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Abstract: Emotion recognition is crucial in artificial intelligence, particularly in the domain of
human–computer interaction. The ability to accurately discern and interpret emotions plays a
critical role in helping machines to effectively decipher users’ underlying intentions, allowing for
a more streamlined interaction process that invariably translates into an elevated user experience.
The recent increase in social media usage, as well as the availability of an immense amount of
unstructured data, has resulted in a significant demand for the deployment of automated emotion
recognition systems. Artificial intelligence (AI) techniques have emerged as a powerful solution
to this pressing concern in this context. In particular, the incorporation of multimodal AI-driven
approaches for emotion recognition has proven beneficial in capturing the intricate interplay of
diverse human expression cues that manifest across multiple modalities. The current study aims
to develop an effective multimodal emotion recognition system known as MM-EMOR in order to
improve the efficacy of emotion recognition efforts focused on audio and text modalities. The use of
Mel spectrogram features, Chromagram features, and the Mobilenet Convolutional Neural Network
(CNN) for processing audio data are central to the operation of this system, while an attention-based
Roberta model caters to the text modality. The methodology of this study is based on an exhaustive
evaluation of this approach across three different datasets. Notably, the empirical findings show that
MM-EMOR outperforms competing models across the same datasets. This performance boost is
noticeable, with accuracy gains of an impressive 7% on one dataset and a substantial 8% on another.
Most significantly, the observed increase in accuracy for the final dataset was an astounding 18%.

Keywords: classification; MobileNet; Roberta; multimodal; emotion; recognition; IEMOCAP; MELD;
social media

1. Introduction

Correctly perceiving different people’s emotions is a key factor in proper communi-
cation. Emotional understanding makes social networking more natural by eliminating
ambiguity and helps interpret the conveyed messages effectively. Due to the importance
and complexity of emotions in conversations, emotion recognition has become one of
the vital fields of study applying artificial intelligence (AI) techniques. In addition, the
ubiquitous use of social networking services created further demand for automated content
and emotion analysis using machine learning, as it has become infeasible to analyze them
otherwise [1].

Emotion recognition has a wide range of applications in various fields such as robotics,
security, healthcare, automated identification, customer support call review, and lie detec-
tion. It also plays an essential role in improving human–computer interaction (HCI) [2]. It
can help the machines to take user feedback to enhance the user experience. The diversity
of the applications and the availability of big data volumes stipulate the significance of
developing novel approaches for emotion recognition. Emotional expression can be verbal
and non-verbal. The human perception of emotion involves capturing and analyzing facial
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expressions, speech text, and voice examination. Hence, automated emotion recognition
can bridge the gap between humans and machines [3].

Speech recognition has gained a lot of focus over the last decades. It is an important
research area for human-to-machine communication. Early methods focused on manual
feature extraction and conventional techniques such as Gaussian mixture models (GMM) [4],
and Hidden Markov models (HMM) [5]. More recently, neural networks such as recurrent
neural networks (RNNs) [6], and convolutional neural networks (CNNs) [7] have been
applied to speech recognition and have achieved great performance.

In addition, emotion extraction from text is of huge importance and is an uprising area
of research in natural language processing. Recognition of emotions from text has high
practical utilities for quality improvement like in the field of HCI. Most works on it have
proposed solutions based on neural network techniques like LSTM [8], and CNN [9] with
adequate results.

Despite the extensive development of unimodal learning models, they still cannot
cover all the aspects of human interpretation of emotion. People present their emotions
with various modes of expression. The combination of speech and text analysis carries
the potential for improving emotion recognition [10]. Hence, in this study, a multimodal
emotion (MM-EMOR) analysis system is proposed to examine audio and text data.

While the MM-EMOR system uses well-established technologies such as MobileNet for
image data and ROBERTA for text data, we feel that its originality comes in the pragmatic
merging of various modalities. This integration, while seemingly simple, is motivated
by the desire for a more thorough knowledge of human emotions. Furthermore, our
motivation goes beyond the technological aspects. We envision MM-EMOR as a versatile
tool with far-reaching implications in disciplines such as mental health, human–computer
interaction, and beyond. The capacity to effectively recognize and interpret emotions
can improve our ability to communicate, empathize, and, eventually, improve the human
experience in an increasingly digital environment.

