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Abstract: In the realm of foreign exchange (Forex) market predictions, Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) have been commonly employed. However,
these models often exhibit instability due to vulnerability to data perturbations attributed to their
monolithic architecture. Hence, this study proposes a novel neuroscience-informed modular network
that harnesses closing prices and sentiments from Yahoo Finance and Twitter APIs. Compared to
monolithic methods, the objective is to advance the effectiveness of predicting price fluctuations in
Euro to British Pound Sterling (EUR/GBP). The proposed model offers a unique methodology based
on a reinvigorated modular CNN, replacing pooling layers with orthogonal kernel initialisation
RNNs coupled with Monte Carlo Dropout (MCoRNNMCD). It integrates two pivotal modules: a
convolutional simple RNN and a convolutional Gated Recurrent Unit (GRU). These modules incor-
porate orthogonal kernel initialisation and Monte Carlo Dropout techniques to mitigate overfitting,
assessing each module’s uncertainty. The synthesis of these parallel feature extraction modules
culminates in a three-layer Artificial Neural Network (ANN) decision-making module. Established
on objective metrics like the Mean Square Error (MSE), rigorous evaluation underscores the pro-
posed MCoRNNMCD–ANN’s exceptional performance. MCoRNNMCD–ANN surpasses single
CNNs, LSTMs, GRUs, and the state-of-the-art hybrid BiCuDNNLSTM, CLSTM, CNN–LSTM, and
LSTM–GRU in predicting hourly EUR/GBP closing price fluctuations.

Keywords: modular neural networks; convolutional neural networks; recurrent neural networks;
rational choice theory; price fluctuations; sentiment analysis; Forex prediction

1. Introduction

The foreign exchange (Forex) market, a global and highly liquid financial market for
currency exchange, plays a crucial role in international trade and investment. Its continuous
operation and substantial trading volume make it an attractive choice for investors, leading
to a growing number of individuals transitioning from the stock market to Forex. It substan-
tially influences contemporary international economies concerning economic expansion,
global interest rates, and financial equilibrium [1]. Researchers emphasised that due to the
substantial magnitude of daily transactions, investors and financial institutions possess the
potential to yield significant returns by accurately speculating and signifying fluctuations in
Forex exchange rates [2]. Computational advancements, such as Artificial Intelligence (AI)
and its machine and deep learning subfields, are utilised in the stock and Forex markets
by providing traders with new ways to scrutinise market data and seek to find potentially
profitable trading options [3,4]. However, recent AI tendencies have revealed that the
synergy between neuroscience, machine, and deep learning is necessary for more informed
and better-comprehended decision making [5]. Likewise, neuroscience supplemented with
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economic theories, such as rational choice, could be pivotal to developing bio-informed AI
models in handling Forex’s intricacies [6,7].

Rational Choice Theory (RCT) in financial markets, influencing investors’ economic
decision-making processes, constitutes a multifaceted cognitive phenomenon intertwined
with rational self-interest. Individuals navigate diverse financial conditions in this intricate
landscape to derive optimal net benefits [8]. Furthermore, RCT illuminates how investors
assimilate information, exhibit demeanours across various social and economic contexts—notably
financial markets like Forex—and formulate trading strategies [9,10]. Nevertheless, while RCT
underscores the centrality of rationality in decision making, it is imperative to recognise that
emotions influence investors’ choices [11].

Moreover, contemporary insights from neuroscience have contributed to explicating
decision-making processes by elucidating the complex connections between rational delib-
eration and emotional responses mediated by distinct brain regions, such as the insular and
prefrontal cortex [12,13]. This emerging understanding highlights the interplay between
cognitive rationality and affective elements, providing a more nuanced comprehension
of how economic reasoning is constructed. Recent studies indicated that behavioural fa-
cilitation in the human brain regions, such as the amygdala and hippocampus, is related
to emotions and memory retrieval [14–18]. The amygdala and hippocampus correlate
with cortical areas, such as the frontal and temporal lobes, including brain parts such as
the striatum, insular, and prefrontal cortex [19]. Current neuroscientific investigations
imply that these parts of the brain are accountable for the individuals’ procedural learning,
reasoning, and emotions and are likely crucial for decision making under financial risk
conditions [20–25].

AI algorithms, such as Artificial Neural Networks (ANNs), have emerged as a power-
ful, innovative mechanism for simulating brain functions, such as self-intuition and Natural
Language Processing (NLP) linked with emotions, to comprehend information processing
and evaluate the possible contingencies to arrive at optimal decision prospects [26,27].
NLP techniques can be applied to financial textual data to analyse sentiment. Sentiment
analysis can help gauge the collective mood of traders and investors, which, combined with
economic indicators such as closing, can better anticipate price market movements [28].
Hence, traders and institutions increasingly use social media analytics tools to track and
analyse trends on platforms like Twitter to help traders make informed decisions [29,30].
Moreover, different ANN types, such as Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) networks, have been employed against traditional methods,
like Support Vector Machines (SVM), in contemplating the future price direction applied
to a non-stationary time series. For example, Sim et al. [31] aimed to predict the Standard
and Poor’s (S&P) 500 index by considering the closing price and nine technical indicators,
including SMA, EMA, ROC, MACD, Fast %K, Slow %D, Upper Band, and Lower Band. In
their investigation, a comparison was made between three models: CNN, ANN, and SVM.
The researchers concluded that technical indicators were not suitable as input features due
to their similarity in behaviour to the moving pattern of the closing price, which resulted
in poor performance. Moreover, CNN outperformed ANN and SVM without utilising
technical indicators.

Similarly, Lanbouri and Achchab [32] presented a study focusing on predicting the
price of Amazon stock using LSTM networks and technical indicators. They conducted two
experiments to evaluate the LSTM’s performance. The first experiment excluded technical
indicators and utilised only the Open, High, Low, and Close (OHLC) prices and volume
as input features. The second experiment incorporated five technical indicators (EMA12,
EMA25, MACD, Bollinger Up, and Bollinger Down) along with the OHLC prices and
volume. Interestingly, their findings indicated that accurate predictions of the closing price
could be achieved without the use of technical indicators.

Although ANNs and their advanced techniques, such as CNN and LSTM, have demon-
strated the capacity to recognise financial market patterns and trends, their monolithic
architectures pose significant challenges, such as:
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• Limited scalability and lack of flexibility: monolithic architectures may be more
challenging to scale because they are not easily divided into shorter, independent
modules that can be developed and added to the architecture as needed [33];

• Difficulty understanding and modifying the architecture: Monolithic architectures can
be challenging to understand, maintain, and modify, especially as their size becomes
more extensive. Thus, updating the architecture as data or market conditions can be
challenging [34];

• Increased risk of failure: Because monolithic architectures are difficult to understand
and modify, there is an increased risk of failure when making changes to the architec-
ture. Hence, fixing it can be computationally costly and time-consuming [35].

The limitations mentioned above result in poor model performance and may increase
prediction errors when confronted with even minor changes in the data occurring at a
national or global scale [36]. This study formulated and sought to answer this research
question (RQ): can a novel bio-inspired convolutional Modular Neural Network, replacing
standard pooling layers with recurrent layers and incorporating an innovative adaptive
mechanism involving Monte Carlo dropout and orthogonal kernel initialisation, enhance
Forex price movement prediction compared to monolithic and state-of-the-art models?

Thus, given the inherent complexity and non-linearity of the Forex market, this study’s
objective is to revise the monolithic computational models, explicitly focusing on utilising
neural networks encompassing both nuanced upward and downward price movements,
with the primary goal to enhance the potential of neural networks for more accurate
predictions. More specifically, based on recent neuroscientific advancements, it is critical
to comprehend investors’ decision making sufficiently in an effort to improve monolithic
architectures [37].

A Modular Neural Model for potentially foreseeing Forex market price fluctuations is
proposed in this study to deal with the limitations of existing monolithic approaches. More
specifically, the contributions of this study can be described as follows:

1. A novel Modular Neural Network inspired by cognitive neuroscience and RCT is
proposed to model human decision making, enhancing Forex market predictions. In
Sections 2.3, 2.3.1 and 3.2, a detailed discussion occurs along with Section 4, which
shows if the novel Modular Neural Network is in place to enhance Forex market
predictions;

2. A new adaptative mechanism consists of Monte Carlo dropout and orthogonal kernel
initialisation, incorporating it into recurrent layers within a convolutional modular
network, replacing the standard pooling layer of a typical and conventional CNN.
Likewise, the new adaptation mechanism consists of Monte Carlo dropout and or-
thogonal kernel initialisation, incorporating it into recurrent layers, discussed in detail
in Sections 2.3, 2.3.1, and 3.2, along with Section 4;

3. A pioneering technological advancement unifying neuroscience-inspired modular
architecture, Monte Carlo dropout, and orthogonal kernel initialisation optimises
the efficiency and training processes of neural networks in Forex predictions by
significantly elevating the realm of computational financial modelling.

The remainder of this paper is structured as follows: Section 2 reviews state-of-the-art
machine and deep learning models for neuroscience-informed and price fluctuation fore-
casting in financial markets. Section 3 presents data collection and a thorough description
of the proposed model, emphasising its architecture and usefulness. Section 4 offers the
hyperparameters setting, the results from a detailed comparative analysis of the proposed
Modular Neural Network against the state-of-the-art hybrid and single monolithic archi-
tectures retrieved from the literature, and discussions. Section 5 concludes this research’s
main findings, limitations, and future directions.

2. Incorporating Rational Choice Theory with Neuroscience and AI Systems

This study comprehensively investigates diverse sub-fields, including neuroscience,
informatics, economics, and machine and deep learning methods. The primary objective is
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thoroughly synthesising existing conceptual and empirical articles and surveys, encompass-
ing primary research while conducting a meta-narrative review [38]. A semi-systematic
review has also proved sufficient to better understand complex areas like NLP and busi-
ness research [39–41]. A critical literature analysis was performed to foresee Forex hourly
price fluctuations, selecting pertinent sources from Yahoo Finance and Twitter Streaming
APIs for the EUR/GBP currency pair. Moreover, this study considered 15,796 recovered
bibliographic records, focusing on renowned databases, including Scopus (n = 11,620)
and IEEE Xplore (n = 4176). Motivated by this study’s objective to revise the monolithic
computational model, aiming to enhance the potential of neural networks for more accu-
rate predictions, the following targeted keyword searches were employed, focusing on
topics such as: “brain modularity”, “financial decisions under risk”, “biologically inspired
machine”, “rational choice theory for finance”, “machine learning for Forex/stock pre-
dictions”, “deep learning for Forex/stock price predictions”, “social media analysis for
Forex/stock predictions”, “NLP for finance”, “neuroeconomics”, “artificial neural networks
mimic brain”, “Twitter sentiment analysis for Forex/stock markets”, “CNN for Forex/stock
predictions”, and “RNN for Forex/stock predictions”.

The articles and surveys were exhaustively reviewed by strategically scanning their
titles, abstracts, and keywords to identify those that appeared most relevant to the aim of
this study. Applying the traditional technique of including peer-reviewed reports from rep-
utable publishers ensures the utilisation of reliable and high-quality sources. Subsequently,
by using exclusion criteria, such as non-English language usage and duplicated articles, a
subset of 150 articles was picked.

