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Abstract: When integrating data from different sources, there are problems of synonymy, different
languages, and concepts of different granularity. This paper proposes a simple yet effective approach
to evaluate the semantic similarity of short texts, especially keywords. The method is capable of
matching keywords from different sources and languages by exploiting transformers and WordNet-
based methods. Key features of the approach include its unsupervised pipeline, mitigation of the lack
of context in keywords, scalability for large archives, support for multiple languages and real-world
scenarios adaptation capabilities. The work aims to provide a versatile tool for different cultural
heritage archives without requiring complex customization. The paper aims to explore different
approaches to identifying similarities in 1- or n-gram tags, evaluate and compare different pre-trained
language models, and define integrated methods to overcome limitations. Tests to validate the
approach have been conducted using the QueryLab portal, a search engine for cultural heritage
archives, to evaluate the proposed pipeline.

Keywords: semantic textual similarity; pretrained language models; transformers; WordNet; QueryLab;
ensemble methods

1. Introduction

The widespread availability of Web-based information highlights the importance of
developing and promoting tools that can not only present search results but also seamlessly
integrate this information while making suggestions to the user. Keywords have tradition-
ally served as valuable indicators of textual content. However, their effectiveness depends
on the ability to select terms that strike a balance between being broad enough to encompass
multiple texts and specific enough to pinpoint cohesive subsets of data [1–3]. The reliance
on different keywords, whether automatically extracted from the text or manually assigned
by domain experts or catalogers, is a limitation that affects the performance of retrieval
engines. Thus, situations may arise where keywords are synonymous or exist in different
languages within the same text or dataset.

In this paper, a simple and easy-to-use yet effective approach to evaluate the semantic
similarity of short texts, represented by keywords, is presented: given two sets of keywords
from different sources and even in different languages, the method can perform the best
matches between the lists, using both semantic and syntactic methods.

Semantic similarity algorithms, in general, rely on the transformation of strings of text
into vectors. Transformers, Word2Vec, and GloVe, are all popular methods for this task,
each with different strengths and use cases. In this paper, we prefer transformers for the
following reasons:

(a) Pre-trained Models: there exist transformers language models pre-trained on large cor-
pora, saving time and resources compared to training Word2Vec or GloVe embeddings
from scratch, and more efficient than the pre-trained models.
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(b) Out-of-Vocabulary Handling: Transformers can handle out-of-vocabulary words
better than Word2Vec or GloVe because they use sub-word tokenization methods (as
used in this paper). This allows them to represent and work with words, not in the
training data belonging to a niche context or domain.

(c) Multi-lingual Support: Many pre-trained transformer models support multiple lan-
guages, making them suitable for multilingual NLP tasks. Word2Vec and GloVe
models are typically language-specific.

We integrate semantic similarity approaches for context-free keywords with dictionary-
based methods and string-based similarity. Different models and similarity measures are
tested individually and ensemble to create an unsupervised, fully automatic approach that
can be applied to different lists of terms (1-gram and n-grams), even in different languages.

The effectiveness and ease of use of this approach are attributed to the following key
features:

• Unsupervised pipeline: Once hyperparameters and transformation models are opti-
mized, the entire process becomes unsupervised. We use pre-trained models carefully
chosen, eliminating the need to train the networks on specific data.

• Mitigation of the lack of context: the integration of different methods (neural network
transformers, dictionary-based and syntactic) allows the mitigation of the lack of
context of keywords and the definition of final similarity scores.

• Scalability: Using pre-trained language models, the approach can efficiently handle
even archives with hundreds of elements.

• Multilingual support: The use of pre-trained multilingual text models enables the
approach to efficiently manage archives containing documents in different languages,
such as English, French, Italian, and others.

• Real-world scenarios: The experiments performed for this article demonstrate the
ability of the method to adapt to real data without having to adapt it to a specific
context. The use of ensemble methods makes it possible to overcome any critical
problems that may arise due to unfamiliar words or different languages.

The proposed approach incorporates state-of-the-art tools, including transformers
and pretrained language models, corpus-based (in this case, WordNet) and string-based
similarity techniques. By synergistically integrating these tools, a versatile and adaptable
tool has been created that provides a method suitable for various contexts.

The paper aims to define a simple yet effective method that is easily applicable to
different cultural heritage archives and provides satisfactory results without requiring
sophisticated methods to adapt to different cases. To achieve this, we set ourselves the
following objectives:

(1) Provide an overview of different approaches that can be adapted to identify overall
similarities of 1- or n-gram tags.

(2) Evaluate and compare the performance of different pre-trained language models on
short texts/keywords, which are self-contained.

(3) Define methods that can overcome limitations through integrated approaches after
analyzing the results of individual methods.

To evaluate the pipeline, we conducted tests using data from the QueryLab portal [4],
a search engine for archives on tangible and intangible cultural heritage capable of querying
different datasets, both local and via web services simultaneously.

The paper is organized as follows: In Section 2, we briefly analyze the current state of
the art. Then, in Section 3, we present our approach, highlighting its technical and innova-
tive features, both individual measures and the overall approach. In Section 4, we present
our experiments on QueryLab, where we thoroughly discuss and compare the results of
individual approaches and the overall results in Section 5. This section also includes the
presentation of results from applying our method to the WordSim353 gold standard dataset.
Finally, Section 6 concludes the article with conclusions and future research.
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2. Related Works

The study of word similarity is a fundamental task in natural language processing
and has gained substantial attention from researchers. Numerous approaches have been
proposed to measure the semantic similarity or relatedness between words. In this section,
we introduce related works in word similarity.

There is a great number of survey works available in the literature regarding the
similarity between words and phrases. In the comprehensive survey by Atoum et al. [5],
the authors categorize similarity methods into two groups: word similarity and phrase
similarity. Within each group, methods are further classified into three types: corpus-based,
knowledge-based, and hybrid. Corpus-based approaches utilize statistical information
from large text corpora and can be further divided into subcategories. Knowledge-based
methods, on the other hand, rely on dictionaries or other structured resources to derive
semantic knowledge. Hybrid methods combine elements from both corpus-based and
knowledge-based approaches to leverage their respective strengths. For sentence-level
similarity, context allows the incorporation of typical information retrieval (IR) features
such as tf-idf or the utilization of large corpora like Wikipedia. Other authors, such as
Gomaa et al. [6], Gupta et al. [7] or Sunilkumar et al. [8], in their surveys, categorize the
similarity methods in analogous manners.

In [9], the authors conduct a systematic review of research on similarity measurement,
analyzing the advantages and disadvantages of different methods. They categorize similar-
ity measures into two major groups: those based on distance metrics and those based on
text representation.

WordNet, known for its capability to represent semantic relationships, is widely used
by researchers to measure semantic similarity. In [10], the authors provide a comprehensive
review of various WordNet-based measures. They discuss the strengths and weaknesses of
each approach in capturing semantic similarity. WordNet, in combination with a corpus, is
also explored in [11], where a hybrid method is proposed using a novel similarity measure.
This approach combines structural information from WordNet with statistical information
from a corpus to enhance semantic text similarity.

Furthermore, the evaluation of semantic relatedness between lists of nouns using
WordNet is investigated in [12]. The authors conduct experiments to evaluate the ability of
different semantic relatedness measures, including latent semantic analysis (LSA), GloVe,
FastText, and various WordNet-based measures, to predict differences in word recall
between two lists of words.

Word similarity using word embeddings, such as Word2Vec or GloVe, has been a popular
approach in natural language processing. These methods generate dense vector representa-
tions for words based on their co-occurrence patterns in large text corpora. Word similarity
can be measured by calculating cosine similarity or other distance metrics between the respec-
tive word representations. Word2Vec and GloVe have shown promising results in capturing
semantic relationships and syntactic regularities between words. In [13] the authors study
whether similarity between short texts can be assessed using only semantic features. Vector
representations of words, computed from unsampled data, represent terms in a semantic
space in which the closeness of the vectors can be interpreted as semantic similarity.

In recent years, there has been a shift toward the use of transformer-based models, such
as BERT (Bidirectional Encoder Representations from Transformers), for word similarity
and related tasks [14]. The preference for BERT and transformer-based models in word
similarity tasks stems from their ability to capture contextualized representations, take
advantage of bidirectional language modeling, use large-scale pre-training, offer fine-
tuning capabilities, and harness the power of transformer architecture. These advances
have shown significant improvements in capturing word semantics and addressing the
challenges of word polysemy and ambiguity.

In [15], the authors trace the evolution of semantic similarity methods from traditional
NLP techniques, such as kernel-based methods, to the most recent research on transformer-
based models, classifying them according to their basic principles as knowledge-based,
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corpus-based, deep neural network-based and hybrid methods. Another survey using
deep learning is presented in [16].

