utilization is extremely important.

Classification Metrics: The classification metrics reveal consistent performance across
different test set sizes. The accuracy ranges from 0.878833 to 0.8791466, indicating a
robust and stable classifier. Also, the specificity across the different test sets remains
constant at a nearly perfect value of 0.995. These metrics (accuracy, precision, etc.)
demonstrate EVCA’s ability to handle varying data volumes while maintaining
reliable and accurate predictions. This highlights the scalability of the classifier,
accommodating diverse data sizes while accounting for inherent uncertainties.

Comparison to Classic Logistic Regression in Pyspark

The results of the Bayesian vs. Frequentist Logistic Regression as per the confusion matrices
are given in Figures 1 and 2. The visualized data in Figures 3–7, along with the numerical data
represented Tables 2 and 3 provide insights into the Bayesian and Frequentist Logistic Regression
Models in Pyspark for the same test sets and same decision thresholds. We observe that:

Inference Time: The Bayesian classifier has inference times ranging from 60.44 ms to
81.02 ms across different test set sizes, demonstrating faster prediction speeds com-
pared to the frequentist classifier, which ranges from 64.86 ms to 166.62 ms. This
highlights the computational efficiency of the Bayesian classifier. We also note that
the minor differences in inference times further emphasize the Bayesian Model’s
consistent and efficient performance.

Memory Usage: When examining memory usage, both the Bayesian and frequentist classi-
fiers exhibit similar patterns. The memory usage of the Bayesian classifier increases
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progressively, although not in a linear manner, as the size of the test sets increases.
Likewise, the frequentist classifier shows a similar pattern when it comes to mem-
ory use; as the test sets get bigger, there is a departure from a straight-line trend in
the growth. These results show that factors besides the amount of test data affect
how much memory both algorithms need. Other things that affect memory use
are things that you cannot change, like how complicated the model is and how it
was implemented.

CPU Usage: Both Bayesian and frequentist algorithms make good use of computer re-
sources. It is consistent that the Bayesian predictor uses very little CPU, ranging from
0.29% to 5.88% for different set sizes. In the same way, the frequentist classification
always uses between 6.1 and 1 percent of its central processing unit (CPU). Based
on the performance that has been seen, it looks like both algorithms make good
use of the processing power that is available, keeping the system’s resources from
being overloaded. It is important to note that the Bayesian algorithm has a small
tendency to use less CPU, which could be good for computer efficiency, especially
when working with bigger datasets. The fact that the algorithms use the central
processing unit (CPU) smoothly and efficiently suggests that they can work with
computer systems that need to be scalable and use resources efficiently.

Classification Metrics: Both the Bayesian and frequentist models are still very good at
making predictions. Multiple test sets of various sizes show that the Bayesian classifi-
cation is accurate within the range of 0.87882 to 0.8791466. However, the frequentist
estimator is more accurate, with a range of accuracy between 0.892238 and 0.892396.
A high sensitivity value of 0.995 is always obtained by the Bayesian classifier, no
matter how big the test set is. This means the classifier does not make a lot of mistakes
and can guess true positives properly. One thing that you should keep in mind is that
the frequentist classifier, which looks at all test set sizes, has a pretty high rate of false
positives (0.868), as shown by its sensitivity value. In this case, the Bayesian classifier
is more specific than the frequentist classifier, which means it can correctly identify
true positives. When it is very important to obtain the negative class correctly, the
Bayesian classifier works optimally because the method is more specific.

A comparative analysis of the Python implementations of Bayesian and Frequentist
Logistic Regression methodologies is illustrated in Figures 3 and 4. The inference time,
denoted in milliseconds, is depicted in Figure 3 for each methodology. A reduced inference
time suggests that the method is efficient in generating predictions, a crucial aspect espe-
cially in data-intensive environments. Figures 5 and 6 present evaluations of Bayesian and
Frequentist Logistic Regression techniques in the PySpark framework. Figure 5 showcases
the memory consumption in kilobytes (KB) of both methods. Efficient memory utilisa-
tion is vital for optimisation, especially in resource-limited settings. Conversely, Figure 6
illustrates the classification accuracy of each approach. Accuracy indicates the model’s
effectiveness in making correct predictions.