2.1. Brain Modularity and Computational Representations

As already discussed in Section 1, RCT could be a beneficial framework for under-
standing individual decision-making processes in the Forex markets. However, RCT has
been criticised, as the speculations assembled in this theory fail to consider the reality that
the success of the outcome of a decision is affected by conditions that are not within the
power of the individual making the decision [7]. One of the components that RCT neglects
is the role of emotions in the choices of individuals, which could play an influential role in
shaping the financial decision making of investors [11]. Nevertheless, despite this criticism,
the RCT has demonstrated a reasonable basis for defining how economic decisions are
affected [7].

Moreover, neuroscience findings provide insights into rational choice’s neural mech-
anisms by highlighting the brain’s prefrontal cortex and insula positions [42]. For exam-
ple, the ventromedial prefrontal cortex (vmPFC), a piece of the prefrontal cortex in the
mammalian brain and anterior insula cortex (AIC), could represent distinct modules that
influence rational and emotional decision making, respectively, underscoring the signifi-
cance of considering cognitive and affective factors that are indicated in the vmPFC and
the AIC, including emotions and the ability to plan under risk process [43–46], observ-
ing high modular variability in the insular regions. Researchers also suggested that the
cortical brain regions vary fundamentally in their position, having a specific contribution
to economic choices, which are mainly determined by the inputs of each area [47]. The
modular approach to operating neuroanatomy of financial decision making confirms the
actions of economic choices, such as comparing values, in the regional architecture of the
brain [48,49].

Neuroscientists have also examined computational brain modularity to explain brain
functionalities. For example, Tzilivaki et al. [50] investigated that complex, non-linear
dendritic computations necessitate the development of a new theory of interneuron arith-
metic. Using thorough biophysical models, they foresaw that the dendrites of FS basket
cells in both the hippocampus and the prefrontal cortex are supralinear and sublinear. Fur-
thermore, they compared a Linear ANN, in which the input from all dendrites is linearly
merged at the cell body, and a two-layer modular ANN, in which the input is fed into two
parallel, separated hidden layers. Despite that, the linear ANN exhibited relatively good
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performance; the two-layer modular ANN surpassed the respective linear ANN, which
failed to illustrate the variance assembled by discrepancies in the input area. Based on
these findings, the topology of the proposed modular network was selected.

Yao et al. [51] developed a deep learning model for image classification that combines
two types of neural networks. More specifically, their model uses a parallel system that
combines a CNN and an RNN for image feature extraction, and a unique perceptron
attention mechanism to unite the features from both networks. Their findings have shown
that their suggested method outperforms current state-of-the-art methods based on CNNs,
demonstrating the benefits of using a parallel structure. Additionally, deep learning models
using CNNs and RNNs can benefit NLP, indicating topic-level representations of sentences
in the brain region by capturing intricate relationships of words and sentences. This ability
could be crucial for investor sentiment analysis in the frame of the Forex market [52,53].

More recently, Flesch et al. [54] uncovered that the “rich” learning approach, which
structures the hidden units to prioritise relevant features over irrelevant ones, results in
neural coding patterns consistent with how the human brain processes information. Addi-
tionally, they found that these patterns evolve as the task progresses. For example, when
they trained deep CNNs on the task using the “rich” learning method, they discovered that
it induced structured representations that progressively transformed inputs from a grid-like
structure to an orthogonal design and eventually to a parallel system. These non-linear,
orthogonal, and parallel representations demonstrated a vital element of their research,
as they suggest that the neural networks can code for multiple, potentially contradicting
tasks effectively.

In financial markets, Baek and Kim [55] proposed ModAugNet, a framework integrat-
ing a novel data augmentation technique for stock market index forecasting. The model
comprises a prediction LSTM module and an overfitting prevention LSTM module. The per-
formance evaluation using S&P 500 and KOSPI200 datasets demonstrated ModAugNet-c’s
superiority over a monolithic deep neural network, an RNN, and SingleNet, a comparable
model without the overfitting prevention LSTM module. The test of Mean Square Error
(MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE) errors
for S&P 500 decreased to 54.1%, 35.5%, and 32.7%, respectively, and for KOSPI200, errors
decreased to 48%, 23.9%, and 32.7%, respectively. A limitation of their study was the exclu-
sion of other information sources, like news and investors’ sentiment. Similarly, Lee and
Kim [56] proposed NuNet, an end-to-end integrated neural network, to enhance prediction
accuracy for S&P 500, KOSPI200, and FTSE100 prices. NuNet’s feature extractor modules
and trend sampling technique outperformed all baseline models across the three indexes,
including SingleNet and the SMA [55].

Below is an overview of financial predictive models in markets, including state-of-
the-art methods, which have shown promising performance. These models highlight the
potential of incorporating innovative techniques to enhance prognosis accuracy and inform
investment decisions.

2.2. Overview of Machine and Deep Learning Financial Predictive Models

In order to predict challenging financial markets’ fluctuations and accurately forecast
them, researchers have proposed several machines and deep learning methods, such as
the CNNs, the variants of RNNs, namely the GRU and LSTM, and their hybrid and single
architectures. For example, Galeshchuk and Mukherjee [57] suggested a CNN for predicting
the price change direction in the Forex market. They utilised the daily closing rates of
EUR/USD, GBP/USD, and USD/JPY currency pairs. Moreover, they compared the results
of CNN with baseline models, such as the majority class (MC), autoregressive integrated
moving average (ARIMA), exponential smoothing (ETS), ANN, and SVM. Their findings
showed that the baseline models and SVM yielded an accuracy of around 65%, while their
suggested CNN model had an accuracy of about 75%. Deep learning architectures, such as
the LSTMs, were recommended for future investigation in Forex.
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Shiao et al. [58] employed the support vector Regression (SVR) and the RNN with
LSTM to capture the dynamics of Forex data using the closing price of the USD/JPY
exchange rate. The results indicated that their suggested RNN model outperformed the
SVR model with a Root Mean Square Error (RMSE) of 0.0816, which achieved an RMSE of
0.1398, respectively. Maneejuk and Srichaikul [59] investigated which ARIMA, ANN, RNN,
LSTM, and support vector machines (SVM) models presented better performance to the
Forex market predictions. They used the daily closing price of five currencies: the Japanese
Yen, Great Britain Pound, Euro, Swiss Franc, and the Canadian Dollar for six years. Each
model’s performance was evaluated using the RMSE, MAE, MAPE, and Theil U. Their
findings showed that the ANN outperformed the other models in predicting the CHF/USD
currency pair. On the other hand, the LSTM obtains better results than the other methods
in predicting EUR/USD, GBP/USD, CAD/USD, and JPY/USD rates. For instance, the
LSTM achieved the MAE of 0.0300 in the prediction of the EUR/USD compared to the
MAE of 0.0435, 0.0319, 0.0853, 0.0560 obtained from the ARIMA, ANN, RNN, LSTM, and
SVM models, respectively.

Hossain et al. [60] suggested a model based on deep learning to forecast the stock
price of the Standard and Poor’s 500 (S&P 500) from 1950 to 2016, combining LSTM and
GRU networks, compared to a multilayer perceptron (MLP), CNN, RNN, Average Ensem-
ble, Hand-Weighted Ensemble, and Blended Ensemble. Their findings revealed that the
LSTM–GRU model surpassed the other methods, achieving an MSE of 0.00098, with the
other models accomplishing MSEs of 0.26, 0.2491, 0.2498, 0.23, 0.23, and 0.226, respectively.
Similarly, Althelaya et al. [61] investigated LSTM architectures to forecast the closing prices
of the S&P 500 for eight years. Their findings showed that the Bidirectional LSTM (BLSTM)
was the most appropriate model, outperforming the MLP–ANN, the LSTM, and the stacked
LSTM (SLSTM) models, achieving the lowest error in the short- and long-term predictions. For
example, the BLSTM achieved an MAE of 0.00736 in the short-term forecasts compared to MAEs
of 0.03202, 0.01398, and 0.00987 for the MLP–ANN, LSTM, and SLSTM models, respectively.

Lu et al. [62] proposed a predicting technique for stock prices, employing a com-
bination of CNNs and LSTM, which utilises the memory function of LSTM to analyse
relationships among time series data and the feature extraction capabilities of CNNs. Their
CNN–LSTM model uses opening, highest, lowest, and closing prices, volume, turnover,
ups and downs, and change as input and extracts features from the previous ten days of
data. Their method is compared to other forecasting models, such as LSTM, MLP, CNN,
RNN, and CNN–RNN. The results showed that their CNN–LSTM model outperformed the
other models by presenting an MAE of 27.564, in contrast to MLP’s 37.584, CNN’s 30.138,
RNN’s 29.916, LSTM’s 28.712, and CNN–RNN’s 28.285. They concluded that their pro-
posed CNN–LSTM could provide a reliable reference for investors’ investment decisions.
However, their model still needs to improve, as it only considers the effect of stock price
data on closing prices rather than combining sentiment analysis and national policies into
the predictions.

Alonso-Monsalve et al. [63] considered a convolutional LSTM (CLSTM) as an alterna-
tive to the traditional CNN, MLP, and the radial basis function neural networks (RBFNN)
for predicting the price movements of cryptocurrency exchange rates utilising high frequen-
cies. Their study compared the performance of CLSTM against CNN, MLP, and RBFNN
on six popular cryptocurrencies: Bitcoin, Dash, Ether, Litecoin, Monero, and Ripple. The
results showed that the CLSTM network outperformed all other models significantly and
was in place to predict the trends of Dash and Ripple by 4% over the trivial classifier.
The CNNs also provided good results, particularly for Bitcoin, Ether, and Litecoin. Their
study concludes that CNNs and CLSTM networks are suitable for predicting the trend of
cryptocurrency exchange rates. However, a drawback of their study was limited to one
year, which indicates that satisfactory outcomes may not be assured for other duration.

Kanwal et al. [64] proposed a hybrid deep learning technique forecasting the prices
of Crude Oil (CL = F1) and Global X DAX Germany ETF (DAX) for the individual stock
item, DAX Performance-Index (GDAXI) and Hang Seng Index (HSI). Their Bidirectional
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Cuda Deep Neural Network Long Short-Term Memory that compounds BiLSTM Neural
Networks and a one-dimensional CNN (BiCuDNNLSTM–1dCNN) compared against
the LSTM deep neural network (LSTM–DNN), the LSTM–CNN, the Cuda Deep Neural
Network Long Short-Term Memory (CuDNNLSTM), and the LSTM. The results from their
study showed that the BiCuDNNLSTM–1dCNN outperformed the other models, validating
the outcomes by using the RMSE and MAE metrics; for instance, in the DAX predictions,
the BiCuDNNLSTM–1dCNN achieved an MAE of 0.566, while the LSTM–DNN, the LSTM–
CNN, the CuDNNLSTM, and the LSTM achieved MAEs of 0.991, 3.694, 2.729, 4.349 in the
test dataset, respectively. Features such as sentiment information have not been exploited
in their study.

Pokhrel et al. [65] analysed and compared the performance of three deep learning
models, LSTM, GRU, and CNN, in predicting the next day’s closing price of the Nepal
Stock Exchange (NEPSE) index. The study uses fundamental market data, macroeconomic
data, technical indicators, and financial text data of the stock market of Nepal. Their
models’ performances are compared using standard assessment metrics like RMSE, MAPE,
and Correlation Coefficient (R). Their results indicated that the LSTM model architecture
provides a superior fit with the smallest RMSE 10.4660 MAPE 0.6488 and with R score
0.9874 in contrast to the GRU with RMSE 12.0706, MAPE 0.7350, R 0.9839, and the CNN
with RMSE 13.6554, GRU 0.8424, and R 0.9782. Their study also suggested that the LSTM
model with 30 neurons was the supreme conqueror, followed by GRU with 50 neurons
and CNN with 30 neurons. Finally, they proposed developing hybrid predictive models,
implementing hybrid optimisation algorithms, and comprising other media sentiments in
the model development methodology for future work.