For the choice of which pretrained language model to use, comparisons made in
specific fields, such as medical or financial [17,18], can be found in the literature. There are
also works comparing the general models [19,20]. Their shortcoming is that these reviews
and comparisons age very quickly. On the HuggingFace site [21] (from which the models
used in this experimentation came) experimentation, for example, models are constantly
and continuously added and updated.

To our knowledge, ours is the first approach to develop a method that relies on three
different methods and their integration, entirely unsupervised in the “wild”.

3. Materials and Methods

This paper aims to define a method to identify the most similar or related tags within
two lists. As we will see later in the experimental part, the system can identify one or
more terms that it judges to be similar, regardless of how similar they may appear at first
glance. The system generates a sorted list of all compared terms based on similarity for
each ensemble method. Figure 1 shows the pipeline of the approach, the purpose of which
was found in the real case of integrating archives from different sources in QueryLab [4].
The pipeline involves steps or components designed to retrieve and present relevant terms
based on their semantic similarity or association with the given word. The input to the
system consists of two lists eventually containing synonymous, related, or corresponding
terms that need to be identified. The various steps (identified as T1, T2 or T3) within the
process generate intermediate results (R1, R2 or R3), which are subsequently utilized. For
instance, during preprocessing, we obtain both the individual items for comparison and
their associated languages. Based on this information, we select pretrained language models
from a predefined list. WordNet-based similarity also considers language factors. For each
item in the list, the final output of the method consists of one or more terms arranged based
on the similarity computed by the chosen method or combination of methods.
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3.1. Materials

One of the goals of the method is to define a tool capable of processing information
in natural language in an unsupervised manner. The testing of the method was carried
out on QueryLab. Several types of information from QueryLab were used to evaluate the
effectiveness of the method, either list prepared by experts or keywords automatically
extracted from QueryLab archives, as described in more detail below.

3.2. Language Identification and Preprocessing

Language identification and preprocessing are important steps in natural language
processing (NLP) tasks (T1 in Figure 1). Language identification involves determining
the language of a given text or document while preprocessing focuses on preparing the
text data for subsequent analysis. Preprocessing is a crucial phase when working on data
that involves applying a series of operations and transformations to prepare the data
optimally for subsequent analysis. Preprocessing aims to improve data quality, reduce
noise, eliminate irrelevant information, and make the data more suitable for machine
learning algorithms or other analysis techniques.

3.3. Single Methods Similarity

Different similarity/relatedness techniques can be used to evaluate the similarity
between terms with their strengths and weaknesses. In this paper, we have experimented
with semantic similarity using pretrained Bert-like language models, dictionary-based and
syntactic-based matching, reported in Figure 1 as T2.

Semantic relatedness with transformers: Transformers, as a remarkable development
in the field of neural networks, have revolutionized the domain of natural language
processing [22]. In contrast to conventional approaches that heavily depend on manually
engineered features and statistical models, transformers employ a distinct mechanism
known as self-attention [23]. This mechanism enables the model to dynamically allocate
attention to various parts of the input, facilitating the capture of long-term dependencies
within the language data.

Among the many pre-trained language models, BERT (Bidirectional Encoder Represen-
tations from Transformers) is one of the most influential and widely used [14]. BERT, one
of the earliest pre-trained models, has had a significant impact on the field by providing a
strong framework for learning representations. By training on large textual datasets, BERT
can learn word embeddings that capture the meaning of words in context. The availability
of BERT has greatly improved several natural language processing tasks, such as sentiment
analysis, named entity recognition, and machine translation, leading to improved accuracy
and performance.

Similarly, other models such as GPT, RoBERTa, and Mini-L6, also based on the trans-
former architecture, use similar techniques to capture contextual word meanings. These
models support a wide range of natural language processing applications, each with
unique enhancements designed to address specific NLP challenges. This contributes to
the development and evolution of natural language processing, expanding its potential
across domains.

These models are based on transformer neural networks and are trained on large
amounts of unlabeled text data, enabling them to understand natural language patterns
deeply. BERT and its counterparts from Microsoft, Facebook, OpenAI, and HuggingFace
excel at bidirectional language modeling, which means they consider both preceding and
following words to fully analyze word context. This approach allows a more nuanced
understanding of word relationships and linguistic nuances. We conduct experiments to
evaluate different pre-trained models.
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In our approach, the process starts with pretrained models that represent individual
words as vectors. These vectors encapsulate the semantic meaning of the respective words.
However, when dealing with n-grams or phrases, additional techniques are required
to combine the vectors associated with each component and generate a single vector
representing the entire n-gram or phrase. This paper explores three distinct methods
employed for this purpose, which are elaborated upon below. In the experimental section,
we will present and analyze the results obtained by utilizing these methods.

One approach is to use the embedding of the [CLS] token, which is added to the
beginning of each sentence in a batch during the pre-processing stage. The [CLS] token
is designed to represent the entire sentence, and its embedding captures the meaning of
the sentence. One way to compute the similarity between two sentences (in this case,
n-grams) using pretrained language models is to take the dot product of their [CLS] token
embeddings, which will give a score between −1 and 1, where 1 means the sentences are
identical and −1 means they are completely dissimilar. Another way to compute similarity
is by using the cosine similarity between the [CLS] token embeddings.

Another way to measure sentence similarity using BERT-like language models is to
calculate the average of the token embeddings in each sentence. This is called the “mean-
pooling” approach, denoted as [AVG]. To use this method for sentence similarity, we first
run pretrained models on the input sentence to obtain the hidden states for each token.
Next, we find the average of these hidden states for each sentence. Finally, we determine
sentence similarity by calculating the dot product or cosine similarity of their average
token embeddings. This approach can be beneficial in specific scenarios where we want
to gauge the similarity between two sentences rather than solely comparing the [CLS]
token embeddings. However, it’s essential to acknowledge that this method may not be as
effective as the [CLS] token embedding approach in all situations, as it might not capture
the complete sentence meaning. This isn’t a problem because we’re working with very
short phrases, typically consisting of just 3 or 4 words at most.

The last method for calculating sentence similarity using BERT is using the maximum
value among the token embeddings for each sentence, commonly referred to as the “max-
over-time pooling” approach and labeled as [MAX]. The process of computing sentence
similarity using the max-over-time pooling approach follows the same steps as the previous
method. We first obtain the hidden states for each token in the sentence using pretrained
models. Then, we determine the maximum value among the hidden states for each sentence,
specifically along the last dimension. Finally, we gauge sentence similarity by calculating
the dot product or cosine similarity of their maximum token embeddings. This approach is
suitable for identifying the most dominant meaning or feature within a sentence. However,
it’s important to note that, similar to the mean-pooling approach, this method may not
capture the entire sentence’s meaning. Additionally, it can be sensitive to outliers

WordNet-based similarity: WordNet is a lexical database and semantic network that
organizes words and their meanings into a hierarchical structure [24,25]. It provides a
comprehensive and structured resource for understanding the relationships between words,
synonyms, antonyms, and the hierarchical structure of concepts. In WordNet, words are
grouped into synsets (synonym sets), representing a set of words closely related in meaning.
Each synset represents a distinct concept or meaning. Synsets are connected through
semantic relations, such as hyponyms (subordinate concepts), hypernyms (superordinate
concepts), meronyms (part-whole relationships), and holonyms (whole-part relationships).

WordNet’s primary purpose is to facilitate the exploration of semantic relationships
between words and to measure their semantic similarity. Again, we tested three measures
to assess the similarity between n-grams:

1. The shortest path length measure computes the length of the shortest path between
two synsets in the WordNet graph, representing the minimum number of hypernym
links required to connect the synsets. This measure assigns a higher similarity score
to word pairs with a shorter path length, indicating a closer semantic relationship. It
will be referred to as a path.
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2. Wu-Palmer Similarity: The Wu-Palmer similarity measure utilizes the depth of the
LCS (Lowest Common Subsumer—the most specific common ancestor of two synsets
in WordNet’s hierarchy) and the shortest path length to assess the relatedness between
synsets. By considering the depth of the LCS in relation to the depths of the synsets
being compared, this measure aims to capture the conceptual similarity based on
the position of the common ancestor in the WordNet hierarchy. It will be referred
to as wu.

3. Measure based on distance: analogously to the shortest path length, this measure is
also based on the minimum distance between 2 synsets. This measure, hand-crafted
by the authors, considers that the shorter the distance, the greater the similarity. In
this case, the similarity measure is calculated using this equation:

min_dist =
1(

0.8 + distance
4

) (1)

When distance > 0, in the other case min_dist = 1
This measure considers only the distance between synsets, in a depth-independent

way, and was obtained by doing several tests and evaluations, so that much weight is given
not only to synonyms (with distance 0) but also to hypernyms or hyponyms (distance 1) or
siblings (distance 2). This measure will be referred to as min_dist.