The proposed MM-EMOR is a collaborative effort to process and synthesize infor-
mation from a variety of modalities [11]. MM-EMOR uses a multimodal approach to
bridge the gap between these modalities, ushering in a new era of sophisticated emotion
recognition. The meticulously designed unimodal learning models are central to the ar-
chitecture of MM-EMOR, each of which is tailored to perform well within its respective
domain while still yielding competitive overall performance. Notably, the audio-based
model stands out as a standout component, harnessing the subtle nuances of emotions
via the complex interplay of Mel Spectrogram and Chromagram features. These audio
representations give each emotion a distinct identity, adding depth to our understanding
of emotional states. Furthermore, modalities are integrated using a seemingly simple
yet effective concatenation technique that harmoniously blends the insights gained from
audio and other modalities to achieve a robust multimodal emotion classification. The
proposed MM-EMOR system stands as a testament to its efficacy in the grand tapestry
of emotion recognition, as evidenced by its noteworthy performance that outperforms
existing benchmarks in the field.

The rest of this paper is organized as follows. In Section 2, we clarify the related work
which motivated and inspired the current study. In Section 3, we define the materials and
methods used in this study. In Section 4, the results of MM-EMOR and its comparison with
the state of the work are presented. Finally, conclusions are given in Section 5.

2. Related Works

Due to the importance of emotion recognition, many studies have been directed
toward improving the performance of emotion recognition systems. The studies employed
various deep learning methods and algorithms to distinguish human emotions [10,12,13].
Recently, Huddar et al. [14] proposed a cascaded approach for merging modalities, where
textual features were extracted using CNN, audio features using the openSMILE toolkit [15],
and visual features using 3D-CNN. They extracted the unimodal context using biLSTM and
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merged two modalities at a time to get the bimodal features. Similarly, biLSTM extracts the
bimodal context and merges it to get the trimodal features. The adopted approach makes
the complexity of the algorithm high. The IEMOCAP dataset [16] was used to train and
test their model, with four classes (happy, angry, sadness, and neutral).

Kumar et al. [17] made a combination of three kinds of acoustic features (Mel spec-
trogram, MFCC, and chroma vectors) and trained it by RNN. For lexical features, they
used the Bert model (bidirectional encoder representations from transformers), which is
a transformer-based machine-learning technique for natural language processing. After
that, they concatenated these features and used drop-out and dense layers to make the
prediction. The IEMOCAP dataset was used to verify the performance of their model, with
four classes (happy merged with excited, angry, sadness, and neutral).

Guo et al. [10] used BLSTM for text modality and audio modality, where the weights
between different modalities needed to be considered to obtain a richer comprehensive
emotional representation. As such, they used a weighted fusion layer. The IEMOCAP
dataset was used with four classes (happy, angry, sadness, and neutral).

Singh et al. [18] extracted 33 audio features (16 prosody-based, 16 spectral-based, and
one voice quality-based feature), in addition to the MFCC feature. For text, they used
ELMo, which is a state-of-the-art NLP framework developed by AllenNLP and trained on
the one Billion Word Benchmark. After being concatenated, they used the DNN model for
prediction. To test their model performance, they used the IEMOCAP dataset with classes
(happy merged with excited, angry merged with frustration, sadness, and neutral).

Wang et al. [19] proposed a new method called multimodal transformer augmented
fusion (MTAF) for SER. MTAF uses a hybrid fusion strategy that combines feature-level fu-
sion and model-level fusion. A model-fusion module composed of three cross-transformer
encoders was proposed to generate a multimodal emotional representation for modal
guidance and information fusion. Specifically, the multimodal features obtained by feature-
level fusion and text features were used to enhance speech features. Experiments were
implemented on the IEMOCAP dataset and the MELD dataset.

Zaidi et al. [20] proposed a multimodal dual attention transformer for cross-language
speech emotion recognition. The multimodal dual attention transformer combined two
attention mechanisms: one for the acoustic features of the speech signal called Roberta, and
one for the textual features called wav2vec. The proposed approach was evaluated on the
IEMOCAP dataset.

Canal et al. [21] provided a significant contribution to the field of facial expression
analysis. This study investigated novel ways of facial expression identification using state-
of-the-art machine learning algorithms and computer vision methodology. The research
looked at the development of deep learning models, namely convolutional neural networks
(CNNs), for extracting relevant characteristics from facial photos and accurately detecting
and classifying a wide range of emotional states. In addition, it covered the use of these
techniques in a variety of domains, highlighting their potential impact on fields such
as human–computer interaction, affective computing, and emotion-aware systems. The
insights and approaches described in this research are a significant resource for researchers
and practitioners interested in advancing the subject of facial expression analysis and its
practical applications.