The studies mentioned above have achieved significant results in predicting the
financial markets. However, researchers have pointed out that there is still much potential
for investigating the use of time series models such as LSTM and GRU in Forex predictions.
These models are known for their ability to capture long-term dependencies in time-series
data, which can be very useful in the context of Forex forecasts. In the context of the Forex
market, they have also indicated that Modular Neural Networks, alongside the rising trend
of NLP, represent an alternative approach that has yet to be extensively explored in price
fluctuation predictions [66,67]. However, the challenge associated with using Modular
Neural Networks is that it can be hard to design and train the individual modules in a
way that leads to an effective combination in the final network decision; therefore, more
research is needed to determine their effectiveness and practicality in this domain.

2.3. Critical Analysis

The multidisciplinary review within this study, incorporating recent neuroscience and
financial market insights, underscores the ongoing need to enhance machine and deep
learning methods. It also highlights the importance of modular design as a solution to
the challenges posed by monolithic architectures [66]. Monolithic neural networks often
suffer from catastrophic forgetting when learning new skills, altering their previously
acquired knowledge. This study advocates for neural networks inspired by the modular
organisation of human and animal brains, capable of integrating new knowledge without
erasing existing knowledge—a fundamental consideration [68]. In addition, the direction
of examining investors’ sentiment combined with economic indicators like closing prices is
a promising trend requiring further investigation [67].

In the realm of computational models, recent studies highlight the significance of
techniques like orthogonal initialisation and MCD, which improved the performance of
ANNs [69,70]. These techniques diverge from models relying solely on default weights and
conventional dropout methods frequently implied in exploring financial predictive models
from the literature, conceivably by enhancing predictive performance. Simultaneously, pri-
mary data plays a pivotal role in this research, offering a direct path to its aim of forecasting
the hourly closing price of EUR/GBP, which is integral to financial analysis [71]. These
data, meticulously gathered from Yahoo Finance (closing prices) and Twitter (sentiments)
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APIs, seamlessly align with the study’s context [72,73]. Beyond introducing and comparing
baseline models to optimally partition the data, these sources enable a comprehensive
assessment of state-of-the-art hybrid and single monolithic architectures selected from the
literature, which were relevant to this study’s aim and feasible for replication.

2.3.1. Baseline Models

The significance of baselines is crucial in this study as they were created to address
research gaps, such as the limited utilisation of MCD and the orthogonal kernel initialisation,
reducing overfitting and potentially enriching the Forex market’s anticipation. These
new models provide a starting point for further analysis. They could help researchers
identify areas for improvement as an essential tool in designing possible more accurate
predictive models discussed further in Section 3. Moreover, baselines are vital for effectively
partitioning the input domain in the context of Forex predictions. This partitioning, in
turn, optimally allocates inputs, thereby enhancing task performance. This importance
is substantiated by primary research leveraging closing prices and sentiment scores from
Yahoo Finance and Twitter Streaming APIs as inputs aggregated based on hourly rates
within 2018–2019. Tables 1–3 present the test performance of the baseline models in
anticipating the EUR/GBP hourly closing price based on the MSE, MAE, and Mean Squared
Logarithmic Error (MSLE) objective evaluation metrics.

Table 1. Baseline models performance metrics in closing prices (CP) of EUR/GBP.

Model Variables Metrics Train Valid Test R2 Time Duration

CoRNNMCD CP MSE 6.7184 × 10−5 6.2938 × 10−5 5.8785 × 10−5 0.99 2:30
MAE 0.00549 0.00538 0.00529
MSLE 3.1801 × 10−5 2.79863 × 10−5 2.6419 × 10−5

CoRNN CP MSE 6.8642 × 10−5 6.3699 × 10−5 5.9447 × 10−5 0.99 1:27
MAE 0.00551 0.00541 0.00532
MSLE 3.2413 × 10−5 2.8352 × 10−5 2.6773 × 10−5

CoGRUMCD CP MSE 6.9541 × 10−5 6.4196 × 10−5 5.9700 × 10−5 0.99 7:38
MAE 0.00551 0.00542 0.00532
MSLE 3.3150 × 10−5 2.8718 × 10−5 2.7013 × 10−5

CoGRU CP MSE 6.9597 × 10−5 6.4106 × 10−5 5.9565 × 10−5 0.99 3:59
MAE 0.00552 0.00541 0.00532
MSLE 3.3222 × 10−5 2.8713 × 10−5 2.6914 × 10−5

1D-CNN CP MSE 0.00012 0.00011 0.00011 0.99 0:36
MAE 0.00763 0.00757 0.00747
MSLE 5.3941 × 10−5 4.800 × 10−5 4.6293 × 10−5

Table 2. Baseline models performance metrics in sentiment scores of EUR/GBP.

Model Variables Metrics Train Valid Test R2 Time Duration

CoRNNMCD Sentiment MSE 0.00079 0.00076 0.00067 0.62 2:21
MAE 0.01535 0.01512 0.01456
MSLE 0.00031 0.00027 0.00026

CoRNN Sentiment MSE 0.00077 0.00076 0.00066 0.63 1:24
MAE 0.01504 0.01489 0.01428
MSLE 0.00029 0.00027 0.00025

CoGRUMCD Sentiment MSE 0.00076 0.00074 0.00065 0.64 6:09
MAE 0.01465 0.01439 0.01394
MSLE 0.00029 0.00026 0.00024

CoGRU Sentiment MSE 0.00077 0.00075 0.00066 0.63 3:47
MAE 0.01497 0.01479 0.01418
MSLE 0.00030 0.00027 0.00025

1D–CNN Sentiment MSE 0.00085 0.00083 0.00073 0.61 0:36
MAE 0.01661 0.01644 0.01591
MSLE 0.00034 0.00031 0.00028
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Table 3. Baseline models performance metrics in closing prices in CRNN and sentiment scores in
CGRU of EUR/GBP.

Model Variables Metrics Train Valid Test R2 Time Duration

CRNN CP MSE 6.8795 × 10−5 6.4113 × 10−5 5.9921 × 10−5 0.99 1:42
MAE 0.00530 0.00544 0.00535
MSLE 3.2451 × 10−5 2.8487 × 10−5 2.6988 × 10−5

CGRU Sentiment MSE 0.00079 0.00076 0.00068 0.63 3:10
MAE 0.01577 0.01545 0.01519
MSLE 0.00030 0.00027 0.00026

The CoRNNMCD and the CoGRUMCD performed better than the other baseline
models in Tables 1 and 2, presenting less error in the MSE, MAE, and MSLE test sets for
the closing prices and sentiment scores, respectively. Moreover, these two baselines will
be used to develop the proposed Modular Neural Network model. For instance, CoRN-
NMCD in closing prices (Table 1) demonstrated fewer errors in the test sets, decreasing
the MSE by 1.12%, 1.54%, 1.32%, and 60.68% for the CoRNN, CoGRUMCD, CoGRU, and
1D–CNN, respectively. Likewise, sentiment scores (Table 2) presented better arrangement
in CoGRUMCD with fewer errors in test sets by decreasing the MSE by 3%, 1.52%, 1.52%,
and 11.59% for the CoRNNMCD, CoRNN, CoGRU, and 1D–CNN, respectively. The typical
1D–CNNs did not employ the orthogonal RNNs coupled with MCD instead of pooling
layers and were used as a baseline, showing less execution time in closing prices and
sentiments. However, 1D–CNNs MSE was significantly higher than the other baselines and
performed worse. Also, it has been observed that using MCD could increase baseline com-
putational time. Nevertheless, the MCD application significantly improved performance in
the selected baselines.

All representatives’ R-squared in Table 1 was high (R2), meaning the models can
fit well with the datasets. However, in Tables 2 and 3 for the CGRU, the models’ more
moderate R2 value has been observed. On the other hand, a high R-squared does not mean
a correlation with objective evaluations such as the MSE, which can be very useful for
comparing the models to provide a more comprehensive evaluation of the predictions.
Finally, Table 3 shows that the best-performed CoRNNMCD and CoGRUMCD significantly
outperformed the convolutional RNN (CRNN) and convolutional GRU (CGRU), presenting
1.92% and 4.5% lower MSE in the test set. These results prove the efficiency of the proposed
adaptive mechanism consisting of MCD and orthogonal kernel initialisation against the
models that did not imply it, like the CRNN and CGRU.

2.3.2. Hybrid Benchmark Models

The choice of hybrid algorithms for this study prioritised adopting the most current,
reputable, and state-of-the-art techniques available, which can replicate as well, according
to the provided information by the authors. This focus on the most recent and state-of-the-
art models ensures that the study is grounded in the latest developments and contributes
to advancing understanding in the forecast of hourly EUR/GBP price fluctuations.

Table 4 shows that the CNN–LSTM performed better than the other models, pre-
senting more inconsequential errors in the MSE, MAE, and MSLE test sets. For example,
CNN–LSTM demonstrated fewer errors in the test sets, decreasing the MSE by 72.66%,
66.61%, 194.55%, and 60.68% for the BiCuDNNLSTM, LSTM–GRU, and CLSTM, respec-
tively. The BiCuDNNLSTM presented less execution time, but its MSE was higher than
the CNN–LSTM. It is worth mentioning that the BiCuDNNLSTM is running in GPU based
on CUDA utilisation, which can boost the speed of training time of deep learning models.
Moreover, factors such as the time steps of each hybrid model can affect its execution time,
as discussed in Section 4. Finally, the hybrid models presented a high R2, with the CLSTM
showing a moderate R2 value.
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Table 4. Hybrid models’ performance metrics receive closing prices and sentiment scores of
EUR/GBP.

Model Metrics Train Valid Test R2 Time Duration

BiCuDNNLSTM [64] MSE 0.00013 0.00015 0.00015 0.99 1:19
MAE 0.00848 0.00874 0.00866
MSLE 6.4001 × 10−5 6.6003 × 10−5 6.9725 × 10−5

CNN–LSTM [62] MSE 6.4471 × 10−5 5.9427 × 10−5 7.005 × 10−5 0.99 1:41
MAE 0.00538 0.00536 0.00552
MSLE 3.0273 × 10−5 2.6574 × 10−5 3.2089 × 10−5

LSTM–GRU [60] MSE 0.00017 0.00014 0.00014 0.99 3:03
MAE 0.00935 0.00901 0.00887
MSLE 7.8049 × 10−5 6.3934 × 10−5 6.4782 × 10−5

CLSTM [63] MSE 0.00501 0.00514 0.00507 0.79 2:18
MAE 0.05722 0.05764 0.05743
MSLE 0.00229 0.00231 0.00234

2.3.3. Single Benchmark Models

Likewise, the choice of algorithms for this study strongly emphasised selecting the
most recent single methods employed for the possible hourly price fluctuation forecast in
the EUR/GBP.