String comparison algorithms: Jaro, Jaro-Winkler, Levenshtein and other similar sim-
ilarity measures are string comparison algorithms that focus on quantifying the similarity
(or distance) between two strings based on their characters and their order. These measures
are useful in various applications, including record linkage, data deduplication, fuzzy
string matching, etc. [26,27]. Here, it has been used Jaro-Winkler Similarity, which is an
extension of the Jaro similarity measure. It incorporates a prefix scale that rewards strings
for having a common prefix. The Jaro-Winkler similarity score ranges from 0 to 1, with 1
indicating a high similarity and a closer alignment of the prefixes.

3.4. Ensemble Methods

Since, in this paper, we have identified, defined, and implemented several measures
to calculate similarity between objects, it is necessary to identify appropriate voting mecha-
nisms to determine the best results (T3 in Figure 1). The starting point is to consider the
following variables:

1. n pretrained language models: as we will see in the experimentation part, the datasets
we tested our approach can be monolingual (English or Italian, so far) or multilingual
(English, Italian or French, in the experiments). It is, therefore, necessary to identify
the models that best represent the specificity of the data under consideration.

2. semantic relatedness: three different methods of calculating the representative vector
to be evaluated must be compared.

3. WordNet-based similarity: again, there are three different ways of calculating the
similarity between words.

Ensemble methods [28,29] aim to combine multiple individual models or methods
to produce a more accurate and robust prediction or decision. It is based on the principle
that the collective wisdom of diverse models tends to outperform any individual model in
terms of accuracy, generalization, and stability. There are different voting schemes, such as
majority voting, where the predicted class with the highest number of votes is selected, and
weighted voting, where the models’ predictions are weighted based on their performance
or expertise. Weight-based and majority vote-based models play an important role in
image classification, medicine, and manufacturing, enabling the prediction of failures and
providing predictive support [30–34]. We used both methods in different phases to identify
the more accurate results.
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3.5. Evaluation of the Results

We are interested in evaluating the effectiveness and performance of each method
when assessing the similarity between objects. By examining the outcomes, we can bet-
ter understand how well these approaches capture and quantify the similarity between
different objects, facilitating informed discussions and conclusions.

Borrowing ideas from information retrieval systems [1], a variety of metrics can be
used to evaluate semantic similarity measures, including recall, precision, F1 scores, Dice
and Jaccard coefficients:

1. Recall: Recall measures the proportion of relevant items correctly identified or re-
trieved by a model. It focuses on the ability to find all positive instances and is
calculated as the ratio of true positives to the sum of true positives and false negatives.

2. Precision: Precision measures the proportion of retrieved items that are relevant or
correct. It focuses on the accuracy of the retrieved items and is calculated as the ratio
of true positives to the sum of true positives and false positives.

3. F1 score: The F1 score combines precision and recall into a single metric. It is the
harmonic mean of precision and recall and provides a balanced measure of a model’s
performance. The F1 score ranges from 0 to 1, with 1 being the best performance. It is
calculated as 2 × (precision × recall)/(precision + recall).

4. Dice coefficient: The Dice coefficient is a metric commonly used for measuring the
similarity between two sets. Natural language processing is often employed for eval-
uating the similarity between predicted and reference sets, such as in entity extraction
or document clustering. The Dice coefficient ranges from 0 to 1, with 1 indicating a
perfect match. It is calculated as 2 × (intersection of sets)/(sum of set sizes).

5. Jaccard coefficient: The Jaccard coefficient, also known as the Jaccard similarity index,
measures the similarity between two sets. It is commonly used for tasks like clustering,
document similarity, or measuring the overlap between predicted and reference sets.
The Jaccard coefficient ranges from 0 to 1, with 1 indicating a complete match. It is
calculated as the ratio of the intersection of sets to the union of sets.

These metrics provide different perspectives on the performance of semantic similarity
measures. Recall focuses on the measure’s ability to identify relevant similar pairs, precision
emphasizes the accuracy of the identified pairs, and Jaccard similarity provides an overall
measure of overlap between identified and reference pairs.

4. The Experimentation

The approach presented in this study comprises a series of sequential steps accompa-
nied by detailed explanations and specific examples to provide a comprehensive under-
standing of the implementation process. Table 1 presents the pipeline of the approach.

4.1. Datasets

QueryLab Platform
The methods presented here have been designed with the idea of their use in the

“wild”, integrating them in QueryLab, a prototype dedicated to the integration, navigation,
searching and preservation of tangible and intangible heritage archives on the web, with
the aid of themed paths, keywords, semantic query expansion and word cloud [4].

QueryLab foresees different ways of querying inventories by collecting and managing
data in a transparent way for the user. Archives are integrated in QueryLab in the most
automatic way possible, both via web services and local ones. The datasets are steadily
expanding and encompass archives related to intangible cultural goods and food, available
in Italian and English. Additionally, they include data from prominent archives like
Europeana (representing European countries), the Victoria and Albert Museum (UK), the
Digital Public Library of America (DPLA, USA), and the Reunion des Musée Nationaux
(RMN, France), among others.
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Table 1. pipeline of the presented approach.

# Task 1: Dataset Preparation

- Harvesting process
- Language identification
- Preprocessing (possibly strip stopwords, accents, . . .)
- Output: items of interest

# Task 2: Single Method similarity/relatedness

- # semantic relatedness
- Choice of transformers and pre-trained models
- Fine-tuning of pre-trained Bert-like models to obtain the vectors
- Computation of similarity matrix using [CLS] tokens, means and max pooling
- Output: for each model, three lists of the most related tags, ordered by score value
- # wordnet-based
- For each tag1 in list1 and tag2 in list2:
- Synsets identification for tag1 and tag2, using language and automatic translation if necessary.
- Computation of the max path_similarity and wu_p_similarity
- Computation of the min distance and hand-crafted similarity
- Output: 3 lists of the most related tags, ordered by score value
- # string-based similarity
- Computation of Jaro-wrinkler similarity among a string
- Output: list of the most related tags, ordered by score value

# Task 3: Ensemble similarity

- # ensemble for each pretrained model
- Weighted Voting mechanism to create, for each language model, a unique list of most related tags
- Output: list of the most related tags, ordered by score value
- # global ensemble
- Majority Voting mechanism
- Output: lists of the most related tags, ordered by number of votes

# Task 4: Evaluation

- Ground truth creation
- Computation of recall, precision, and Jaccard similarity

Due to the diverse nature of the archives comprising QueryLab, the results obtained for
the same query can exhibit significant variations. This discrepancy arises from keyword lists
that may differ in form or language while maintaining semantic similarity. Consequently,
there is a need to devise a method for harmonizing keywords, serving a twofold purpose:

• During the search phase, the query is to include all tags that surpass a predetermined
similarity threshold. This expansion allows for a broader search scope, encompassing
tags semantically similar to the original query. By including such tags, we aim to
enhance the search results by considering related keywords.

• During the fruition stage, suggest elements that contain similar keywords to enhance
the user experience. By identifying and recommending elements that share similar
keywords, we provide users with relevant and related content. This approach en-
ables users to explore and access information beyond their initial query, promoting a
comprehensive and enriched browsing experience.

Gold standard datasets
In addition to the data collected, the evaluation of the quality of the approach is based

on two gold standards for word similarity: WordSim353 [34,35] and SimLex999 [35,36].
WordSim353 is a widely used benchmark dataset for evaluating word similarity and

relatedness. It consists of 353-word pairs, and each pair is assigned a similarity score by
human annotators based on their perceived similarity or relatedness. The dataset covers a
range of semantic relationships, including synonyms, antonyms, hypernyms, and more.
The WordSim353 dataset is a standard evaluation resource for measuring the performance
of word embedding models and other techniques in capturing semantic similarities between
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words. Researchers often use this dataset to assess the quality of their models and compare
their results with other approaches.

SimLex-999 is another widely used benchmark dataset for evaluating word similarity
and relatedness. It consists of 666 noun-noun pairs, and each pair is assigned a similarity
score by human annotators based on their perceived similarity. The dataset covers a diverse
range of semantic relationships and includes words with different levels of similarity
and relatedness.

4.2. Dataset Preparation

Language identification and preprocessing
In many of the processing and similarity evaluation tasks, language plays a crucial

role. While certain datasets used in our experiments have known languages, such as
benchmark datasets or Italian recipes, the data collected through automated methods often
lacks fine-grained language information. To address this, we perform preprocessing to
extract detailed language information from the data [37].