Overall, when considering all the above evaluation metrics, the Bayesian classifier
exhibits competitive performance compared to the frequentist classifier. It demonstrates
faster inference times, lower CPU usage, and higher specificity while achieving comparable
accuracy levels. This indicates that the Bayesian classifier is not only efficient but also
excels in accurately predicting true negatives, making it highly suitable for scenarios where
specificity is crucial, such as in our case. Moreover, its scalability stands out as a notable
advantage, as it consistently handles larger test set sizes without significant increases in
computational time and resources.
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Figure 1. Bayesian vs. Frequentist Logistic Regression in Pyspark: Confusion Matrices for each test
set for 3, 6, and 9 years.
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Figure 2. Bayesian vs. Frequentist Logistic Regression in Pyspark: Confusion Matrices for each test
set for 12, 15, and 18 years.
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Figure 3. Bayesian and Frequentist Logistic Regression in Pyspark: Inference time in ms.
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Figure 4. Bayesian and Frequentist Logistic Regression in Pyspark: CPU Usage Percentage(%).
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Figure 5. Bayesian and Frequentist Logistic Regression in Pyspark: Memory Usage in KB.
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Figure 6. Bayesian and Frequentist Logistic Regression in Pyspark: Total Classification accuracy.
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Figure 7. Bayesian and Frequentist Logistic Regression in Pyspark: Classification Specificity.

4.2. Computational Scalability

The visualized data in Figures 8–12, along with the numerical data represented
Tables 2 and 4 provide insights into the Bayesian Logistic Regression Models using Pyspark
vs. using numpy for pandas dataframe analysis on the same test sets and same decision
thresholds. We observe that:

Inference Time: The NumPy and Pandas classifier shows slightly longer inference times
compared to the Pyspark classifier for the smaller datasets, while it significantly
increases as the data increases. On the other hand, the pyspark classifier maintains an
almost stable inference time as the data increases. The inference time for the numpy
classifier ranges from 55.694 ms to 268.03 ms, while the Pyspark classifier ranges from
60.44 ms to 81.02 ms, as seen in Table 4. This difference emphasizes the scalability of
the Pyspark classifier in terms of prediction time, which is visualized in Figure 12.

Memory Usage: The comparison between the NumPy and Pandas classifier and the PyS-
park classifier reveals significant differences in memory usage and scalability. The
memory consumption of the NumPy and Pandas classifiers varies between 15.3 MB
and 89.6 MB, whereas the PySpark classifier consumes between 124 KB and 992 KB, as
indicated in Figure 9. The significant disparity in memory consumption underscores
the PySpark classifier’s exceptional scalability, given its capacity to process larger
test set sizes with minimal memory demands. The system’s memory consumption
remains exceptionally modest, irrespective of the escalating dimensions of the test
sets. This demonstrates the efficiency with which the PySpark framework manages
memory resources and executes distributed processing.

CPU Usage: The CPU utilization of the NumPy-based classifier exhibits negligible fluc-
tuations, ranging only 0.6% to 8.7% across test sets of varying sizes. In the scenario,
it has been observed that the Pyspark-based classifier consumes a range of 0.29%
to 5.8% of the CPU. Both classifiers exhibit effective utilization of CPU resources;
however, it is observed that the NumPy classifier marginally consumes more CPU
power as the data size expands. Clearly illustrated in the figure, this once more
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demonstrates the scalability of the Pyspark classifier by demonstrating its efficacy in
utilizing computational resources despite the growth of data as seen in Figure 8.

Classification Metrics: As per the accuracy, The NumPy and Pandas classifiers exhibit ac-
curacy values spanning from 0.87095 to 0.87127, which are analogous to the accuracy
values of 0.87882 to 0.8791466 for the Pyspark classifier. Without regard to the size of
the test set, both classifiers exhibit consistent and dependable performance. Speci-
ficity: Both classifiers consistently demonstrate a specificity value of 0.945, reflecting
their precision in accurately identifying true negative outcomes. This consistent per-
formance across datasets of various sizes emphasizes their effectiveness in correctly
detecting negative instances, a critical aspect of our study. These performance metrics
are illustrated in Figures 10–14.
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Figure 8. Bayesian Logistic Regression using 1. Pyspark 2. numpy and pandas: CPU Usage
Percentage (%).
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Figure 9. Bayesian Logistic Regression using 1. Pyspark 2. numpy and pandas: Memory Usage
in MB.
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Figure 11. Bayesian Logistic Regression using 1. Pyspark 2. numpy and pandas: Classification Specificity.
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Figure 13. Bayesian Logistic Regression using 1. Pyspark (column 1) 2. numpy and pandas (Col-
umn 2): Confusion Matrices for each test set for 3, 6 and 9 years.
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Figure 14. Bayesian Logistic Regression using 1. Pyspark (column 1) 2. numpy and pandas (Col-
umn 2): Confusion Matrices for each test set for 12, 15, and 18 years.