Table 5 revealed that the GRU performed better than the other models, presenting
less error in the MSE, MAE, and MSLE test sets. For instance, GRU exhibited fewer errors
in the test sets, decreasing the MSE by 26.68% and 195.01% for the 2D–CNN and LSTM,
respectively. LSTM presented less execution time, implying 30 neurons and an Adam
optimiser that can obtain a faster convergence rate. However, the MSE of LSTM was
considerably higher than the GRU. The single models also presented a high R2, with the
LSTM presenting a more moderate R2 value.

Table 5. Single models’ performance metrics receive closing prices and sentiment scores of EUR/GBP.

Model Metrics Train Valid Test R2 Time Duration

2D–CNN [65] MSE 0.00012 0.00011 0.00012 0.99 0:51
MAE 0.00760 0.00746 0.00765
MSLE 5.3407 × 10−5 4.8839 × 10−5 5.9233 × 10−5

GRU [65] MSE 8.7491 × 10−5 7.8116 × 10−5 9.1750 × 10−5 0.99 0:47
MAE 0.00628 0.00595 0.00614
MSLE 4.0481 × 10−5 3.5261 × 10−5 4.5704 × 10−5

LSTM [65] MSE 0.00732 0.00723 0.00736 0.77 0:10
MAE 0.04911 0.04911 0.04922
MSLE 0.00334 0.00327 0.00338

3. Materials and Methods

This section provides a comprehensive overview of the data collection process, includ-
ing selecting relevant Forex market data sources and the steps implemented to ensure the
consistency of each dataset. Eventually, it describes the proposed Modular Neural Network
model for predicting the hourly price fluctuation in the EUR/GBP pair.

3.1. Data Collection

The EUR/GBP exchange rate data consist of the closing price values and senti-
ment information retrieved from Yahoo Finance API (https://developer.yahoo.com/api/,
accessed on 31 December 2019) and Twitter Streaming API (https://developer.twitter.com,
accessed on 31 December 2019) on an hourly rate, respectively.

The predicted hourly intraday trading of the closing price EUR/GBP rate is the defined
target from January 2018 to December 2019 for 12,436 h. However, because the Forex prices

https://developer.yahoo.com/api/
https://developer.twitter.com
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incorporate missing values, Twitter’s sentiment data utilises the same hourly timeframe
to be aligned with the pricing data. This can be achieved by employing a data processing
framework in Python, such as Pandas, to construct data entries amalgamating aggregated
sentiment scores and stock prices per designated hour/date intervals. Furthermore, a feature-
level fusion based on the same hourly timeframe is considered to achieve the data coalition
from both APIs. Finally, after the data fusion, the EUR/GBP exchange rate closing prices and
the sentiment scores are provided for each module of the MCoRNNMCD–ANN model.

3.1.1. Forex Closing Prices

The Forex closing prices of the EUR/GBP rate generated from the Yahoo Finance API
from January 2018 to December 2019 for 12,436 h. The data includes the open, high, low,
and close values. Only the closing price is taken into consideration as considered the most
helpful indicator to foresee Forex markets [74]. One hour is deemed most suitable for better
anticipating financial markets because it is shorter than daily or yearly forecasting [75].
Finally, it is worth mentioning that research on data requirements for predicting time series
using ANNs revealed that utilising data of one to two years yields the highest accuracy [76].

3.1.2. Sentiment Data

The Twitter Streaming API is utilised by tuning the appropriate parameters for the
needs of this study. The language parameter indicates whether a user wants to receive
tweets only in one or some specific languages in terms of the tweet’s text. More specifically,
the “language = en” parameter is specified because extracting tweets from an English text
was considered more appropriate, as all existing dictionaries support the English language.
Using Tweepy enables handling the profile of a user and the data collection by assessing
specific keywords; this study uses hashtags such as search words = “#eurgbp”, “#forexmar-
ket”, and “#forex”, referring to EUR/GBP currency pairs. Each tweet is accompanied by
its corresponding timestamp value during its collection from Twitter API. The timestamp
values are parsed using the Pandas to extract date and time information, facilitating time-
based analysis. Subsequently, the tweets are grouped into hourly intervals based on the
hour of posting. Tweets with the same hour counted as one, which, in this case, aggregates
the text into a single data point. This aggregation can be helpful for various types of
analysis, including sentiment analysis using tools like the Valence Aware Dictionary for
Sentiment Reasoning (VADER). Finally, 3,265,896 have been retrieved from January 2018 to
December 2019 for 12,436 h.

VADER, a rule-based sentiment analysis lexicon, is utilised to extract each sentiment
score from the Twitter data [77]. VADER has yielded enormous results, considering the
labelling of a tweet that outperforms even from a human factor rating. VADER delivers a
compound ratio, giving the negative, positive, and neutral sentiment scores. For example,
from the 3,265,896 tweets of the EUR/GBP exchange rate, VADER yielded the following
results: 747,890 (22.9%) negative, 930,780 (28.5%) positive, and 1,587,226 neutral (48.6%)
tweets, from January 2018 to December 2019 for 12,436 h of EUR/GBP rate.

3.2. Proposed Novel Bio-Inspired Model in Predicted Forex Market Price Fluctuations

This study proposes a novel bio-inspired Modular Convolutional orthogonal Recur-
rent MCD–ANN (MCoRNNMCD–ANN), aiming to encounter the limitations of the current
monolithic architectures presented in the literature. The proposed modular network incor-
porates a new CNN architecture to address catastrophic forgetting, overfitting, vanishing
and exploding gradient problems, and underspecification [78]. Therefore, a proposed
new CNN architecture incorporates a modular topology inspired by Tzilivaki et al. [50],
formulating a convolutional, orthogonal recurrent MCD replacing the pooling layers, fol-
lowed by dense layers flattening their outputs. Compared with a typical CNN time series
composed of convolutional, pooling, flattened, and dense layers, the proposed new CNN
could enhance the robustness and forecasting performance of the Forex market [79].
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Consequently, in the proposed MCoRNNMCD–ANN, the modules selected from
baselines (Tables 1 and 2) displayed better results in partitioning the input domain in antic-
ipating EUR/GBP price movements. Hence, two separate and parallel features extraction
convolutional with orthogonal kernel initialisation applied in simple RNN and a GRU
coupled with MCD networks, receiving the closing prices and sentiment scores capture
long-term dependencies in the EUR/GBP exchange rate hourly, replacing the pooling layers
were considered. The replacement occurs to avoid the downsampling of feature sequences
by losing valuable information since the pooling layers capture only the essential features
in the data and ignore the less important ones, which can be vital [80]. The dense layers are
also placed before the flattening operation in both modules in the proposed novel CNN
architecture. This adaptation transpires because the dense layer’s preliminary purpose is
to increase the model’s capacity to learn more complex patterns from the RNN’s output.
The flatten operation is then applied to reshape the result of the dense layer for each module
into a one-dimensional tensor to prepare it for the combined outputs by integrating them into
a final concatenation layer. Ultimately, the concatenated features passed in the final decision
module consist of a three-layer feed-forward ANN that yields the anticipated hourly closing
price of EUR/GBP. Figure 1 displays the proposed MCoRNNMCD–ANN model.
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3.2.1. Module 1: Convolutional Orthogonal RNN–MCD (CoRNNMCD)

Let us consider time series data representing the hourly closing prices of the EUR/GBP
currency pair. The input data can be characterised as a matrix xc ∈ Rd

c
× l, where dc is the

number of channels (in this case, one for a single currency pair) and l is the time series
length for the one-hour time frame applied in this study. As already referred, the hourly
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rate is one of the best intraday time frames for price anticipation [75]. However, in other
cases, the l variable can take whatever value, such as one day, week, or month, in a time
series prognosis. In the initial CNN, the convolution operation can be mathematically
represented as:

y[i] = f ((xc ∗ w)[i] + b) (1)

Here, xc represents the input data, w denotes the filters or kernels, b is the bias term,
and f is the activation function. The dot product operation (xc ∗ w)[i] is performed between
the filter w and the portion of the input data xc the filter is currently “looking at”. The
activation function f is then applied element-wise to the result of the dot product, adding
non-linearity to the output.

Moving on to Module 1, a 1D convolutional layer is applied to the input data. The
convolution operation is performed using a set of filters or kernels, denoted as w ∈ Rd

c
× r,

where r is the size of the filter. Mathematically, the convolution between a 1D filter w of
size r and an input signal of length l can be defined as:

(xc ∗ w)[i] = ∑r
j=1 xc[i + j]w[j]. (2)

Here, ∗ denotes the convolution operation, and i ranges from 1 to (l−r+1) to ensure the
filter fits entirely within the input signal. The variable j ranges from 1 to r and represents
the position within the filter and the corresponding elements in length l input signal. After
the convolution, the activation function is applied element-wise to each element of the
convolution result, adding non-linearity. Next, the convolution operation generates a new
feature representation, denoted as W ∈ R(l−r+1) × m

c, where mc is the number of filters. The
output feature map c of the 1D convolutional layer is defined as the input to the RNN,
which directly replaces the max pooling layer. The feature map c is represented as a matrix
W, where each row corresponds to a window vector wn = [xn, xn+1, . . ., xn+r−1]. To feed the
window W into an RNN, the hidden state is computed as ht ∈ Rm

h where mh represents
the dimension of the hidden state in the recurrent network at each time step t. The hidden
state ht in the equation of the simple RNN is calculated as:

ht = φ(Wxhx(c)t + Whhht−1 + bh). (3)

Here, x(c)t ∈ Rm
c represents the input at time step t, Wxh ∈ Rm

c
× m

h and Whh ∈ Rm
h
× m

h
are weight matrices, ht−1 the previous hidden state, and bh ∈ Rm

h is a bias term. The
non-linear activation function φ, such as the Rectified Linear Units (ReLU), is applied
element-wise to each hidden state ht [81]. Replacing the max pooling layer with an RNN
allows capturing sequential dependencies in the time series data. In addition, the RNN
considers the temporal information and improves the model’s performance in predicting
future values. After the RNN layer, a dense layer can be added to generate the network’s
output. The dense layer takes the hidden state ht as input and applies the following
equation:

y(c) = f (Wyht + b). (4)

Here, Wy is the weight matrix, b is the bias term, and f is the activation function,
such as softmax, which converts the output into a likelihood distribution over the possible
classes. Finally, a flattened layer takes the output of the dense layer as input, computed as:

Fc[i] = flatten(y(c)[i]). (5)

It is worth mentioning that the dense layer after the RNN can allow the model to
learn complex relationships and mappings between the input and the desired output
while flattening the outputs of the dense can simplify the data structure by collapsing
the dimensions, making it compatible with following layers that expect one-dimensional
inputs. The backpropagation technique (BPTT) is utilised to train an RNN. However, RNNs
require help to learn long-term dependencies during the BPTT training process since the
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gradients employed to update the weights increase exponentially. A procedure is known
as the vanishing or exploding gradient problem.

In this study, orthogonal initialisation is considered one of the proper mechanisms
to address the vanishing gradient issue in the RNNs. Therefore, the kernel weights W
of the RNN will be transformed into orthogonal (o) [82]. Furthermore, the parametric
rectified linear unit (PReLU) activation function is utilised instead of the tanh activation
function since it is considered one of the keys to deep networks’ recent success in time
series analysis [83]. Finally, to potentially enhance the performance of the orthogonal kernel
initialised RNN receiving the outputs of the 1D-convolution closing price for EUR/GBP
as inputs, the MCD is coupled to the oRNN layer (CoRNNMCD) in its ability to quantify
model uncertainty, facilitating more informed decision making in Forex forecast [84]. The
hidden state ht in Equation (3) presented above is updated and computed as,

ht = PReLU((Oxhx(c)t + Whhht−1 + bh) �MCD). (6)

The output of the CoRNNMCD is fed to the dense layer and computed as,

y(c)t = linear(Whyht + by) (7)

where ht is the hidden state at a time t, xt is the input at a period t, Whh, Why are weight
matrices, bh, and by are the bias vectors, O is an orthogonal matrix used to initialise the
input weights, � represents an element-wise multiplication, and MCD is the Monte Carlo
Dropout.