It is important to note that the preprocessing step is only applied to data collected
in QueryLab archives. Since we are already working with keywords, the main activity
performed is grouping tags within each dataset based on specific criteria. Specifically, we
group tags with a distance of 0 in WordNet and a Jaro similarity score greater than 0.95.

4.3. Single Methods Similarity

The assessment of similarity in this experiment emphasized several key aspects:

1. Determining the best similarity measure: Various similarity assessment methods were
utilized to calculate similarity scores between tags. The evaluation aimed to identify
the similarity algorithm that best captured the semantic similarity between the given
tag and other tags in the datasets.

2. Identifying the single tag with the highest similarity: Based on the calculated similarity
scores, the tags that exhibited the highest similarity to the given tag were identified,
one for each similarity measure.

3. Identifying the three most similar features: In addition to finding the single tag
with the highest similarity, the evaluation process also focused on identifying the
three most similar features. These features are the elements (1-gram or n-grams) that
demonstrated high similarity to the given tag.

Considering these three aspects, the similarity process aimed to provide a comprehen-
sive assessment of the semantic similarity between tags.

Semantic relatedness
For evaluating semantic similarity (T2.1 in Figure 1), we first convert tags, which can

be 1-gram or n-grams, into vectors using pretrained language models specifically designed
for “sentence similarity” tasks. The availability of pretrained models is extensive and
continuously expanding.

One of the aims of the paper is to compare how different pretrained models perform
in the evaluation of semantic similarity: we tested 2 or 3 different language models in
various languages. We select these models based on information gathered from literature
sources or platforms such as Hugging Face and models developed by major tech compa-
nies like Microsoft, Facebook, or Google. We utilize three sets of pretrained models, as
described in Table 2.

The initial step in evaluating semantic similarity involves generating similarity matri-
ces. The similarity matrix requires a single vector for each element being compared. When
utilizing a BERT-like model, we employ specific tokens, such as [CLS], which represents
the entire sentence, or the average of tokens [AVG], or the [MAX] as mentioned previously.
The input text undergoes preprocessing, involving tokenization and encoding into numer-
ical vectors. These vectors are then fed into the transformation model, which produces
contextualized embeddings for each token in the input text.
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Table 2. Pretrained language models tested for English, Italian and multilingual datasets.

No. Model Name Pretrained Language

1 ‘sentence-transformers/paraphrase-MiniLM-L6-v2’ English

2 ‘flax-sentence-embeddings/all_datasets_v3_mpnet-base’ English

3 ‘tgsc/sentence-transformers_paraphrase-multilingual-mpnet-base-v2’ English

4 ‘nickprock/sentence-bert-base-italian-xxl-uncased’ Italian

5 ‘tgsc/sentence-transformers_paraphrase-multilingual-mpnet-base-v2’ Italian

6 ‘LLukas22/paraphrase-multilingual-mpnet-base-v2-embedding-all’ Multilingual

7 ‘tgsc/sentence-transformers_paraphrase-multilingual-mpnet-base-v2’ Multilingual

To construct the similarity matrix, the [CLS], [AVG] or [MAX] tokens are compared
pairwise using a distance metric, typically cosine similarity. The resulting scores reflect the
similarity relationships between the [CLS], [AVG] or [MAX] tokens within the input text,
allowing for the creation of the similarity matrix.

WordNet-based similarity
The approach for WordNet-based similarity (T2.2 in Figure 1) is based on the principle

that words with greater similarity exhibit smaller distances within the WordNet structure.
However, the search for tag synsets in WordNet is language-dependent. We began with
two key considerations:

1. Not all WordNet synsets have been translated into all languages. This implies
that some synsets may not be available in certain languages, which can affect the
matching process.

2. By employing machine translation on tags, we can increase the likelihood of finding a
corresponding synset. This strategy helps overcome language barriers and enhances
the chances of locating relevant synsets.

For tags comprising multiple words, if a word’s lemma (base form) is not found
directly, we split and identify the lemmas and synsets of individual words. This allows for
a more granular analysis and matching process.

Similar to the previous approach, a similarity matrix is generated using the three
measures described above. These scores are the basis for constructing the similarity matrix,
facilitating further analysis and evaluation.

String-based similarity
String-based similarity techniques (T2.3 in Figure 1) are valuable for detecting minor

script changes, small errors, or variations such as singulars and plurals, which can hinder
effective searches across archives or data from different sources. By utilizing string-based
similarity, we can address these issues and enhance the search process.

4.4. Ensemble Methods Similarity/Relatedness

Various similarity assessment methods using different characteristics were employed
in this experiment, making it necessary to take an overall approach that provides a compre-
hensive and balanced assessment of similarity, considering multiple measures and their
respective strengths in the overall assessment process. The ensemble evaluation approach
followed the path of individual evaluation and the best three results. This led to using
the weighted voting mechanism on the first best result (with the maximum similarity
value) among the three, either considering all methods overall or based solely on semantic
similarity or WordNet.

We defined ensemble methods by considering a combination of methods, language
models and frequency of the most similar terms:

1. Single Model Ensemble: This ensemble approach considered the best similarity score
for each pre-trained model by combining the results of the various similarity evalua-
tion techniques. Using the weighted voting mechanism (see Table 3a, rows 14–17), the
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ensemble evaluation aimed to capture the overall similarity between the tags while
considering the specific evaluation techniques employed. On the other hand, using
the majority voting techniques (see Table 3b, rows 1–4), we can consider the consensus
among various approaches.

2. All Models Ensemble: In this case, the ensemble is measured by pooling the results
from all the language models considered. In this case, greater importance is attributed
to the identified term than the similarity value, thereby expanding the range of similar
terms, including those with some level of relatedness. What is taken into consideration
is the frequency of term selection (Table 3b, rows 5–8).

3. Most Frequent Terms Ensemble: The combined results considering all pre-trained
models, with the majority voting mechanism applied only to the most frequent terms,
capture the collective decision of multiple language models (Table 3b, rows 9–12).

Table 3. (a) single similarity method result label. (b) ensemble similarity method result label.

(a) single similarity method result label

1 s1s.[CLS]
Single method using semantic similarity, taking the most similar element

and respectively [CLS], [AVG] and [MAX]

individual similarity

2 s1s.[AVG]

3 s1s.[MAX]

4 s1w.path
Single method using WordNet-based similarity, taking the most similar

element and respectively path, wu and min_dist
5 s1w.wu

6 s1w.min_dist

7 s.Jaro Single method using Jaro similarity

8 s3s.[CLS]
Single method using semantic similarity, taking the most three similar

elements and respectively [CLS], [AVG] and [MAX]
9 s3s.[AVG]

10 s3s.[MAXS]

11 s3w.path
Single method using WordNet-based similarity, taking the most three

similar elements and respectively path, wu and min_dist
12 s3w.wu

13 s3w.min_dist

14 e1.model Single method ensemble, using weighted voting mechanism respectively
on the most and most three similar elements obtained by all single methods

(for the specific language model)
Single model ensemble (see

Section 4.4 point 1)

15 e3.model

16 e1s.model Single method ensemble, using weighted voting mechanism respectively
on the most and most three similar elements obtained by semantic methods

(for the specific language model)17 e3s.model

(b) ensemble similarity method result label

1 e1.model
Single methods ensemble, using majority voting mechanism respectively

on the most and most three similar elements obtained by all single methods,
semantic (s) or WordNet-based algorithms (for the specific language model)

Single model ensemble
2 e3.model

3 e3s.model

4 e3w.model

5 e1.all

As mentioned above, combining the results obtained by each
language model

All Models Ensemble(see
Section 4.4 point 2)

6 e3.all

7 e3s.all

8 e3w.all

9 e1.max

As above, combining the results obtained by each language model, applied
only to the most frequent terms

Most Frequent Terms Ensemble
(see Section 4.4 point 3)

10 e3.max

11 e3s.max

12 e3w.max

User ground truth
To evaluate the quality of the approach, it is crucial to have a “ground truth” dataset

for comparing the results and calculating metrics such as recall and precision. For this
purpose, a procedure involving annotators, including experts in the Cultural Heritage field
and ordinary individuals, was established.
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In the annotation process, the annotators were tasked with identifying the word or
words most similar to a given target word. This task allowed for the identification of terms
that closely matched the target word’s meaning. However, in cases where finding suitable
terms proved challenging due to a lack of similar options, the annotators were provided
with the following choices:

- Eliminate the word: If no suitable term could be found, the annotators could exclude the
word from the annotation process due to the unavailability of appropriate alternatives.

- Make an extremely bland association: In cases where the annotators faced significant
difficulty finding similar terms, they could make a less precise or less contextually
relevant association. This option aimed to capture any resemblance or connection,
even if it was not an ideal match.