The outlined related work shows promising results in emotion recognition, but some
limitations exist due to the nature of the used datasets like multimodal integration chal-
lenges. Combining information from different modalities (e.g., text, audio, video) into a
unified model can be complex and may introduce additional challenges [22]. This limitation
needs a powerful model to overcome this. Our approach involves training Roberta, a highly
performant natural language processing model, to extract textual features. Simultaneously,
for audio data, we applied a feature extraction process to obtain a set of powerful multiple
features from the acoustic domain. These features are then merged to capture complex
relationships between text and audio data.
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Another possible limitation is overfitting of emotion recognition models, particularly
deep learning models, which may overfit the training data, leading to high training accuracy
but poor generalization to new, unseen data [23]. We tried to overcome this by adding a
dropout layer and regularizer to avoid overfitting in our model.

Another characteristic challenge of the problem is continuous emotions where some
emotions are continuous and can vary in intensity, making it difficult to assign discrete
labels [24]. We used the Roberta model which can overcome this. Therefore, we propose
MM-EMOR an effective approach that can overcome these limitations.

3. Materials and Methods

MM-EMOR aims to analyze multimodal speech for emotion recognition. It merges
textual and audio modalities for this task. The proposed system’s architecture is described
in Figure 1, with textual- and audio-based emotion recognition modules. The system is
explained in detail in the following sections.
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3.1. Textual Emotion Recognition
Roberta

In this part, the textual emotion recognition model is described. The core pivotal
component of this module is the Roberta model. Facebook AI Research (FAIR) unveiled
the robust language model known as Roberta in 2019 [25].

The Bidirectional Encoder Representations from the Transformers (BERT) model [26],
another well-known NLP model, is referenced in the model’s name since it incorporates
many of BERT’s advantages. Its bidirectional context allows it to comprehend text com-
pletely, and it employs transfer learning to rapidly adapt to varied NLP tasks. BERT’s
contextual embeddings efficiently capture nuances, and its large-scale architecture allows it
to represent long-term dependencies.

To improve its functionality and sturdiness, Roberta is an improved version of the
BERT model that has several advantages. It employs a better training methodology, a larger
dataset, and data augmentation techniques. Roberta eliminates the next sentence predic-
tion (NSP) assignment from BERT’s training procedure and concentrates on successfully
predicting masked tokens. Typically, the model is trained on a larger dataset, resulting in
stronger contextual embeddings and increased performance on downstream NLP tasks.
Roberta requires less fine-tuning and is more generalizable across domains. Its repeatability
and consistent outstanding performance has made it a preferred choice for a wide range of
NLP applications.
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The training strategy is one significant difference between Roberta and BERT. BERT
was trained with a masked language modeling (MLM) objective, whereas Roberta uses a
version known as “dynamically masked language modeling” (DMLM). Instead of randomly
masking words during training, DMLM trains the model on a vast volume of unlabeled text
with no masks. This allows for improved generalization by exploiting the entire context of
the text.

Roberta also has a larger training corpus than BERT, which includes both in-domain
and out-of-domain data. It is trained using large amounts of text data from books, websites,
and Wikipedia. Due to the thorough pretraining, the model can learn a wide range of
linguistic patterns and semantic correlations. We used the Roberta-Base model which has
12 layers of the transformer model as shown in Figure 2. We selected a token length of 1000
due to the inherent characteristics of our datasets, characterized by the presence of lengthy
text sentences. In addition, longer token lengths can lead to longer training times, so there
is often a trade-off between training duration and model performance. A token length of
1000 tokens might strike a reasonable balance.
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3.2. Audio-Based Emotion Recognition
3.2.1. Feature Extraction

Audio signals are dynamic and multidimensional; they are difficult to analyze and
comprehend. They are comprised of temporal, spectral, and frequently harmonic data.
Variations in pitch, timbre, rhythm, and dynamics, as well as the existence of background
noise and transitory occurrences, add to the complications. Audio signals can also transmit
emotions, intentions, and cultural nuances, adding another degree of complication to their
interpretation. Two main feature representations were emphasized to capture different
features of these signals: spectrograms and chromagrams.