Finally, a flattened layer receives as an input the output of the dense layer indicated as,

Fc[t] = flatten(y(c)[t]). (8)

3.2.2. Module 2: Convolutional Orthogonal GRU–MCD (CoGRUMCD)

Module 2 uses a 1D convolutional layer for sentiment analysis on a time-series task.
Nevertheless, first, let us summarise the key components and equations: Given the input
data xs ∈ Rd

s
× l, where ds is the number of channels (1 in this matter), and l is the hourly

length of the time series utilised in this study. xs represents the input data at each time step t.
The window wn is formed by selecting r consecutive sentiment scores starting from the n-th
timestamp, expressed as wn = [xn, xn+1, . . ., xn+r−1]. The 1D convolutional layer processes
the window wn to extract convolutional features. The output of the convolutional layer,
denoted as s ∈ R(l−r+1) × m

s, consists of ms feature maps. The parameter ms determines
the number of feature maps representing the filters used in the convolutional layer. The
convolutional features in s are new window representations, capturing different patterns or
representations in the input time series. The output feature maps in s are then fed into a
GRU computed as:

rt = σ(Wr[ht−1, x(s)t] + br) (9)

zt = σ(Wz[ht−1, x(s)t] + bz) (10)

h̃t = tanh(Wh[rt � ht−1, x(s)t] + bh) (11)

ht = (1− zt)� ht−1 + zt �
∼
ht (12)

where ht is the hidden state at time t, x(s)t is the intake at time t, rt and zt are the reset and

update gates, respectively.
∼
ht is the candidate hidden state, Wr, Wz, Wh are weight matrices,

br, bz, and bh are the bias vectors, and � represents an element-wise multiplication.
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The 1D-convolutional orthogonal kernel initialised GRU coupled with MCD (CoGRUMCD)
updates the initial GRU equations to incorporate the convolutional features and learn
temporal dependencies in the sentiment scores as follows:

rt = σ(Orx(s)t + Wrht−1 + br) (13)

zt = σ(Ozx(s)t + Wzht−1 + bz) (14)

∼
ht = PReLU(Ohx(s)t + Wh(rt � ht−1) + bh)�MCD (15)

ht = (1− zt)� ht−1 + zt �
∼
ht (16)

where rt is the reset gate at time step t, zt is the update gate at time step t,
∼
ht is the candidate

value for the new hidden state at time step t, ht is the new hidden state at time step t, Or,
Oz, Oh are orthogonal matrices used to initialise the input weights, Wr, Wz, Wh are weight
matrices, br, bz, and bh are the bias terms and � represents an element-wise multiplication.
The output of the CoGRUMCD is fed to the dense layer denoted as

y(s)t = linear(Whyht + by). (17)

Finally, a flattened layer receives as an input the output of the dense layer computed as,

Fs[t] = flatten(y(s)[t]). (18)

3.2.3. Parallel Feature Extraction and Concatenation

The parallel features extraction operation converges the two modules’ tasks. The two
modules are continuous, with hourly time frames. Let M1 be the first module (CoRNNMCD)
with input feature vector xc and output vector yc flattened as Fc[t]. Let M2 be the second
module (CoGRUMCD) with input feature vector xs and output vector ys flattened as Fs[t].

The parallel processing operation can be represented as:

y1,2 = [M1(xc), M2(xs)]. (19)

The outputs from the parallel processing operating system, module 1 (M1) and module
2 (M2), that receive the closing price and the sentiment scores are merged in the concatena-
tion layer and used as an integrating mechanism. The conjunct outputs are connected to the
final module of the proposed MCoRNNMCD–ANN model, aiming to yield the anticipated
closing price for the EUR/GBP rate.

The information that merged in the concatenation layer is calculated as,

Concat = M1 ∪M2. (20)

3.2.4. Module 3: Decision Making

The final part of the proposed MCoRNNMCD–ANN model takes place to make the
decision consisting of a three-layer feed-forward ANN. The first layer of the ANN receives
the merged information and can be denoted as:

Densed1 = ReLU(WDensed1 Concat + bDensed1 ). (21)

In the second dense layer, a proposed altered (alt) version of the Swish activation
function, namely HSwishalt, is applied. The main difference between the Swish activation
function and the HSwishalt function is that it utilised the hard sigmoid instead of the sig-
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moid in Swish [85,86]. Moreover, HSwishalt utilised a different scaling factor, as calculated
below:

Swish(x, β = 1) = x ∗ sigmoid(βx). (22)

The proposed HSwishalt function utilised a β = 0.5 computed as:

HSwishalt(x, β = 0.5) = x ∗ hardsigmoid(0.5x). (23)

The rationale behind HSwishalt is to mitigate the issue of exaggerated responses to
minor fluctuations in the input. In financial markets like Forex, where prices can exhibit
high volatility and noisy fluctuations, prediction models need robustness and stability.
Using HSwishalt with β = 0.5, the model can potentially introduce a dampening effect on
the negative inputs, resulting in smoother and more controlled responses. This dampening
effect could also be beneficial in scenarios where the model has to avoid harsh reactions to
minor input fluctuations. Hence, the second dense layer receives the output from the first
dense layer, estimated as:

Densed2 = HSwishalt(WDensed2 Densed1 + bDensed2 ). (24)

The final output layer is denoted as,

Densed3 = linear(WDensed3 Densed2 + bDensed3 ). (25)

4. Results and Discussion

This section provides the implementation of hyperparameters and a comprehensive
overview of the comparative analysis conducted, where the performance of the proposed
Modular Neural Network model is compared against the state-of-the-art and single mono-
lithic architectures in Sections 2.3.2 and 2.3.3. The objective evaluation metrics, namely MSE,
MAE, and MSLE, are used to assess prediction performance. The section also discusses
the results obtained from the experiments, showcasing the skill and capabilities of the
proposed MCoRNNMCD–ANN model in predicting hourly Forex price fluctuations of
EUR/GBP.

4.1. Design and Implementation

In this study, to conduct the experiments, the proposed MCoRNNMCD–ANN model
setting is as follows: First, each dataset has been acquired from the Yahoo Finance API
and Twitter Streaming API, incorporating the hourly closing price and sentiment data,
applying normalisation method, respectively. Second, the datasets are divided into training,
validation, and testing sets, with the same portion of 60:20:20 used to improve the general-
isability of the network. Third, the hyperparameters of the MCoRNNMCD–ANN model
are encountered by employing the grid search method. Finally, the parameters below are
considered to choose the most optimal for the proposed model receiving closing price and
sentiment score evaluated by the MSE. The list of parameters is given below, and the best
results are presented in Table 6 accordingly:

• Number of time steps (lookback): 20, 30, 40, 50, 60;
• Number filters per convolutional layer: 32, 64, 128, 256, 512;
• Number of nodes per hidden layer: 20, 30, 50, 60, 100;
• MCD rates: 10% to 50%;
• Batch sizes: 10, 20, 30, 60, 100.
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Table 6. Top parameters extracted from grid search in closing prices (CP) and sentiment (Sent) scores
of EUR/GBP.

Model Lookback Filters per
Convolutional Layer

Nodes per
Hidden-Layer MCD Rate Batch Size MSE

CoRNNMCD (CP) 60 128 50 0.1 20 0.0010
CoRNNMCD (CP) 60 30 30 0.1 20 0.0012
CoGRUMCD (Sent) 60 128 50 0.1 20 0.2967
CoGRUMCD (Sent) 20 64 30 0.1 20 0.3110

It is worth noting that the MSE used as an objective metric of evaluation in the grid
search algorithm is evaluating the performance of its model and not its final predictions
that have different calculations in the shake of hourly Forex forecasting closing price.
Accordingly, grid search produces the optimal hyperparameters described:

• The lookback window uses a time step of 60. Furthermore, 128 filters are selected
as the optimum numbers of the 1D convolutional layer in modules one and two,
incorporating the ReLu activation function. Additionally, in the orthogonal kernel
initialised RNN and GRU layers coupled with MCD with 0.1 rates, supplanting the
max-pooling layer in the initial CNN architecture, 50 neurons have been selected,
utilising PReLU as the optimal activation function;

• The dense layers in modules one and two consist of 50 neurons integrating the ReLu
activation function connected to the flattened layers. The decision making ANN mod-
ule consists of 3 layers receiving the merge features from modules one and two. The
first dense layer also includes 50 neurons incorporating the ReLU activation function.
Likewise, the second dense layer includes 50 neurons containing the HSwishalt. The
output of the decision making part, receiving one neuron selecting the linear activation
function, as it is appropriate for regression tasks, yielding the predicted hourly closing
price fluctuations of the EUR/GBP exchange rate;

• A batch size of 20 has been selected. The early stopping method is employed to
identify the optimum number of epochs for training [87]. Early stopping has also been
used in the baseline models to determine the optimum number of epochs for training
(Section 2.3.1). According to Srivastava et al. [88], it is worth noting that early stopping
is only sometimes utilised to combat overfitting. Laves et al. [89] also indicated that the
early stopping is not optimal for the squared error on training and testing data. The
Adam optimiser with a learning rate of 0.0001 has been chosen as it proved effective
for non-stationary objectives and problems with very noisy gradients, and the MSE
as the loss function has been utilised during the proposed MCoRNNMCD–ANN for
its training process. Each experiment of the proposed MCoRNNMCD–ANN against
benchmarks has been repeated fifty times to be reliable;

• A computer with the following characteristics has been used to execute the experi-
ments: Intel® Core™ i7-9750H (Hyper-Threading Technology), 16 GB RAM, 512 GB
PCIe SSD, NVIDIA GeForce RTX 2070 8 GB. The Anaconda computational environ-
ment with Keras and TensorFlow in Python (version 3.6) programming language has
been utilised to conduct the experiments.

After implementing the well-suited parameters in the proposed MCoRNMCD–ANN
model, its performance based on the MSE, MAE, and MSLE is provided in Table 7. Further-
more, the MCoRNMCD–ANN outperformed all the baselines.
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Table 7. MCoRNNMCD–ANN performance metrics in closing prices and sentiment scores of
EUR/GBP.