In the instructions for annotators, the first choice is preferred. To assist the annotators
in this task, the system provided suggestions that exhibited very high Jaro similarity values
or had a WordNet distance of less than 2. These suggestions were intended to guide the
annotators and help them identify potentially relevant terms.

In the annotation process, the annotators were tasked with identifying the most similar
tag and the three most related or similar tags in some way to the given target tag. This
approach aimed to capture a broader range of related terms and expand the understanding
of semantic relationships. By requesting the annotators to identify the three most similar or
related tags, the evaluation process went beyond a single best match. It encompassed a
small set of related tags that shared semantic similarities or connections with the target tag.
In this first phase of evaluation, we have employed a limited number of evaluators with
diverse backgrounds.

5. Results and Discussion
5.1. Datasets Used

The data collection process was based on queries to the QueryLab archives, using the
REST API protocol at the source and storing the following data for the first n results. Each
archive organizes the search results differently and, therefore, requires ad hoc procedures.

List similarity experiments were performed on the following data:

1. Keywords extracted dynamically in QueryLab. The interesting thing is that Query-
Lab’s archives are multilingual, and almost all of them can respond with English
terms. When tested, however, different languages coexist, e.g., RMN or DPLA. Here
are the results of the queries:

(1) mariage on Europeana and RMN, using respectively 120 and 100 items;
(2) wedding on Victoria & Albert Museum and DPLA., using 100 items for both archives.

An initial analysis of the data, shown visually in Figures 2 and 3, shows that there
are indeed clearly identifiable synonyms and that the language of the words is different.
These two datasets were chosen because they possess certain characteristics that make them
interesting. The Mariage results consist of lists of terms in English and French, whereas
the Wedding results contain only English tags, using synonyms. Therefore, the chosen
pre-trained models are multilingual for Mariage to handle terms in English and French,
whereas English-specific pre-trained models were used for Wedding.
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2. Intangible heritage-related tag lists extracted from QueryLab. These lists are hand-
built by experienced ethnographers. The tags we compare are those defined for the
Archives of Ethnographies and Social History AESS and its transnational version for
the inventory of the intangible cultural heritage of some regions in Northern Italy,
some cantons in Switzerland and some traditions in Germany, France and Austria [38]
and those of UNESCO [39], imported in QueryLab. The language is the same (English),
but there are extremely specialized terms, making it difficult to assess similarity. This
dataset is called ICH_TAGS and comprises 300 elements for both lists.

3. tag lists referring to cooking and ingredients, in Italian, again taken from QueryLab.
The interest is to handle data belonging to a specific domain in a language other than
English, both for semantic and dictionary-based similarity. The pretrained models
used are those for Italian. A comparison was made with a multilingual model. In the
following, called Cook_IT, it is composed of 100 and 300 items.

4. WordSim363, the gold standard.

5.2. Results Evaluation

The performance of the approach on different datasets has been evaluated, and the
results were summarized in graphs displaying the recall, precision, F1, Dice and Jaccard
scores. The numerical data used to create these graphs is presented in Appendix A.

To enhance clarity, the figure labels have been included in Table 3. The individual
similarity methods are labeled in Table 3a, while the ensemble results are presented in
Table 3b. The methods listed in Table 3 correspond to distinct elements in the graph, each
associated with a specific language model. However, for the first four methods in Table 3b,
the number of occurrences in the graph corresponds to the number of pretrained models
used: two for Italian and multilingual and three for English.

Mariage dataset on Europeana and RMN archives
Figures 4 and 5 report evaluation results on Mariage from Europeana and RMN,

described in Section 5.1. It should be noted that Europeana is a multilingual archive,
while RMN primarily features French content with some metadata available in English.
We identified two pretrained models specifically trained on multilingual datasets for our
approach, employing automatic language detection.

In Figure 4, the depicted outcomes correspond to the single similarity methods as
previously defined. Specifically, for the semantic similarity methods, the results pertain
to the two language models used for multilingual texts. The figure presents the results
obtained by combining the individual methods using a weighted voting strategy applied
to the methods within the current model.

Our primary focus is on achieving high recall, indicated by the red color in the
graph, considering the objective of the approach. When examining single semantic models,
where only the first result (s1s) is considered, the recall is comparatively lower than
WordNet-based methods (s1w). This observation holds even considering the top three
results (s3s and s3w). As expected, string-based similarity yields very low results, and it is
utilized in ensemble methods to reinforce similarity when it surpasses a specified threshold,
empirically set at 0.9.
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The last four columns of Figure 4 obtained integrating the results using ensemble
methods on a single language model, the recall for considering all methods applied to the
first three results achieves a promising 93 (e3.model), surpassing both the recall obtained
by solely considering the term evaluated as most similar through majority voting (recall 69
with e1.model) and employing only semantic methods. The latter approaches yield a recall
of 39 and 41 for a single term (e1s.model) and the first three (e3s.model), respectively.

Figure 5 presents the ensemble results for different scenarios, including all methods or
limiting only to semantic or WordNet-based methods. The highest recall is obtained using
a result composition method that considers all pre-trained models and takes the best three



Big Data Cogn. Comput. 2023, 7, 158 16 of 31

results (e3.all). This result significantly improves the scores obtained by semantic and/or
WordNet-based methods alone and by taking only the best result. We do not observe much
variation in the use of different pre-trained language models.

Wedding dataset on DPLA and Victoria & Albert Museum archives
Figures 6 and 7 show the results obtained on the wedding query in the DPLA and Victoria

& Albert Museum archives. In this case, the tags were identified in English, and the pretrained
language models for that language were used. The results obtained replicate those for Mariage.
Again, the ensemble methods, both for the single model and overall on all models, outperform
the single methods. The solution of taking the first three results yields a recall of 98 percent with
the e3.model in both models (Figure 6). This value reaches 100% recall in e3.all.
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ICH-tags dataset
The distinctive feature of ICH tags is their utilization of highly specific terms. The

potential challenge posed by classical word embeddings, which could result in out-of-
vocabulary (OOV) terms, is effectively addressed through the tokenization process of
transformers. As a result, the similarity between terms is accurately computed, even in
cases where the model is unfamiliar with individual words, thanks to the incorporation of
tokenizers and fine-tuning.

As shown in Figures 8 and 9, the previous results are confirmed here: the best single
model result is from e3.model, and the best ensemble methods result is e3.all.
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Cook_IT dataset
Figures 10 and 11 pertain to the Italian dataset comprising terms associated with

recipes and ingredients used in Italian cuisine. These terms are commonplace within the
specific domain but not typically in a general-purpose lexicon. However, by employing a
tokenizer, this challenge is effectively addressed, enabling the measurement of similarity
between the two sets with promising outcomes.
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Gold standard WordSim353 dataset
Figures 12 and 13 are for the gold standard dataset. In this case, the recall is very

high for most of the single methods. Once again, it is observed that ensemble methods
focusing on the first three results demonstrate superior performance. This finding applies
to individual models (Figure 12, e3.model) and ensemble methods that combine multiple
methods and language models (Figure 13, e3.all). In both cases, considering the first three
results leads to improved outperforms compared to considering only the most similar term
or other combination mechanisms.
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High recall in the results indicates that the system is retrieving most of the relevant
or correct values. In other words, it is finding many of the desired possible values. This
is positive because our primary goal is to capture the most relevant information. The
annotators have been specifically oriented to evaluate the similarity between tags that
share semantic similarities or connections with the target tag: this explains why the
system obtains results that may seem less precise according to traditional measures like
F1-score and precision. The system captures the desired semantic connections, although
it may be less precise in distinguishing between relevant and non-relevant values.

It is evident that when considering the top 3 results, the recall achieves its peak values,
whereas the precision remains relatively low. This discrepancy arises because identifying
the most similar tags expands the number of tags, leading to a decrease in precision.
However, in the context of the study, this is not a concern since the objective is to retrieve
all tags that are even remotely related, making it more inclined towards a “recall-oriented”
approach rather than precision-focused.

The experimental setup has been implemented in Python 3.10, using standard pack-
ages like Numpy, Matplotlib, Pandas and other more specific ones for processing textual
data such as NLTK, Gensim [40], and Sklearn, together with Pytorch, Transformers, Spacy
and deep_translate and some experimental packages in GitHub. We used various pre-
trained models taken from HuggingFace and datasets from GitHub.

6. Conclusions and Future Works

In this article, we have presented an approach for evaluating the similarity between
tags, both single and compound words, belonging to different datasets. This approach
integrates various state-of-the-art methods and techniques. Specifically, we have tested
methods that utilize pretrained language models, methods based on the hierarchical struc-
ture of WordNet, and string-based similarity measures used solely as reinforcement in
majority voting mechanisms for ensemble models. These measures were subsequently com-
posed using ensemble methods that showed the method’s effectiveness. Experiments were
conducted on various datasets characterized by challenges, such as multilingual datasets,
Italian-only datasets, or datasets with highly specialized terms. In all the experiments,
the best results were achieved by integrating the outcomes of different single similarity
methods within each language model and globally across all models. The recall exceeded
90% for the top three results. Experimentation using the gold standard also produced
optimal results.