Mel spectrogram features are extracted from the audio signals. The extracted features
are well suited to the task of emotion recognition [27,28]. Each frame of the spectrum in the
Mel spectrum contains a short-time Fourier transform (STFT), which maps the signal from
a linear frequency scale to a logarithmic Mel scale. After that, it is applied to the filter bank
to produce the eigenvector, whose eigenvalues can be roughly described as the distribution
of signal energy on the Mel-scale frequency. To extract audio features, we used Librosa [29]
to extract the Mel spectrogram features, which were converted into a 2D image.
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To train the convolutional neural networks (CNN) for recognition, the generated Mel
spectrogram-based 2D images were input to the network. In Figure 3, we show some
examples of Mel-spectrogram images of various emotions. As can be seen from the figure
below, there are evident differences between various types of emotions. After representing
the audio data as an image, MobileNet CNN was used to model the data and perform the
emotion classification task.
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The chromagram is a characteristic that is extensively utilized in audio signal process-
ing, including AI and machine learning applications. It depicts the distribution of energy
in different frequency bands or pitches in an audio signal over time.

A chromagram is a two-dimensional representation of an audio signal in which time
is represented horizontally and frequency bands are shown vertically. It is frequently
estimated using the short-time Fourier transform (STFT) approach, which analyzes an
audio signal’s spectrum over short overlapping time periods.

The chromagram’s vertical axis is often quantized into a given number of bins, each
representing a specific pitch or frequency range.

To generate a chromagram, an audio signal is separated into frames or windows, and
the frequency content of each frame is analyzed using the STFT. The generated spectrum is
then mapped to the correct chroma bins by grouping frequencies in the same pitch.

In AI and machine learning problems such as audio classification, chromagrams are
frequently employed as a feature representation. Chromagrams can capture the underlying
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musical structure, tonality, and chord progressions in an audio signal by describing it in
terms of its harmonic content.

Once computed, the chromagram can be utilized as an input feature for machine
learning methods such as convolutional neural networks (CNNs) as an image. These
models can learn to recognize patterns and extract meaningful information from chroma-
gram representations.

Figure 4 shows the difference between emotions. We used Librosa to extract chroma-
gram features and merged them with the Mel-spectrogram to use it to train the MobileNet
CNN model.
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3.2.2. MobileNet

For the purpose of audio classification, we opted for a 2D image-based approach
over 1D audio-based classification due to several compelling reasons. Firstly, 2D image-
based classification is useful when working with audio data that can be converted into
spectrograms. Spectrograms provide a comprehensive representation of essential tempo-
ral and frequency domain information, making them ideal for image-based classification
applications. This approach is commonly used in speech recognition and sound analysis
applications. Secondly, using 2D image-based techniques has the great advantage of utiliz-
ing pre-trained image classification models, particularly convolutional neural networks
(CNNs). This not only saves time and computing resources but also takes advantage of the
amount of knowledge contained inside well-established image models. It is important to



Big Data Cogn. Comput. 2023, 7, 164 8 of 21

note that Solovyev et al. [30] conducted a comparative study and similarly advocated for
the 2D image-based approach, achieving better results in comparison to 1D audio-based
methods. We chose to use mobilNet model for audio classification.

MobileNet was first introduced in 2017 by Howard et al. [31], MobileNet is an efficient
and portable CNN architecture, which is a sub-category of neural networks and is currently
one of the most efficient image classification models. MobileNet is used to build lighter
models by using depth-wise separable convolutions in place of the standard convolutions
used in earlier architectures. MobileNet introduces two new global hyperparameters (width
multiplier and resolution multiplier) that allow model developers to trade off latency or
accuracy for speed and small size depending on their requirements.

The MobileNet model is primarily based on depth-wise separable convolutions that
are a shape of standard convolution right into a depth-wise convolution, which is a type of
convolution where we apply a single convolutional filter for each input channel and a 1 × 1
convolution known as a pointwise convolution. The pointwise convolution then applies
a 1 × 1 convolution to combine the outputs of the depth-wise convolution as shown in
Figure 5.
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A standard convolutional layer takes as input a DF × DF × M feature map F and
produces a DF × DF × N feature map G where:

• DF is the spatial width and height of a square input feature map.
• M is the number of input channels (input depth).
• DG is the spatial width and height of a square output feature map.
• N is the number of output channels (output depth).
• The standard convolutional layer is parameterized by convolution kernel K of size

DK × DK × M × N where:
• DK is the spatial dimension of the kernel assumed to be square.
• M is the number of input channels.
• N is the number of output channels as defined previously.