Model Metrics Train Valid Test R2 Time Duration

MCoRNNMCD–ANN MSE 6.5486 × 10−5 6.1332 × 10−5 5.7488 × 10−5 0.99 2:35
MAE 0.00534 0.00526 0.00518
MSLE 3.1117 × 10−5 2.7342 × 10−5 2.6051 × 10−5

4.2. Benchmark Models
4.2.1. Hybrid Benchmark Models

The objective evaluation metrics of the proposed MCoRNNMCD–ANN shown in
Table 7 revealed a decline in errors of the hybrid models presented in Table 4 (Section 2.3.2).
For instance, MCoRNNMCD–ANN decreased to 89.17%, 19.70%, 83.56%, and 195.51%
for the test MSE of the BiCuDNNLSTM, CNN–LSTM, LSTM–GRU, and CLSTM. The test
MAE of MCoRNNMCD–ANN decreased to 50.30%, 6.36%, 52.53%, and 166.91% for the
test MAE of the BiCuDNNLSTM, CNN–LSTM, LSTM–GRU, and CLSTM. The test MSLE
of MCoRNNMCD–ANN decreased to 91.20%, 20.77%, 85.28%, and 195.59% for the test
MSLE of the BiCuDNNLSTM, CNN–LSTM, LSTM–GRU, and CLSTM. The difference in
time elapsed in minutes between the proposed MCoRNNMCD–ANN and the hybrid
benchmark models presented in Table 4 has also been considered regarding their execution
time. As a result, the execution time of MCoRNNMCD–ANN decreased to 28 min for
the execution time of the LSTM–GRU. The execution time of MCoRNNMCD–ANN was
increased to 76, 54, and 17 min for the execution time of BiCuDNNLSTM, CNN–LSTM,
and CLSTM, respectively. Based on the outcomes, in most cases, the execution time of a
model can be tremendously affected by the size of the window length and the complexity
of the layers used in each model. It is worth mentioning that the BiCuDNNLSTM with
the default parameters needs less execution time as it runs in a GPU using CUDA, which
accelerates deep learning models. Finally, the LSTM–GRU takes more execution time than
the proposed MCoRNNMCD–ANN, even though it utilises a default size window of 30.
This effect can result from the more utilised neurons and complex architecture since it
employs only LSTM and GRU models. MCoRNNMCD–ANN outperformed benchmarks.

To conduct a fairer comparison, modified versions of benchmarks implemented the pa-
rameters from the proposed MCoRNNMCD–ANN model to investigate their performance
as below:

• The modified parameters of BiCuDNNLSTM [64] utilise a window length of 60 instead
of the default 50-time steps, a convolution layer with a filter size of 128 instead of its
default 64, a dropout layer with a rate of 0.1 instead of 0.2, the HSwishalt activation
function in the dense layer after the flattening layer instead of the default ReLU, linear
as the output activation function instead of ReLU, MSE as the loss function instead
of MAE, a batch size of 20 instead of 64, and early stopping is applied instead of
32 epochs;

• The modified parameters of the CNN–LSTM [62] neural network model are a window
length of 60 instead of the default 50-time steps, a convolution layer with a filter size
of 128 instead of its default 32 with a ReLU activation function instead of tanh, an
LSTM layer with 50 hidden units instead of 64, and the activation function used in
this layer is parametric ReLU instead of that, MSE as the loss function instead of MAE,
a batch size of 20 instead of 64, and early stopping is applied instead of 100 epochs;

• The modified parameters of the LSTM–GRU [60] neural network model are a window
length of 60 instead of the default 30-time steps, LSTM and GRU layers with 50 hidden
units instead of 100 with the activation function PReLU for both layers instead of a
hyperbolic tangent, without the inner activations to be set as hard sigmoid functions,
Adam optimiser trains the network with the learning of 0.0001 instead of the rate of
0.001, and early stopping is applied instead of 20 epochs;
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• The CLSTM [63] model was adjusted with 128 filters in the 1D convolutional layer,
60-time steps instead of 15, and 50 neurons instead of 200, 100, and 150 neurons in
the dense and LSTM layers. Moreover, LSTM employed MCD with PReLu instead of
traditional dropout and ReLu activation function, applying early stopping instead of 100.

Table 8 confirmed that the MCoRNNMCD–ANN outperforms the state-of-the-art
hybrid benchmarks adjusting with the parameters of the MCoRNNMCD–ANN.

Table 8. MCoRNNMCD–ANN performance metrics against adjusted (adj.) hybrid benchmarks.

Model Metrics Train Valid Test R2 Time Duration

BiCuDNNLSTM adj. MSE 0.00011 0.00010 0.00010 0.99 2:54
MAE 0.00761 0.00754 0.00746
MSLE 5.1970 × 10−5 4.7161 × 10−5 4.6294 × 10−5

CNN–LSTM adj. MSE 7.2831 × 10−5 6.7592 × 10−5 6.2947 × 10−5 0.99 7:13
MAE 0.00572 0.00563 0.00551
MSLE 3.4659 × 10−5 3.0217 × 10−5 2.8432 × 10−5

LSTM–GRU adj. MSE 0.00011 0.00010 0.00010 0.99 20:43
MAE 0.00739 0.00721 0.00721
MSLE 5.4301 × 10−5 4.6677 × 10−5 4.6560 × 10−5

CLSTM adj. MSE 0.00145 0.00151 0.00134 0.93 8:21
MAE 0.02352 0.02381 0.02353
MSLE 0.00061 0.00063 0.00059

MCoRNNMCD–ANN MSE 6.5486 × 10−5 6.1332 × 10−5 5.7488 × 10−5 0.99 2:35
MAE 0.00534 0.00526 0.00518
MSLE 3.1117 × 10−5 2.7342 × 10−5 2.6051 × 10−5

The objective evaluation metrics revealed that the test MSE of MCoRNNMCD–ANN
decreased to 53.98%, 9.10%, 53.98%, and 183.54% for the test MSE of the BiCuDNNLSTM,
CNN–LSTM, LSTM–GRU, and CLSTM by adjusting their parameters with the parameters
of the proposed MCoRNNMCD–ANN. Likewise, the test MAE of MCoRNNMCD–ANN
decreased to 36.08%, 6.18%, 32.77%, and 127.83% for the test MAE of the adjusted BiCuD-
NNLSTM, CNN–LSTM, LSTM–GRU, and CLSTM. The test MSLE of MCoRNNMCD–ANN
decreased to 55.96%, 8.74%, 56.49%, and 183.01% for the test MSLE of the BiCuDNNLSTM,
CNN–LSTM, LSTM–GRU, and CLSTM, containing the parameters of the MCoRNNMCD–
ANN. The difference in time elapsed in minutes between the MCoRNNMCD–ANN and the
hybrid benchmark models adjusted with the parameters of the proposed model has shown
that the execution time of MCoRNNMCD–ANN decreased to 19, 278, 1088, and 346 min
for the execution time for the modified BiCuDNNLSTM, CNN– LSTM, LSTM–GRU, and
CLSTM. Consequently, the execution time of hybrid benchmarks increased when the win-
dow length increased at 60-time steps incorporating the MCD when usable. That validated
the previous assumption that the time steps play a remarkable role in the execution time of
the models. Notably, the predictive error of the benchmarks adjusted with the proposed
model parameters was reduced significantly and yielded better outcomes. Finally, the pro-
posed MCoRNNMCD–ANN significantly outperformed the adjusted benchmarks and was
faster, validating the modular architecture and the innovative orthogonal kernel initialised
RNN layers coupled with the MCD mechanism applied in the proposed model. Figure 2
illustrates an example of the MSE’s tremendous improvement by utilising the parameters
of the proposed MCoRNNMCD–ANN in the CLSTM and the best-performed hybrid bench-
mark MSE, namely CNN–LSTM adj., and the MSE of the MCoRNNMCD–ANN. It is worth
noting that all the models in Table 8 presented also a high R2 value.
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4.2.2. Single Benchmark Models

In Table 5 (Section 2.3.3), the results of the single benchmark models have been shown.
The objective evaluation metrics demonstrated that the test MSE of MCoRNNMCD–ANN
decreased to 70.44%, 45.91%, and 196.90% for the test MSE of the 2D–CNN, GRU, and
LSTM, respectively. The test MAE of MCoRNNMCD–ANN decreased to 38.50%, 16.96%,
and 161.91% for the 2D–CNN, GRU, and LSTM test MAE, respectively. The test MSLE
of MCoRNNMCD–ANN decreased to 77.81%, 54.77%, and 196.94% for the test MSLE
of the 2D–CNN, GRU, and LSTM, respectively. The difference in time elapsed between
the proposed MCoRNNMCD–ANN and the benchmark-single models in minutes has
also been considered regarding their execution time. As a result, the execution time of
MCoRNNMCD–ANN was increased to 104, 108, and 145 min for the execution time of
2D–CNN, GRU, and LSTM with default parameters. The execution time of the models can
again be tremendously affected by the size of the window length and the complicatedness
of each model. For instance, when the window length of the 2D–CNN, GRU, and LSTM
single model incorporates a smaller time window length equal to 5-time steps, decreasing
the execution time training. On the other hand, even though the LSTM is more complex
than the 2D–CNN and GRU, it took significantly less time to be trained since it utilised
fewer neurons (30) than GRU (50 neurons) and an Adam optimiser that can obtain a
faster convergence rate leading to being faster against Adagrad for CNN [90]. However,
LSTM has the highest predictive error. Finally, MCoRNNMCD–ANN presented a minor
prediction error by significantly outperforming the single models.

Similarly to the hybrid benchmark models, the single benchmarks [65] will be adjusted
with the proposed MCoRNNMCD–ANN parameters for a fairer comparison. The modified
parameters of the CNN, LSTM, and GRU models are a window length of 60 instead of the
default 5-time steps, a convolution layer with a filter size of 128 instead of its default 30 for
CNN, an LSTM with 50 hidden units instead of 30 utilising the activation function of PReLU.
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Furthermore, a batch size of 20 is used. Finally, Adam is employed instead of Adagrad for
GRU and CNN, while the Adam learning rate is set to 0.0001 instead of 0.1 in LSTM.

Table 9 proved that the error in the test performance of the MCoRNNMCD–ANN
based on the evaluation metrics MSE, MAE, and MSLE was the smallest one in hourly
EUR/GBP closing forecasting price outperforming the single benchmarks adjusting with
the parameters of the proposed model.

Table 9. MCoRNNMCD–ANN performance metrics against adjusted (adj.) single benchmarks.