The uniqueness of this approach lies in its fully unsupervised nature once the most
suitable language models have been identified. It can be applied, almost without adaptation,
to different datasets in real-world scenarios. Another characteristic of the method is its
ability to adapt to multilingual datasets, thanks to automatic language detection. This
feature is beneficial for both semantic models, as it aids in selecting the appropriate language
model, and for WordNet-based models. Automatic language detection enables the method
to handle different languages within the dataset seamlessly.

The presented pipeline offers several advantages by employing various criteria and in-
tegrating them to achieve better results than a solution that relies on a single method, albeit
at the expense of response speed. In the future, efforts will be made to enhance this aspect.

Based on the progress and outcomes, the plan for future activities is to continue with
the assessment process. This work requires additional evaluation in two critical areas:
firstly, pertaining to the source datasets, test the method with far more data, and secondly,
regarding the creation of ground truth data. This activity will require involving more
evaluators with specialized backgrounds.
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It is also intended to integrate it into QueryLab, from whose structure the need
for the prototype emerged, to evaluate its functionality, usability, and usefulness fully.
This integration will provide users additional flexibility in accessing and searching for
information, enhancing their overall experience and enabling more effective queries.
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Appendix A

The results of the experimentation are shown in Figures 4–13.
Mariage dataset

Table A1. The single method results for Mariage, using the ‘LLukas22/paraphrase-multilingual-
mpnet-base-v2-embedding-all’ pretrained language model, shown in Figure 4 on the left.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.346667 0.590909 0.436975 0.310606 0.215909

s1s.[AVG] 0.26506 0.5 0.346457 0.265152 0.185606

s1s.[MAXS] 0.394366 0.636364 0.486957 0.333333 0.231061

s1w.path 0.294872 0.522727 0.377049 0.261364 0.174242

s1w.wu 0.576271 0.772727 0.660194 0.397727 0.268939

s1w.min_dist 0.576271 0.772727 0.660194 0.397727 0.268939

s.Jaro 0.034483 0.090909 0.05 0.045455 0.030303

s3s.[CLS] 0.379032 0.152597 0.217593 0.216414 0.128923

s3s.[AVG] 0.370968 0.149351 0.212963 0.210732 0.125045

s3s.[MAXS] 0.354839 0.142857 0.203704 0.201641 0.119363

s3w.path 0.330645 0.138514 0.195238 0.187879 0.114313

s3w.wu 0.693548 0.296552 0.415459 0.393434 0.267181

s3w.min_dist 0.685484 0.293103 0.410628 0.389394 0.262716

e1.model 0.698113 0.840909 0.762887 0.431818 0.291667

e3.model 0.935484 0.127753 0.224806 0.226294 0.129223

e1s.model 0.394366 0.636364 0.486957 0.333333 0.231061

e3s.model 0.41129 0.141274 0.210309 0.211033 0.123785

http://arm.mi.imati.cnr.it/papers/bdcc2023
http://arm.mi.imati.cnr.it/papers/bdcc2023
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Table A2. The single method results for Mariage, using the ‘tgsc/sentence-transformers_paraphrase-
multilingual-mpnet-base-v2’ pretrained language model, shown in Figure 4 on the right.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.5 0.704545 0.584906 0.352273 0.234848

s1s.[AVG] 0.5 0.704545 0.584906 0.352273 0.234848

s1s.[MAXS] 0.568966 0.75 0.647059 0.375 0.25

s1w.path 0.294872 0.522727 0.377049 0.261364 0.174242

s1w.wu 0.576271 0.772727 0.660194 0.397727 0.268939

s1w.min_dist 0.576271 0.772727 0.660194 0.397727 0.268939

s.Jaro 0.034483 0.090909 0.05 0.045455 0.030303

s3s.[CLS] 0.5 0.201299 0.287037 0.283965 0.174874

s3s.[AVG] 0.491935 0.198052 0.282407 0.278914 0.173205

s3s.[MAXS] 0.491935 0.198052 0.282407 0.280556 0.172078

s3w.path 0.330645 0.138514 0.195238 0.187879 0.114313

s3w.wu 0.693548 0.296552 0.415459 0.393434 0.267181

s3w.min_dist 0.685484 0.293103 0.410628 0.389394 0.262716

e1.model 0.698113 0.840909 0.762887 0.431818 0.291667

e3.model 0.951613 0.133033 0.233432 0.235696 0.135516

e1s.model 0.568966 0.75 0.647059 0.375 0.25

e3s.model 0.580645 0.2 0.297521 0.296103 0.183816

Table A3. Ensemble methods result for Mariage, shown in Figure 5.

Method Recall Precision F1

e1.llukas22_mpnet_base 0.70297 0.669811 0.68599

e1.tgsc_para_multi 0.752577 0.715686 0.733668

e3.llukas22_mpnet_base 0.935484 0.127753 0.224806

e3.tgsc_para_multi 0.951613 0.133033 0.233432

e3s.llukas22_mpnet_base 0.362903 0.148026 0.21028

e3s.tgsc_para_multi 0.491935 0.203333 0.287736

e3w.llukas22_mpnet_base 0.754098 0.239583 0.363636

e3w.tgsc_para_multi 0.754098 0.239583 0.363636

e1.all 0.805556 0.644444 0.716049

e3.all 0.983871 0.122367 0.217663

e3s.all 0.620968 0.186893 0.287313

e3w.all 0.754098 0.239583 0.363636

e1.max 0.710843 0.766234 0.7375

e3.max 0.903226 0.140351 0.24295

e3s.max 0.233871 0.151042 0.183544

e3w.max 0.754098 0.239583 0.363636
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Wedding dataset

Table A4. Single method results for Wedding, using ‘LLukas22/paraphrase-multilingual-mpnet-base-
v2-embedding-all’ pretrained language model, shown in Figure 6 on the right.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.65625 0.807692 0.724138 0.429487 0.294872

s1s.[AVG] 0.606061 0.769231 0.677966 0.403846 0.275641

s1s.[MAXS] 0.527778 0.730769 0.612903 0.391026 0.269231

s1w.path 0.414634 0.653846 0.507463 0.358974 0.25

s1w.wu 0.461538 0.692308 0.553846 0.384615 0.275641

s1w.min_dist 0.461538 0.692308 0.553846 0.384615 0.275641

s.Jaro 0.142857 0.307692 0.195122 0.166667 0.115385

s3s.[CLS] 0.59375 0.22619 0.327586 0.324306 0.207672

s3s.[AVG] 0.609375 0.232143 0.336207 0.332639 0.211806

s3s.[MAXS] 0.59375 0.22619 0.327586 0.324306 0.206019

s3w.path 0.4375 0.166667 0.241379 0.240741 0.145833

s3w.wu 0.671875 0.255952 0.37069 0.36875 0.241154

s3w.min_dist 0.671875 0.255952 0.37069 0.369676 0.236111

e1.model 0.59375 0.791667 0.678571 0.444444 0.319444

e3.model 0.984375 0.145833 0.254032 0.256155 0.148334

e1s.model 0.633333 0.791667 0.703704 0.423611 0.291667

e3s.model 0.65625 0.21 0.318182 0.322807 0.203907

Table A5. The single method results for Wedding, using the ‘tgsc/sentence-transformers_paraphrase-
multilingual-mpnet-base-v2’ pretrained language model, shown in Figure 6 on the left.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.5 0.704545 0.584906 0.352273 0.234848

s1s.[AVG] 0.5 0.704545 0.584906 0.352273 0.234848

s1s.[MAXS] 0.568966 0.75 0.647059 0.375 0.25

s1w.path 0.294872 0.522727 0.377049 0.261364 0.174242

s1w.wu 0.576271 0.772727 0.660194 0.397727 0.268939

s1w.min_dist 0.576271 0.772727 0.660194 0.397727 0.268939

s.Jaro 0.034483 0.090909 0.05 0.045455 0.030303

s3s.[CLS] 0.5 0.201299 0.287037 0.283965 0.174874

s3s.[AVG] 0.491935 0.198052 0.282407 0.278914 0.173205

s3s.[MAXS] 0.491935 0.198052 0.282407 0.280556 0.172078

s3w.path 0.330645 0.138514 0.195238 0.187879 0.114313

s3w.wu 0.693548 0.296552 0.415459 0.393434 0.267181

s3w.min_dist 0.685484 0.293103 0.410628 0.389394 0.262716

e1.model 0.698113 0.840909 0.762887 0.431818 0.291667

e3.model 0.951613 0.133033 0.233432 0.235696 0.135516

e1s.model 0.568966 0.75 0.647059 0.375 0.25

e3s.model 0.580645 0.2 0.297521 0.296103 0.183816
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Table A6. Ensemble methods result for Wedding, shown in Figure 7.