Standard convolutions have the computational cost of DK · DK · M · N · DF · DF
Depthwise convolution has a computational cost of DK · DK · M · DF · DF
The combination of depthwise convolution and 1 × 1 (pointwise) convolution is called

depthwise separable convolution, which was originally introduced in [32].
Depthwise separable convolution costs are DK · DK · M · DF · DF + M · N · DF · DF

which is the sum of the depthwise and 1 × 1 pointwise convolutions.
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By expressing convolution as a two-step process of filtering and combining, we get a
reduction in the computation of:

DK·DK·M·DF·DF + M·N·DF·DF
DK·DK·M·N·DF·DF

=
1
N

+
1

D2
K

(1)

MobileNet uses 3 × 3 depthwise separable convolutions which use between 8 to
9 times less computation than standard convolutions.

3.3. Concatenation and Prediction

After taking the output from the Roberta model, we used a global averaging pooling
1D layer to preprocess the data to concatenate with the MobileNet model. After concatena-
tion, we used a dense layer with a ReLU activation function.

We also added a regularizer to avoid overfitting in our model. regularizers are
techniques used to prevent overfitting, which occurs when a model fits the training data
too closely and fails to generalize well to new, unseen data. Regularization helps improve a
model’s ability to generalize by adding a penalty term to the loss function, discouraging
overly complex or extreme parameter values. This makes the model more robust and less
prone to overfitting.

After this, we added a dropout layer with a drop probability of 0.3 to avoid overfitting.
The outputs of the dense and dropout layers were finally used to predict the probabilities
of the emotion classes. The proposed model was trained using the Adam optimizer [33]
and relies on categorical cross-entropy for the loss metric.

4. Results and Discussion

In this section, a detailed evaluation of MM-EMOR performance on different datasets
is performed.

4.1. Dataset

In this study, publicly available well-studied datasets were chosen to test the per-
formance of the presented multimodal approach, namely Tweeteval [34], Multimodal
Emotion Lines Dataset (MELD) [35], and the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) [16]. The chosen datasets allow comparison with state-of-the-art performance.

4.1.1. Tweeteval Dataset

Tweeteval [34] is used to analyze people’s emotions on social networks and determine
the success of the proposed model to recognize emotions from textual data. Tweeteval [34]
consists of seven heterogeneous tasks in Twitter, all framed as multi-class tweet classifi-
cations. The tasks include irony, hate, offensive, stance, emoji, emotion, and sentiment.
All tasks have been unified into the same benchmark, with each dataset presented in the
same format and with fixed training, validation, and test split. The number of labels and
instances in training, validation, and test sets for each task is shown in Table 1.

Table 1. Tweeteval dataset stratification for the used classes.

Task Number of Classes Train Val Test

Emotion 4 3257 374 1421
Hate 2 9000 1000 2970
Irony 2 2862 955 784

Offensive 2 11,916 1324 860
Sentiment 3 45,389 2000 11,906

Stance 3 2620 294 1249
Emoji 20 45,000 5000 50,000
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4.1.2. IEMOCAP Dataset

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [16] is an
acted multimodal and multi-speaker database, recently collected at the SAIL lab at the
University of Sothern California (USC). It contains approximately 12 h of audiovisual data,
including video, speech, motion capture of face, and text transcriptions. Our experiments
will focus on speech and text transcriptions modalities. The dataset contains 9 classes
namely anger, happiness, excitement, sadness, frustration, fear, surprise, other, and neutral.

The most commonly used classes in the literature are anger, happiness, sadness, and
neutral. Hence, they will be used in our experiments. In addition, due to the small number
of happiness class records, some of the related studies merged happiness with excitement.
As such, we will be reporting the merged results. The merging of emotion classes has been
done based on Plutchik’s wheel of emotions [36]. The number of records in each class is
shown in Table 2.

Table 2. IEMOCAP dataset stratification for the used classes.

Classes Happiness Anger Sadness Neutral

Happiness, anger, sadness, and neutral 595 1103 1084 1708
Happiness + excitement, anger, sadness, and neutral 1636 1103 1084 1708

4.1.3. MELD Dataset

The Multimodal Emotion Lines Dataset (MELD) [35] has more than 1400 dialogues
and 13,000 utterances from the Friends TV series. Multiple speakers participated in the
dialogues. Each utterance in dialogue has been labeled by any of these seven emotions:
anger, disgust, sadness, joy, neutral, surprise, and fear. MELD also has sentiment (positive,
negative, and neutral) annotations for each utterance. The number of records in each class
is shown in Table 3.

Table 3. MELD dataset stratification for the used classes.