Model Metrics Train Valid Test R2 Time Duration

2D–CNN adj. MSE 0.00017 0.00016 0.00017 0.99 0:39
MAE 0.00901 0.00897 0.00912
MSLE 8.3038 × 10−5 7.3716 × 10−5 7.6177 × 10−5

GRU adj. MSE 7.3054 × 10−5 6.6247 × 10−5 6.2578 × 10−5 0.99 4:54
MAE 0.00558 0.00544 0.00536
MSLE 3.4814 × 10−5 2.9724 × 10−5 2.8312 × 10−5

LSTM adj. MSE 8.7955 × 10−5 8.0258 × 10−5 7.6894 × 10−5 0.99 8:43
MAE 0.00635 0.00621 0.00612
MSLE 4.1941 × 10−5 3.6171 × 10−5 3.4807 × 10−5

MCoRNNMCD–ANN MSE 6.5486 × 10−5 6.1332 × 10−5 5.7488 × 10−5 0.99 2:35
MAE 0.00534 0.00526 0.00518
MSLE 3.1117 × 10−5 2.7342 × 10−5 2.6051 × 10−5

More specifically, the test MSE of MCoRNNMCD–ANN decreased to 98.91%, 8.48%,
and 28.88% for the test MSE of the 2D–CNN, GRU, and LSTM adjusted with the parameters
of the proposed MCoRNNMCD–ANN. The test MAE of MCoRNNMCD–ANN decreased
to 55.10%, 3.41%, and 16.63% for the test MAE of the 2D–CNN, GRU, and LSTM ad-
justed with the full parameters of the proposed MCoRNNMCD–ANN. The test MSLE
of MCoRNNMCD–ANN decreased to 98.06%, 8.32%, and 28.77% for the test MSE of the
2D–CNN, GRU, and LSTM adjusted with the parameters of the proposed MCoRNNMCD–
ANN. The difference in time elapsed between the proposed MCoRNNMCD–ANN and
the benchmark-single models in minutes has also been considered regarding their exe-
cution time. As a result, the execution time of MCoRNNMCD–ANN decreased to 139
and 368 for the execution time of the GRU and LSTM modified with full parameters of
the proposed MCoRNNMCD–ANN, respectively. The execution time of MCoRNNMCD–
ANN was increased to 116 min for the time of 2D–CNN utilising the parameters of the
proposed MCoRNNMCD–ANN. Based on the results, it has been observed that the 2D–
CNN performs faster when adjusted with the proposed model parameters despite the
timestep being increased to 60; this could result from the Adam optimiser that led to a
faster training process instead of the Adagrad in CNN. However, the modified 2D–CNN
performed worse than the default 2D–CNN. However, all benchmarks hybrid and single
networks, and also those that used 1D convolutions, show significant improvement when
MCoRNNMCD–ANN parameters are applied, displaying lower MSE and confirming the
effectiveness of MCD and orthogonal kernel initialisation and 1D–CNNs for time-series
tasks. For the adjusted LSTM and GRU with 60-time steps, execution time is increased
due to retaining information from previous steps and slowing training. All the mod-
els have also presented a high R2 value. Figure 3 shows substantial MSE improvement
with proposed MCoRNNMCD–ANN parameters in LSTM and the best GRU–utilised
MCoRNNMCD–ANN parameters and MSE of the proposed model’s MSE.
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Ultimately, the results can answer the RQ; the experiments conducted in this study
demonstrate that the novel bio-inspired convolutional Modular Neural Network, which
replaces pooling layers with recurrent layers and incorporates an innovative adaptive
mechanism involving Monte Carlo dropout and orthogonal kernel initialisation, signifi-
cantly enhances Forex price movement prediction compared to both single monolithic and
state-of-the-art models. The proposed model consistently outperformed all other models
regarding predictive exactness and efficiency.

The best predictive method after the MCoRNNMCD–ANN model from the hybrid
and single monolithic architectures based on the experimental results that emerged was the
GRU adjusted with the parameters of the proposed model. Figure 4 displays the predictions
in the price movement direction of the EUR/GBP rate, with the MCoRNNMCD–ANN
showing better performance than the adjusted GRU in the whole- and shorter-time frame.
It is worth noting that the predictive full-time frame represents 20% of the total data, and
the shorter period is the first 50 h.
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5. Conclusions

This study introduced a groundbreaking Forex price fluctuation prediction approach
by integrating insights from cognitive neuroscience and the RCT. The key innovations of this
research encompassed the development of a novel bio-inspired Modular Neural Network,
MCoRNNMCD–ANN. This architecture revolutionises decision making by employing
parallel feature extraction modules, effectively tackling the intricacies of the Forex market.
MCoRNNMCD–ANN combines CoRNNMCD and CoGRUMCD modules, featuring a
1D–CNN architecture enriched with an adaptation mechanism incorporating Monte Carlo
Dropout (MCD) and orthogonal kernel initialisation in RNNs that replace pooling layers.
This innovative design mitigates issues related to catastrophic forgetting and vanishing
gradients, offering a robust solution for Forex market prediction.

Empirical experiments underscore the exceptional performance of MCoRNNMCD–
ANN, which consistently outperforms existing models. The model achieves a notable
reduction in Mean Square Error (MSE) compared to state-of-the-art hybrid models, in-
cluding BiCuDNNLSTM, CNN–LSTM, LSTM–GRU, CLSTM, as well as single models
such as 2D–CNN, GRU, and LSTM. This remarkable accuracy is particularly evident in
its ability to forecast hourly closing price fluctuations for the EUR/GBP currency pair.
Moreover, MCoRNNMCD–ANN demonstrates exceptional computational efficiency, sur-
passing hybrid models in execution speed when the same parameters are applied, except
for the time-efficient 2D–CNN, which sacrifices some data richness for faster processing.
The proposed model’s parameter enhancements consistently elevate performance metrics,
except for 2D–CNN, which may not be optimally suited for time series data.

While this study presents compelling advancements in Forex prediction, it is essential
to acknowledge its limitation, primarily focusing exclusively on the EUR/GBP currency
pair. Future research endeavours will confine a broader spectrum of Forex currency pairs
to validate the generalizability of the MCoRNNMCD–ANN model. Additionally, exploring
the potential of transfer learning, where the MCoRNNMCD–ANN fine-tunes ANNs with
limited Forex data, holds promise for further enhancing predictive capabilities in the
dynamic and complex realm of Forex trading.

Author Contributions: C.B. conceptualised, designed, performed the experiments, and developed
the proposed Modular Convolutional orthogonal Recurrent Neural Network with Monte Carlo
Dropout–Artificial Neural Network (MCoRNNMCD–ANN) and the baselines and replicated bench-
mark algorithms. M.S. and A.P. provided guidance and direction for the research and evaluation. All
authors significantly contributed to the writing and review. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Big Data Cogn. Comput. 2023, 7, 152 24 of 27

Data Availability Statement: Data are partly available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mai, Y.; Chen, H.; Zou, J.-Z.; Li, S.-P. Currency Co-Movement and Network Correlation Structure of Foreign Exchange Market.

Phys. A Stat. Mech. Its Appl. 2018, 492, 65–74. [CrossRef]
2. Hayward, R. Foreign Exchange Speculation: An Event Study. Int. J. Financ. Stud. 2018, 6, 22. [CrossRef]
3. Ray, R.; Khandelwal, P.; Baranidharan, B. A Survey on Stock Market Prediction Using Artificial Intelligence Techniques. In

Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,
13–14 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 594–598.

4. Berradi, Z.; Lazaar, M.; Mahboub, O.; Omara, H. A Comprehensive Review of Artificial Intelligence Techniques in Financial
Market. In Proceedings of the 2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir–Essaouira, Morocco,
5–12 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 367–371.

5. Russin, J.; O’Reilly, R.C.; Bengio, Y. Deep learning needs a prefrontal cortex. Work Bridg. AI Cogn. Sci. 2020, 107, 603–616.
6. Pujara, M.S.; Wolf, R.C.; Baskaya, M.K.; Koenigs, M. Ventromedial Prefrontal Cortex Damage Alters Relative Risk Tolerance for

Prospective Gains and Losses. Neuropsychologia 2015, 79, 70–75. [CrossRef] [PubMed]
7. Awunyo-Vitor, D. Theoretical and Conceptual Framework of Access to Financial Services by Farmers in Emerging Economies:

Implication for Empirical Analysis. Acta Univ. Sapientiae Econ. Bus. 2018, 6, 43–59. [CrossRef]
8. Arnott, D.; Gao, S. Behavioral Economics for Decision Support Systems Researchers. Decis. Support Syst. 2019, 122, 113063.

[CrossRef]
9. Buskens, V. Rational Choice Theory in Sociology. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier:

Amsterdam, The Netherlands, 2015; pp. 901–906, ISBN 978-0-08-097087-5.
10. Zey, M.A. Rational Choice and Organization Theory. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier:

Amsterdam, The Netherlands, 2015; pp. 892–895, ISBN 978-0-08-097087-5.
11. Lerner, J.S.; Li, Y.; Valdesolo, P.; Kassam, K.S. Emotion and Decision Making. Annu. Rev. Psychol. 2015, 66, 799–823. [CrossRef]

[PubMed]
12. Rilling, J.K.; Sanfey, A.G. The Neuroscience of Social Decision-Making. Annu. Rev. Psychol. 2011, 62, 23–48. [CrossRef]
13. Lamm, C.; Singer, T. The Role of Anterior Insular Cortex in Social Emotions. Brain Struct. Funct. 2010, 214, 579–591. [CrossRef]
14. Eichenbaum, H. Hippocampus. Neuron 2004, 44, 109–120. [CrossRef]
15. LaBar, K.S.; Cabeza, R. Cognitive Neuroscience of Emotional Memory. Nat. Rev. Neurosci. 2006, 7, 54–64. [CrossRef] [PubMed]
16. Olsen, R.K.; Moses, S.N.; Riggs, L.; Ryan, J.D. The Hippocampus Supports Multiple Cognitive Processes through Relational

Binding and Comparison. Front. Hum. Neurosci. 2012, 6, 146. [CrossRef] [PubMed]
17. Phelps, E.A.; LeDoux, J.E. Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior.

Neuron 2005, 48, 175–187. [CrossRef] [PubMed]
18. Roozendaal, B.; McEwen, B.S.; Chattarji, S. Stress, Memory and the Amygdala. Nat. Rev. Neurosci. 2009, 10, 423–433. [CrossRef]
19. Pizzo, F.; Roehri, N.; Medina Villalon, S.; Trébuchon, A.; Chen, S.; Lagarde, S.; Carron, R.; Gavaret, M.; Giusiano, B.; McGonigal,

A.; et al. Deep Brain Activities Can Be Detected with Magnetoencephalography. Nat. Commun. 2019, 10, 971. [CrossRef]
20. Grossmann, T. The Role of Medial Prefrontal Cortex in Early Social Cognition. Front. Hum. Neurosci. 2013, 7, 340. [CrossRef]
21. McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of Stress in the Brain.

Nat. Neurosci. 2015, 18, 1353–1363. [CrossRef]
22. Price, J.L.; Drevets, W.C. Neurocircuitry of Mood Disorders. Neuropsychopharmacology 2010, 35, 192–216. [CrossRef]
23. Tsukiura, T.; Shigemune, Y.; Nouchi, R.; Kambara, T.; Kawashima, R. Insular and Hippocampal Contributions to Remembering

People with an Impression of Bad Personality. Soc. Cogn. Affect. Neurosci. 2013, 8, 515–522. [CrossRef]
24. Loued-Khenissi, L.; Pfeuffer, A.; Einhäuser, W.; Preuschoff, K. Anterior Insula Reflects Surprise in Value-Based Decision-Making

and Perception. NeuroImage 2020, 210, 116549. [CrossRef]
25. Ruissen, M.I.; Overgaauw, S.; De Bruijn, E.R.A. Being Right, but Losing Money: The Role of Striatum in Joint Decision Making.

Sci. Rep. 2018, 8, 6711. [CrossRef] [PubMed]
26. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network

Applications: A Survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]
27. Fermin, A.S.R.; Friston, K.; Yamawaki, S. An Insula Hierarchical Network Architecture for Active Interoceptive Inference. R. Soc.

Open Sci. 2022, 9, 220226. [CrossRef] [PubMed]
28. Jing, N.; Wu, Z.; Wang, H. A Hybrid Model Integrating Deep Learning with Investor Sentiment Analysis for Stock Price Prediction.

Expert Syst. Appl. 2021, 178, 115019. [CrossRef]
29. Wang, C.; Shen, D.; Li, Y. Aggregate Investor Attention and Bitcoin Return: The Long Short-Term Memory Networks Perspective.