Method Recall Precision F1

e1.llukas22_mpnet_base 0.722222 0.661017 0.690265

e1.tgsc_para_multi 0.692308 0.610169 0.648649

e3.llukas22_mpnet_base 0.984375 0.145833 0.254032

e3.tgsc_para_multi 0.984375 0.146512 0.255061

e3s.llukas22_mpnet_base 0.578125 0.226994 0.325991

e3s.tgsc_para_multi 0.5625 0.219512 0.315789

e3w.llukas22_mpnet_base 0.703125 0.197368 0.308219

e3w.tgsc_para_multi 0.703125 0.197368 0.308219

e1.all 0.775862 0.616438 0.687023

e3.all 1 0.131959 0.233151

e3s.all 0.640625 0.199029 0.303704

e3w.all 0.703125 0.197368 0.308219

e1.max 0.625 0.666667 0.645161

e3.max 0.96875 0.164456 0.281179

e3s.max 0.5 0.264463 0.345946

e3w.max 0.703125 0.197368 0.308219

ICH tags dataset

Table A7. Single methods result for ICH Tags, using the ‘sentence-transformers/paraphrase-MiniLM-
L6-v2’ pretrained language model, shown in Figure 8 on the left.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.460177 0.693333 0.553191 0.351111 0.235556

s1s.[AVG] 0.447368 0.68 0.539683 0.342222 0.228889

s1s.[MAXS] 0.477477 0.706667 0.569892 0.357778 0.24

s1w.path 0.320611 0.56 0.407767 0.28 0.186667

s1w.wu 0.504673 0.72 0.593407 0.36 0.24

s1w.min_dist 0.504673 0.72 0.593407 0.36 0.24

s.Jaro 0.121387 0.28 0.169355 0.14 0.093333

s3s.[CLS] 0.466346 0.19246 0.272472 0.271373 0.166336

s3s.[AVG] 0.485577 0.200397 0.283708 0.282793 0.173473

s3s.[MAXS] 0.480769 0.198413 0.280899 0.279707 0.172564

s3w.path 0.346154 0.142857 0.202247 0.200617 0.121142

s3w.wu 0.677885 0.279762 0.396067 0.392593 0.260444

s3w.min_dist 0.644231 0.265873 0.376404 0.37284 0.244819

e1.model 0.59375 0.791667 0.678571 0.400463 0.268519

e3.model 0.961538 0.135227 0.237107 0.242837 0.139389

e1s.model 0.454545 0.694444 0.549451 0.351852 0.236111

e3s.model 0.576923 0.169492 0.262009 0.269189 0.162208
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Table A8. Single methods result for ICH Tags, using the ‘flax-sentence-
embeddings/all_datasets_v3_mpnet-base’ pretrained language model, shown in Figure 8
on the right.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.346154 0.6 0.439024 0.313333 0.215556

s1s.[AVG] 0.390244 0.64 0.484848 0.331111 0.226667

s1s.[MAXS] 0.341085 0.586667 0.431373 0.297778 0.2

s1w.path 0.320611 0.56 0.407767 0.28 0.186667

s1w.wu 0.504673 0.72 0.593407 0.36 0.24

s1w.min_dist 0.504673 0.72 0.593407 0.36 0.24

s.Jaro 0.121387 0.28 0.169355 0.14 0.093333

s3s.[CLS] 0.389423 0.160714 0.227528 0.226929 0.135362

s3s.[AVG] 0.432692 0.178571 0.252809 0.252238 0.15264

s3s.[MAXS] 0.442308 0.18254 0.258427 0.257485 0.157132

s3w.path 0.346154 0.142857 0.202247 0.200617 0.121142

s3w.wu 0.677885 0.279762 0.396067 0.392593 0.260444

s3w.min_dist 0.644231 0.265873 0.376404 0.37284 0.244819

e1.model 0.583333 0.777778 0.666667 0.388889 0.259259

e3.model 0.951923 0.139437 0.243243 0.247863 0.142883

e1s.model 0.333333 0.583333 0.424242 0.296296 0.199074

e3s.model 0.480769 0.160514 0.240674 0.244501 0.146704

Table A9. Single methods result for ICH Tags, using the ‘tgsc/sentence-transformers_paraphrase-
multilingual-mpnet-base-v2’ pretrained language model.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.390244 0.64 0.484848 0.331111 0.226667

s1s.[AVG] 0.518519 0.746667 0.612022 0.386667 0.264444

s1s.[MAXS] 0.420168 0.666667 0.515464 0.344444 0.235556

s1w.path 0.320611 0.56 0.407767 0.28 0.186667

s1w.wu 0.504673 0.72 0.593407 0.36 0.24

s1w.min_dist 0.504673 0.72 0.593407 0.36 0.24

s.Jaro 0.121387 0.28 0.169355 0.14 0.093333

s3s.[CLS] 0.480769 0.198413 0.280899 0.280324 0.171682

s3s.[AVG] 0.504808 0.208333 0.294944 0.294213 0.182429

s3s.[MAXS] 0.466346 0.19246 0.272472 0.271373 0.167879

s3w.path 0.346154 0.142857 0.202247 0.200617 0.121142

s3w.wu 0.677885 0.279762 0.396067 0.392593 0.260444

s3w.min_dist 0.644231 0.265873 0.376404 0.37284 0.244819

e1.model 0.519608 0.736111 0.609195 0.368056 0.24537

e3.model 0.942308 0.142029 0.246851 0.250538 0.144767

e1s.model 0.413793 0.666667 0.510638 0.344907 0.236111

e3s.model 0.528846 0.190972 0.280612 0.28209 0.172596
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Table A10. Ensemble methods result for ICH Tags, shown in Figure 9.

Method Recall Precision F1

e1.para-MiniLM_l6-v2 0.672414 0.62234 0.646409

e1.flax_mpnet_base 0.620112 0.593583 0.606557

e1.tgsc_para_multi 0.625731 0.601124 0.613181

e3.para-MiniLM_l6-v2 0.961538 0.135227 0.237107

e3.flax_mpnet_base 0.951923 0.139437 0.243243

e3.tgsc_para_multi 0.942308 0.142029 0.246851

e3s.para-MiniLM_l6-v2 0.485577 0.221491 0.304217

e3s.flax_mpnet_base 0.423077 0.183716 0.256186

e3s.tgsc_para_multi 0.490385 0.204819 0.288952

e3w.para-MiniLM_l6-v2 0.677885 0.206745 0.316854

e3w.flax_mpnet_base 0.677885 0.206745 0.316854

e3w.tgsc_para_multi 0.677885 0.206745 0.316854

e1.all 0.771277 0.516014 0.618337

e3.all 0.985577 0.113135 0.20297

e3s.all 0.615385 0.175824 0.273504

e3w.all 0.677885 0.206745 0.316854

e1.max 0.611511 0.714286 0.658915

e3.max 0.889423 0.157046 0.266955

e3s.max 0.307692 0.20915 0.249027

e3w.max 0.677885 0.206745 0.316854

Cook_IT dataset

Table A11. The single method results for Cook_IT, using the ‘tgsc/sentence-transformers_paraphrase-
multilingual-mpnet-base-v2’ pretrained language model, shown in Figure 10 on the left.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.275862 0.380952 0.32 0.261905 0.214286

s1s.[AVG] 0.333333 0.428571 0.375 0.285714 0.230159

s1s.[MAXS] 0.275862 0.380952 0.32 0.261905 0.214286

s1w.path 0.321429 0.428571 0.367347 0.301587 0.253968

s1w.wu 0.37037 0.47619 0.416667 0.333333 0.277778

s1w.min_dist 0.37037 0.47619 0.416667 0.333333 0.277778

s.Jaro 0.258065 0.380952 0.307692 0.285714 0.246032

s3s.[CLS] 0.289474 0.079137 0.124294 0.124565 0.072184

s3s.[AVG] 0.315789 0.084507 0.133333 0.130385 0.075113

s3s.[MAXS] 0.289474 0.078571 0.123596 0.122184 0.070673

s3w.path 0.421053 0.153846 0.225352 0.175737 0.111111

s3w.wu 0.5 0.197917 0.283582 0.243764 0.166667

s3w.min_dist 0.5 0.2 0.285714 0.245881 0.168367

e1.model 0.423077 0.52381 0.468085 0.365079 0.301587

e3.model 0.631579 0.086331 0.151899 0.140513 0.081068

e1s.model 0.333333 0.428571 0.375 0.285714 0.230159

e3s.model 0.315789 0.07362 0.119403 0.122151 0.069766
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Table A12. The single method results for Cook_IT, using the ‘nickprock/sentence-bert-base-italian-
xxl-uncased’ pretrained language model, shown in Figure 10 on the right.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.428571 0.571429 0.489796 0.436508 0.380952