Classes Surprise Neutral Fear Joy Sadness Disgust Anger

Train 1205 4710 268 1743 683 271 1109
Test 281 1256 50 402 208 68 345

Validation 150 470 40 163 111 22 153

The proposed model was evaluated on these datasets. For all training and testing
purposes, networks from the Keras library for Python were implemented. For IEMOCAP,
tests were performed using 5-fold cross-validation, for Tweeteval and MELD, we used test
records on the dataset.

4.2. Performance Measures

The performance of MM-EMOR was evaluated using the following evaluation metrics:
accuracy, precision, recall, and F1-score. The expression of these metrics is given as follows:

• Unweighted accuracy is just the proportion of correctly predicted observations to all
observations. TP+TN

TP+FP+TN+FN
• Weighted accuracy takes into account the class-specific accuracy and assigns differ-

ent weights to each class based on their importance or prevalence in the dataset.
∑ (Wi × acci)/∑ Wi

• Recall is a metric for how well a model detects true positives. TP
TP+FN

• Precision is the ratio of accurately anticipated positive observations to all actual class
observations. TP

TP+FP
• F1-score is the weighted average of precision and recall, weighted. 2 Precision×Recall

Precision+Recall
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4.3. Performance Evaluation

The training of the models takes a maximum of 30 epochs. The results are reported as
the best mode reached.

4.3.1. IEMOCAP Dataset

Figure 6 and Table 4 show the confusion matrix and the results of (anger, happiness,
neutral, and sadness) classes on the IEMOCAP dataset with our performance metrics.
Each metric for a given modality generates different values for every emotion. The anger
emotion has the best value of precision of 90%. For recall, neutral has the best value of 82%.
Otherwise, in the F1-score anger has the best value of 85%.
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Figure 6. Confusion matrix for IEMOCAP (anger, happiness, neutral, and sadness) on the text and
audio modalities.

Table 4. Classification report results for the IEMOCAP (anger, happiness, neutral, and sadness) on
the text and audio modalities in the function of (precision, recall, and F1-score).

Classes Precision Recall F1-score

Anger 0.90 0.80 0.85
Happiness 0.73 0.66 0.69

Neutral 0.68 0.82 0.74
Sadness 0.81 0.73 0.77

Figure 7 and Table 5 show the confusion matrix and the results of (anger, happiness
merged with excitement, neutral, and sadness) classes on the IEMOCAP dataset. Happiness
and sadness emotions have the same value of precision of 84%. Recall anger has the best
value of 82%. In the F1-score, anger also has the best value of 82%.
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Table 5. Classification report results for the IEMOCAP (anger, happiness merged with excitement, neutral,
and sadness) on the text and audio modalities in the function of (precision, recall, and F1-score).

Classes Precision Recall F1-score

Anger 0.81 0.82 0.82
Happiness 0.84 0.76 0.80

Neutral 0.59 0.73 0.66
Sadness 0.84 0.74 0.79

According to Table 6, the model has an accuracy of 77.06% in (happiness, anger,
sadness, and neutral) classes, otherwise it has an accuracy of 76.22% in (happiness merged
with excitement, anger, sadness, and neutral) classes.

Table 6. Accuracy results of the IEMOCAP dataset.

Classes UA WA

Happiness, anger, sadness, and neutral 0.7706 0.7792
Happiness + excitement, anger, sadness, and neutral 0.7622 0.7705

In Figure 8 the training accuracy versus epochs of the IEMOCAP dataset in using
happiness, anger, sadness, and neutral classes is visualized. In Figure 9, the training
accuracy versus epochs is illustrated, but for happiness and excitement, anger, sadness,
and neutral classes. The figures elucidate improving accuracy with the increasing number
of epochs, indicating the potential of the approach to model the data.
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4.3.2. MELD Dataset

For the MELD dataset, Figure 10 and Table 7 show its confusion matrix and results.
Neutral emotion has the best value of precision of 92%. Recall sadness has the best value of
92%. Otherwise, the F1-score for neutral has the best value of 74%, and the model has an
accuracy of 63.33%. Figure 11 illustrates the training accuracy versus epochs on the MELD
dataset, where the validation accuracy continues to rise with the training epochs.
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4.3.3. Tweeteval Dataset