5. Discussion

The experimental analysis of the EVCA Classifier presented in the previous section,
provides us with some significant insights that are discussed here. By seamlessly inte-
grating Bayesian machine learning and distributed data processing, this classifier exhibits
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considerable promise in the examination of extensive environmental datasets. It is distin-
guished by the high level of consistency and efficacy it maintains when applied to test sets
of different sizes. One notable feature is the classifier’s dependable identification of genuine
negative outcomes, which is an essential component in the analysis of environmental data
where erroneous conclusions can have severe repercussions. The feature in question is of the
utmost importance, given that erroneously classifying hazardous conditions as secure could
result in severe consequences in the real world, such as the issuance of air quality advisories.

The scalability analysis of the classifier demonstrates its praiseworthy ability to ac-
commodate growing volumes of data. The aforementioned demonstrates the effective
amalgamation of Bayesian MCMC classifiers and Apache Spark, as well as the versatil-
ity of the Python ecosystem in facilitating such intricate computational endeavors. An
examination of the Bayesian and Frequentist approaches, utilizing the identical logistic
regression model in Spark, reveals that the Bayesian classifier exhibits enhanced recall and
specificity. This suggests that situations in which accurately identifying true negatives is
more critical than accurately identifying true positives are better suited for the Bayesian
approach. In terms of computational resources, the increasing demand for memory and
inference time in response to larger data volumes highlights the persistent necessity for
developments in distributed computing frameworks that can manage large-scale data more
efficiently. Notwithstanding these obstacles, the research illustrates that Apache Spark,
when appropriately configured, functions as a resilient infrastructure for carrying out
complex machine-learning operations, including Bayesian MCMC sampling.

In conclusion, our research underscores the effectiveness of the EVCA Classifier in
handling extensive and intricate datasets and establishes a foundation for future investiga-
tions concerning the integration of Bayesian techniques with distributed computing. With
the continuous progress of technology, there exists a significant potential to enhance these
methodologies, thereby potentially surmounting existing constraints and augmenting the
effectiveness and practicality of classifiers such as EVCA in the context of big data applications.

6. Conclusions and Future Work

During our investigation, of the Distributed Bayesian Inference Classifier presented
in this work, we have identified crucial findings that underscore the resilience and ef-
fectiveness of the classifier. One notable characteristic of the classifier is its remarkable
feature of effectively managing substantial quantities of data, consistently maintaining its
performance. The aforementioned attribute holds significant importance as it illustrates the
capacity of the system to efficiently manage expanding datasets, thereby rendering it an
invaluable instrument for the ever-increasing and developing expanding IoT domain.

The classifier is successful, especially when it comes to memory use and other relevant
parameters. It is expected that memory requirements will be directly proportional to the
number of datasets. We must highlight that this rise has clear and unclear bounds. This
finding shows that the classifier can handle massive data sets due to its resource efficiency.
CPU resource utilization by the predictor must also be assessed. Large data collections
can be handled effectively without increased hardware or computing power. One of its
many advantages is its ability to interface with current systems without change. Accurate
findings also rely on the classifier’s ability to consistently predict values near to reality.
Accuracy and uniqueness are vital to Internet of Things (IoT) system studies due to their
potential impact. Classifier implementation provides important information including
processing speed, accuracy, and memory reuse efficiency. The classifier meets IoT system
criteria. However, our research has revealed potential Bayesian inference-distributed
machine learning combinations. The findings of this study open up new possibilities for
creative collaborations in that field. Addressing these difficulties opens up opportunities
for cooperation across disciplines, which might lead to better-distributed machine learning
frameworks and more effective Bayesian approaches in distributed settings.

The classifier demonstrates considerable and positive prospective capabilities. Further
research could be devoted to the practical implementation of this classifier in Internet of
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Things (IoT) environments. Such investigations would provide a more comprehensive
comprehension of the classifier’s true performance capabilities and constraints. By incorpo-
rating adaptive learning functionalities, the classifier acquires the capacity to independently
adapt to changing data, thereby establishing an additional trajectory of success. Further-
more, it is crucial to investigate supplementary methodologies that could further diminish
memory consumption, such as the integration of advanced data partitioning or compres-
sion strategies. Expanding the classifier’s capabilities to handle intricate, unstructured data
types has the potential to significantly increase its applicability across a multitude of Inter-
net of Things domains. As of now, this classifier has effectively laid a strong foundation,
and further investigation is expected to solidify its position as a standard instrument for
handling extensive datasets within the Internet of Things frameworks.
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