s1s.[AVG] 0.392857 0.52381 0.44898 0.388889 0.333333

s1s.[MAXS] 0.423077 0.52381 0.468085 0.365079 0.301587

s1w.path 0.321429 0.428571 0.367347 0.301587 0.253968

s1w.wu 0.37037 0.47619 0.416667 0.333333 0.277778

s1w.min_dist 0.37037 0.47619 0.416667 0.333333 0.277778

s.Jaro 0.258065 0.380952 0.307692 0.285714 0.246032

s3s.[CLS] 0.578947 0.152778 0.241758 0.241081 0.145597

s3s.[AVG] 0.578947 0.153846 0.243094 0.241081 0.145597

s3s.[MAXS] 0.605263 0.159722 0.252747 0.250605 0.150888

s3w.path 0.421053 0.153846 0.225352 0.175737 0.111111

s3w.wu 0.5 0.197917 0.283582 0.243764 0.166667

s3w.min_dist 0.5 0.2 0.285714 0.245881 0.168367

e1.model 0.461538 0.571429 0.510638 0.412698 0.349206

e3.model 0.789474 0.109091 0.191693 0.190999 0.110799

e1s.model 0.461538 0.571429 0.510638 0.412698 0.349206

e3s.model 0.605263 0.138554 0.22549 0.229733 0.136675

Table A13. Ensemble methods result for Cook_IT, shown in Figure 11.

Method Recall Precision F1

e1.nickprock_ita 0.566667 0.395349 0.465753

e1.tgsc_para_multi 0.5 0.365854 0.422535

e3.nickprock_ita 0.789474 0.109091 0.191693

e3.tgsc_para_multi 0.631579 0.086331 0.151899

e3s.nickprock_ita 0.578947 0.157143 0.247191

e3s.tgsc_para_multi 0.315789 0.086331 0.135593

e3w.nickprock_ita 0.714286 0.183486 0.291971

e3w.tgsc_para_multi 0.714286 0.183486 0.291971

e1.all 0.645161 0.322581 0.430108

e3.all 0.868421 0.092697 0.167513

e3s.all 0.657895 0.123153 0.207469

e3w.all 0.714286 0.183486 0.291971

e1.max 0.428571 0.363636 0.393443

e3.max 0.552632 0.106599 0.178723

e3s.max 0.236842 0.118421 0.157895

e3w.max 0.714286 0.183486 0.291971
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WordSim353 dataset

Table A14. Single methods result for WordSim353, using ‘sentence-transformers/paraphrase-MiniLM-
L6-v2’ pretrained language model, shown in Figure 12, on the left.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.9575 0.9575 0.9575 0.9575 0.9575

s1s.[AVG] 0.9725 0.9725 0.9725 0.9725 0.9725

s1s.[MAXS] 0.965 0.965 0.965 0.965 0.965

s1w.path 0.81 0.81 0.81 0.81 0.81

s1w.wu 0.81 0.81 0.81 0.81 0.81

s1w.min_dist 0.81 0.81 0.81 0.81 0.81

s.Jaro 0.915 0.915 0.915 0.915 0.915

s3s.[CLS] 0.9725 0.139777 0.244423 0.244643 0.13994

s3s.[AVG] 0.9825 0.141367 0.24717 0.247321 0.141488

s3s.[MAXS] 0.98 0.14116 0.246774 0.246964 0.14131

s3w.path 0.945 0.136758 0.238938 0.23881 0.136714

s3w.wu 0.95 0.137532 0.240278 0.240149 0.137488

s3w.min_dist 0.96 0.138929 0.242731 0.24256 0.138857

e1.model 0.8075 0.8075 0.8075 0.8075 0.8075

e3.model 0.9875 0.058277 0.110059 0.1137 0.060448

e1s.model 0.9575 0.9575 0.9575 0.9575 0.9575

e3s.model 0.9825 0.107026 0.193026 0.196602 0.109461

Table A15. Single methods result for WordSim353, using the ‘flax-sentence-
embeddings/all_datasets_v3_mpnet-base’ pretrained language model, shown in Figure 12
on the right.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.9675 0.9675 0.9675 0.9675 0.9675

s1s.[AVG] 0.96 0.96 0.96 0.96 0.96

s1s.[MAXS] 0.9675 0.9675 0.9675 0.9675 0.9675

s1w.path 0.81 0.81 0.81 0.81 0.81

s1w.wu 0.81 0.81 0.81 0.81 0.81

s1w.min_dist 0.81 0.81 0.81 0.81 0.81

s.Jaro 0.915 0.915 0.915 0.915 0.915

s3s.[CLS] 0.98 0.141109 0.246696 0.246964 0.14131

s3s.[AVG] 0.9825 0.141316 0.247092 0.247321 0.141488

s3s.[MAXS] 0.9825 0.14152 0.247403 0.247679 0.141726

s3w.path 0.945 0.136758 0.238938 0.23881 0.136714

s3w.wu 0.95 0.137532 0.240278 0.240149 0.137488

s3w.min_dist 0.96 0.138929 0.242731 0.24256 0.138857

e1.model 0.7925 0.7925 0.7925 0.7925 0.7925

e3.model 0.9875 0.060713 0.114393 0.117832 0.062778

e1s.model 0.965 0.965 0.965 0.965 0.965

e3s.model 0.9825 0.117947 0.210611 0.213335 0.119866
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Table A16. single methods result for WordSim353, using ‘tgsc/sentence-transformers_paraphrase-
multilingual-mpnet-base-v2’ pretrained language model.

Method Recall Precision F1 Dice Jaccard

s1s.[CLS] 0.97 0.97 0.97 0.97 0.97

s1s.[AVG] 0.97 0.97 0.97 0.97 0.97

s1s.[MAXS] 0.9675 0.9675 0.9675 0.9675 0.9675

s1w.path 0.81 0.81 0.81 0.81 0.81

s1w.wu 0.81 0.81 0.81 0.81 0.81

s1w.min_dist 0.81 0.81 0.81 0.81 0.81

s.Jaro 0.915 0.915 0.915 0.915 0.915

s3s.[CLS] 0.9825 0.141469 0.247325 0.247589 0.141667

s3s.[AVG] 0.9825 0.141622 0.247559 0.247857 0.141845

s3s.[MAXS] 0.9825 0.141469 0.247325 0.247589 0.141667

s3w.path 0.945 0.136758 0.238938 0.23881 0.136714

s3w.wu 0.95 0.137532 0.240278 0.240149 0.137488

s3w.min_dist 0.96 0.138929 0.242731 0.24256 0.138857

e1.model 0.8175 0.8175 0.8175 0.8175 0.8175

e3.model 0.99 0.063604 0.119529 0.123139 0.065788

e1s.model 0.9675 0.9675 0.9675 0.9675 0.9675

e3s.model 0.9825 0.12793 0.226382 0.22864 0.129532

Table A17. Ensemble methods result for WordSim353, shown in Figure 13.

Method Recall Precision F1

e1.para-MiniLM_l6-v2 0.975 0.761719 0.855263

e1.flax_mpnet_base 0.9775 0.771203 0.862183

e1.tgsc_para_multi 0.98 0.777778 0.867257

e3.para-MiniLM_l6-v2 0.9875 0.058277 0.110059

e3.flax_mpnet_base 0.9875 0.060713 0.114393

e3.tgsc_para_multi 0.99 0.063604 0.119529

e3s.para-MiniLM_l6-v2 0.98 0.151002 0.261682

e3s.flax_mpnet_base 0.9825 0.146151 0.254451

e3s.tgsc_para_multi 0.9825 0.14265 0.249128

e3w.para-MiniLM_l6-v2 0.964912 0.122651 0.217637

e3w.flax_mpnet_base 0.964912 0.122651 0.217637

e3w.tgsc_para_multi 0.964912 0.122651 0.217637

e1.all 0.9825 0.722426 0.832627

e3.all 0.9925 0.047953 0.091485

e3s.all 0.9875 0.103268 0.186982

e3w.all 0.964912 0.122651 0.217637

e1.max 0.97 0.804979 0.879819

e3.max 0.9825 0.07328 0.136387

e3s.max 0.9725 0.206695 0.340929

e3w.max 0.964912 0.122651 0.217637
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