For the Tweeteval dataset, Figure 12 shows the confusion matrix for each task in
the dataset. (a) Refers to emotion which includes four classes (anger, joy, optimism, and
sadness); (b) hate which includes two classes (non-hate and hate); (c) irony also has
two classes (non-irony and irony); (d) offensive includes two classes (non-offensive and
offensive); (e) sentiment which includes three classes (negative, neutral, and positive);
(f) stance also has three classes (none, against, and favor); and (g) emoji which includes
twenty classes (red heart, smiling face with heart eyes, face with tears of joy, two hearts,
fire, smiling face with smiling eyes, smiling face with sunglasses, sparkles, blue heart,
face blowing kiss, camera, united states, sun, purple heart, winking face, hundred points,
beaming face with smiling eyes, Christmas tree, camera with flash, and winking face
with tongue).
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Table 8 shows the classification report for each task in the Tweeteval dataset. The
offensive has the best average precision of 68%, 74% for average recall, and 70% for average
F1 score. For accuracy, offensive task also has the best value of 78.26%. All results depend
on text-only modality due to the data available in the Tweeteval dataset.

Table 8. Classification report results for the Tweeteval on the text and audio modalities in the function
of precision, recall, and F1-score and accuracy of the model.

Task Average Precision Average Recall Average F1 Score Accuracy

Emotion 0.59 0.69 0.61 0.6806
Hate 0.54 0.59 0.44 0.4835
Irony 0.64 0.64 0.64 0.6543

Offensive 0.68 0.74 0.7 0.7826
Sentiment 0.51 0.56 0.51 0.5539

Stance 0.5 0.5 0.5 0.5677
Emoji 0.22 0.27 0.21 0.3701

In Figure 13, we visualize the training accuracy versus epochs of the Tweeteval dataset
in each task. (a) Refers to emotion, (b) to hate, (c) to irony, (d) to offensive, (e) to sentiment,
(f) to stance, and (g) to emoji.
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4.4. Comparison with State-of-the-Art Methods

We conducted an insightful investigation into the effectiveness of different feature
representations within our model. We encountered a challenge in this regard due to the
necessity of converting audio data into an image format suitable for training with the
MobileNet model. This conversion was essential to align with the model architecture’s
requirements. As a result, we were unable to freeze the entire feature extraction process as
it was integral to this conversion. As such, we examined the Mel spectrogram feature in
isolation and compared it to the chromagram feature, both of which are commonly used
representations for audio analysis. And presented in state-of-the-art comparison tables as
Ours (Mel spectrogram) and Ours (chromagram). Our experimentation unveiled interesting
findings. While both representations yielded promising results, the Mel spectrogram exhib-
ited a slight advantage in terms of performance, signifying its greater discriminatory power
in capturing essential acoustic characteristics. Intriguingly, when we merged these two
features within our model, the outcomes were notably enhanced. This merging harnessed
the complementary strengths of the Mel spectrogram and chromagram, resulting in a richer
and more detailed feature set for training. Our findings highlight the significance of feature
selection in optimizing model performance for audio-based tasks, emphasizing the bene-
fits of leveraging a combination of feature representations to enhance the discriminative
capacity of our model.

To further verify the competitiveness of MM-EMOR, it was compared to state-of-
the-art methods. Our approach achieved higher accuracy, as shown in Table 9, for anger,
happiness, neutral, and sadness classes in the IEMOCAP dataset. The increase in accuracy
was up to 7%. Table 10 also shows that our approach achieved higher accuracy, up to 7%,
for anger, happiness merged with excitement, neutral, and sadness classes. The consistent
performance of MM-EMOR across different scenarios proves the strength and robustness
of our multimodal emotion recognition system.

Table 9. Comparison of our proposed approach with state-of-the-art (anger, happiness, neutral, and
sadness) classes on the IEMOCAP dataset.

Methods UA WA

H.Xu et al. [12] 0.709 0.725
Guo et al. [10] 0.725 0.719
Zaidi et al. [20] 0.756 -

Ours (Chromagram) 0.761 0.769
Ours (Mel spectrogram) 0.766 0.775

Huddar et al. [14] 0.766 -
Wang et al. [37] 0.77 0.765

Ours 0.771 0.779

Table 10. Comparison of our proposed approach with state-of-the-art (anger, happiness merged with
excitement, neutral, and sadness) classes on the IEMOCAP dataset.

Methods UA WA

S. Sahoo et al. [38] 0.687 -
H. Feng et al. [39] 0.697 0.686

S. Tripathi et al. [13] 0.697 -
Ours (Chromagram) 0.744 0.753

Kumar et al. [17] 0.750 0.717
Ours (Mel spectrogram) 0.759 0.767

Setyono et al. [40] 0.76 0.76
Ours 0.762 0.771

We also compared our proposed approach with other state-of-the-art methods for the
MELD dataset in Table 11. MM-EMOR offered higher accuracy with a difference ranging
from 0.1% to 8.5%.
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Table 11. Comparison of our proposed approach with state-of-the-art MELD dataset.

Methods Accuracy

Wang et al. [19] 0.481
Guo et al. [10] 0.548

Wang et al. [41] 0.558
Ours (Chromagram) 0.588

Ours (Mel spectrogram) 0.592
Lian et al. [42] 0.62
Ho et al. [43] 0.632

Ours 0.633

For the Tweeteval dataset, we compared our model with other state-of-the-art methods.
The results in Table 12 show that our approach achieved higher accuracy in emotion, emoji,
and offensive tasks. The best UA improvement was obtained with the emoji task with an
outstanding increase of 17.94%, followed by the offensive task scoring a 4.5% improvement.
A similar performance was attained for the irony task. However, a performance gap exists
for the hate, sentiment, and stance tasks. To this end, further tuning needs to be applied to
enhance the performance.

Table 12. Comparison of our proposed approach with state-of-the-art Tweeteval dataset.

Methods Emotion Hate Irony Offensive Sentiment Stance Emoji

Li et al. [1] 0.6770 0.5950 0.6667 0.7371 0.6143 0.6756 0.1907
Ours 0.6806 0.4835 0.6543 0.7826 0.5539 0.5677 0.3701

The state-of-the-art comparison shows that the IEMOCAP dataset achieves great
results compared to other models, and Tweeteval too. The MELD dataset also achieved
great performance compared to others but, in general, it achieved low accuracy because
of the data collected from TV-shows which includes audience laughing and cinematic
processing, so the data is not clear. In the case of Tweeteval, the observed accuracy is
slightly lower, which can be attributed to the nature of social media data, known for its
prevalence of human errors and incorrect text. This observation can be attributed to the
inherent characteristics of the dataset at hand, which is exclusively comprised of text data
and thus qualifies as an unimodal dataset. Unimodal datasets inherently possess a certain
degree of simplicity in comparison to their multimodal counterparts, where the fusion of
diverse data modalities can introduce added complexity.

A noteworthy finding concerns the length of the training process across the datasets.
The training and feature extraction duration on the IEMOCAP dataset was 242 min, indi-
cating the comprehensive nature of the model’s learning process. On the MELD dataset, a
similar pattern emerged, with the training phase lasting 325 min. Notably, the Tweeteval
dataset deviated from this pattern, necessitating a 49-min training time. Furthermore, the
execution time required to process a single instance is an important metric of efficiency.
This metric was low at 19.9, 16.9, and 0.51 milliseconds for IEMOCAP, MELD, and Tweet-
eval, respectively, thus highlighting the computational efficiency that characterizes the
MM-EMOR system’s real-time functionality. To train our model, we used the capabilities
of cloud computing infrastructure. The hardware requirements used in this cloud-based
environment were Nvidia V100 GPU, which is well-known for its performance in deep
learning applications, to expedite model training, and 52 gigabytes of RAM, which pro-
vided adequate memory resources to meet the complex needs of our training datasets. We
used an 8-core CPU to support these computational operations.

5. Conclusions

In conclusion, the MM-EMOR system emerges as a promising forerunner of advanced
emotion recognition capabilities in the context of multimodal data processing. The inge-
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nious concatenation of preprocessed audio data, harnessed via the Mobilenet Convolutional
Neural Network, with textual insights gleaned from the Roberta model is a key component
of this system. This approach has been thoroughly examined and validated across three
distinct benchmark datasets, each representing a distinct aspect of the emotion recognition
landscape. The interactive emotional dyadic motion capture (IEMOCAP) dataset, the multi-
modal emotion lines dataset (MELD), and the Tweeteval dataset are among these. Notably,
the last dataset only contains textual modality but includes seven experimental scenarios,
showing the MM-EMOR system’s versatility. MM-EMOR consistently outperformed its
state-of-the-art counterparts by a significant margin across this broad spectrum of eval-
uation. In the case of the IEMOCAP dataset, MM-EMOR achieves improved accuracy,
with gains ranging from 0.1% to an impressive 7%. Similarly, the MELD dataset sees an
increase in accuracy ranging from 0.1% to 8.5%. The most impressive progress is seen in
the Tweeteval dataset, where MM-EMOR achieves an astonishing 18% increase in accuracy.
These findings highlight the approach’s profound potential in the domain of social media
analysis, implying that it should be expanded to include facial gesture recognition within
videos, a path that promises to usher in a more comprehensive understanding of human
emotions.
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