Financ. Res. Lett. 2022, 49, 103143. [CrossRef]
30. Herrera, G.P.; Constantino, M.; Su, J.-J.; Naranpanawa, A. Renewable Energy Stocks Forecast Using Twitter Investor Sentiment

and Deep Learning. Energy Econ. 2022, 114, 106285. [CrossRef]

https://doi.org/10.1016/j.physa.2017.09.068
https://doi.org/10.3390/ijfs6010022
https://doi.org/10.1016/j.neuropsychologia.2015.10.026
https://www.ncbi.nlm.nih.gov/pubmed/26597003
https://doi.org/10.1515/auseb-2018-0003
https://doi.org/10.1016/j.dss.2019.05.003
https://doi.org/10.1146/annurev-psych-010213-115043
https://www.ncbi.nlm.nih.gov/pubmed/25251484
https://doi.org/10.1146/annurev.psych.121208.131647
https://doi.org/10.1007/s00429-010-0251-3
https://doi.org/10.1016/j.neuron.2004.08.028
https://doi.org/10.1038/nrn1825
https://www.ncbi.nlm.nih.gov/pubmed/16371950
https://doi.org/10.3389/fnhum.2012.00146
https://www.ncbi.nlm.nih.gov/pubmed/22661938
https://doi.org/10.1016/j.neuron.2005.09.025
https://www.ncbi.nlm.nih.gov/pubmed/16242399
https://doi.org/10.1038/nrn2651
https://doi.org/10.1038/s41467-019-08665-5
https://doi.org/10.3389/fnhum.2013.00340
https://doi.org/10.1038/nn.4086
https://doi.org/10.1038/npp.2009.104
https://doi.org/10.1093/scan/nss025
https://doi.org/10.1016/j.neuroimage.2020.116549
https://doi.org/10.1038/s41598-018-24617-3
https://www.ncbi.nlm.nih.gov/pubmed/29712917
https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.ncbi.nlm.nih.gov/pubmed/30519653
https://doi.org/10.1098/rsos.220226
https://www.ncbi.nlm.nih.gov/pubmed/35774133
https://doi.org/10.1016/j.eswa.2021.115019
https://doi.org/10.1016/j.frl.2022.103143
https://doi.org/10.1016/j.eneco.2022.106285


Big Data Cogn. Comput. 2023, 7, 152 25 of 27

31. Sim, H.S.; Kim, H.I.; Ahn, J.J. Is Deep Learning for Image Recognition Applicable to Stock Market Prediction? Complexity 2019,
2019, 4324878. [CrossRef]

32. Lanbouri, Z.; Achchab, S. Stock Market Prediction on High Frequency Data Using Long-Short Term Memory. Procedia Comput.
Sci. 2020, 175, 603–608. [CrossRef]

33. Amer, M.; Maul, T. A Review of Modularization Techniques in Artificial Neural Networks. Artif. Intell. Rev. 2019, 52, 527–561.
[CrossRef]

34. Ali, M.; Sarwar, A.; Sharma, V.; Suri, J. Artificial Neural Network Based Screening of Cervical Cancer Using a Hierarchical
Modular Neural Network Architecture (HMNNA) and Novel Benchmark Uterine Cervix Cancer Database. Neural Comput. Appl.
2019, 31, 2979–2993. [CrossRef]

35. Yarushev, S.A.; Averkin, A.N. Time Series Analysis Based on Modular Architectures of Neural Networks. Procedia Comput. Sci.
2018, 123, 562–567. [CrossRef]

36. Thakkar, A.; Chaudhari, K. A Comprehensive Survey on Deep Neural Networks for Stock Market: The Need, Challenges, and
Future Directions. Expert Syst. Appl. 2021, 177, 114800. [CrossRef]

37. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Ravi, V.; Peters, A. A Review of Deep Learning with Special
Emphasis on Architectures, Applications and Recent Trends. Knowl.-Based Syst. 2020, 194, 105596. [CrossRef]

38. Wong, G.; Greenhalgh, T.; Westhorp, G.; Buckingham, J.; Pawson, R. RAMESES Publication Standards: Meta-Narrative Reviews.
BMC Med. 2013, 11, 20. [CrossRef]

39. Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [CrossRef]
40. Chaddad, A.; Li, J.; Lu, Q.; Li, Y.; Okuwobi, I.P.; Tanougast, C.; Desrosiers, C.; Niazi, T. Can Autism Be Diagnosed with Artificial

Intelligence? A Narrative Review. Diagnostics 2021, 11, 2032. [CrossRef]
41. Zhang, T.; Schoene, A.M.; Ji, S.; Ananiadou, S. Natural Language Processing Applied to Mental Illness Detection: A Narrative

Review. NPJ Digit. Med. 2022, 5, 46. [CrossRef]
42. Butler, M.J.R.; O’Broin, H.L.R.; Lee, N.; Senior, C. How Organizational Cognitive Neuroscience Can Deepen Understanding of

Managerial Decision-making: A Review of the Recent Literature and Future Directions. Int. J. Manag. Rev. 2016, 18, 542–559.
[CrossRef]

43. Adolphs, R. Social Cognition and the Human Brain. Trends Cogn. Sci. 1999, 3, 469–479. [CrossRef]
44. Christopoulos, G.I.; Tobler, P.N.; Bossaerts, P.; Dolan, R.J.; Schultz, W. Neural Correlates of Value, Risk, and Risk Aversion

Contributing to Decision Making under Risk. J. Neurosci. 2009, 29, 12574–12583. [CrossRef]
45. Mohr, P.N.C.; Biele, G.; Heekeren, H.R. Neural Processing of Risk. J. Neurosci. 2010, 30, 6613–6619. [CrossRef] [PubMed]
46. Nieuwenhuis, I.L.C.; Takashima, A. The Role of the Ventromedial Prefrontal Cortex in Memory Consolidation. Behav. Brain Res.

2011, 218, 325–334. [CrossRef]
47. Yoo, S.B.M.; Hayden, B.Y. Economic Choice as an Untangling of Options into Actions. Neuron 2018, 99, 434–447. [CrossRef]

[PubMed]
48. Padoa-Schioppa, C. Neurobiology of Economic Choice: A Good-Based Model. Annu. Rev. Neurosci. 2011, 34, 333–359. [CrossRef]
49. Rangel, A.; Hare, T. Neural Computations Associated with Goal-Directed Choice. Curr. Opin. Neurobiol. 2010, 20, 262–270.

[CrossRef] [PubMed]
50. Tzilivaki, A.; Kastellakis, G.; Poirazi, P. Challenging the Point Neuron Dogma: FS Basket Cells as 2-Stage Nonlinear Integrators.

Nat. Commun. 2019, 10, 3664. [CrossRef]
51. Yao, H.; Zhang, X.; Zhou, X.; Liu, S. Parallel Structure Deep Neural Network Using CNN and RNN with an Attention Mechanism

for Breast Cancer Histology Image Classification. Cancers 2019, 11, 1901. [CrossRef]
52. Acunzo, D.J.; Low, D.M.; Fairhall, S.L. Deep Neural Networks Reveal Topic-Level Representations of Sentences in Medial

Prefrontal Cortex, Lateral Anterior Temporal Lobe, Precuneus, and Angular Gyrus. NeuroImage 2022, 251, 119005. [CrossRef]
53. Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Discrepancy Detection between Actual User Reviews and

Numeric Ratings of Google App Store Using Deep Learning. Expert Syst. Appl. 2021, 181, 115111. [CrossRef]
54. Flesch, T.; Juechems, K.; Dumbalska, T.; Saxe, A.; Summerfield, C. Orthogonal Representations for Robust Context-Dependent

Task Performance in Brains and Neural Networks. Neuron 2022, 110, 1258–1270.e11. [CrossRef]
55. Baek, Y.; Kim, H.Y. ModAugNet: A New Forecasting Framework for Stock Market Index Value with an Overfitting Prevention

LSTM Module and a Prediction LSTM Module. Expert Syst. Appl. 2018, 113, 457–480. [CrossRef]
56. Lee, S.W.; Kim, H.Y. Stock Market Forecasting with Super-High Dimensional Time-Series Data Using ConvLSTM, Trend Sampling,

and Specialized Data Augmentation. Expert Syst. Appl. 2020, 161, 113704. [CrossRef]
57. Galeshchuk, S.; Mukherjee, S. Deep Networks for Predicting Direction of Change in Foreign Exchange Rates. Intell. Syst. Account.

Financ. Manag. 2017, 24, 100–110. [CrossRef]
58. Shiao, Y.C.; Chakraborty, G.; Chen, S.F.; Hua Li, L.; Chen, R.C. Modeling and Prediction of Time-Series-A Case Study with Forex

Data. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka,
Japan, 23–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5.

59. Maneejuk, P.; Srichaikul, W. Forecasting Foreign Exchange Markets: Further Evidence Using Machine Learning Models. Soft
Comput. 2021, 25, 7887–7898. [CrossRef]

https://doi.org/10.1155/2019/4324878
https://doi.org/10.1016/j.procs.2020.07.087
https://doi.org/10.1007/s10462-019-09706-7
https://doi.org/10.1007/s00521-017-3246-7
https://doi.org/10.1016/j.procs.2018.01.085
https://doi.org/10.1016/j.eswa.2021.114800
https://doi.org/10.1016/j.knosys.2020.105596
https://doi.org/10.1186/1741-7015-11-20
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.3390/diagnostics11112032
https://doi.org/10.1038/s41746-022-00589-7
https://doi.org/10.1111/ijmr.12071
https://doi.org/10.1016/S1364-6613(99)01399-6
https://doi.org/10.1523/JNEUROSCI.2614-09.2009
https://doi.org/10.1523/JNEUROSCI.0003-10.2010
https://www.ncbi.nlm.nih.gov/pubmed/20463224
https://doi.org/10.1016/j.bbr.2010.12.009
https://doi.org/10.1016/j.neuron.2018.06.038
https://www.ncbi.nlm.nih.gov/pubmed/30092213
https://doi.org/10.1146/annurev-neuro-061010-113648
https://doi.org/10.1016/j.conb.2010.03.001
https://www.ncbi.nlm.nih.gov/pubmed/20338744
https://doi.org/10.1038/s41467-019-11537-7
https://doi.org/10.3390/cancers11121901
https://doi.org/10.1016/j.neuroimage.2022.119005
https://doi.org/10.1016/j.eswa.2021.115111
https://doi.org/10.1016/j.neuron.2022.01.005
https://doi.org/10.1016/j.eswa.2018.07.019
https://doi.org/10.1016/j.eswa.2020.113704
https://doi.org/10.1002/isaf.1404
https://doi.org/10.1007/s00500-021-05830-1


Big Data Cogn. Comput. 2023, 7, 152 26 of 27

60. Hossain, M.A.; Karim, R.; Thulasiram, R.; Bruce, N.D.B.; Wang, Y. Hybrid Deep Learning Model for Stock Price Prediction. In
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1837–1844.

61. Althelaya, K.A.; El-Alfy, E.-S.M.; Mohammed, S. Evaluation of Bidirectional LSTM for Short-and Long-Term Stock Market
Prediction. In Proceedings of the 2018 9th International Conference on Information and Communication Systems (ICICS), Irbid,
Jordan, 3–5 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 151–156.

62. Lu, W.; Li, J.; Li, Y.; Sun, A.; Wang, J. A CNN-LSTM-Based Model to Forecast Stock Prices. Complexity 2020, 2020, 6622927.
[CrossRef]

63. Alonso-Monsalve, S.; Suárez-Cetrulo, A.L.; Cervantes, A.; Quintana, D. Convolution on Neural Networks for High-Frequency
Trend Prediction of Cryptocurrency Exchange Rates Using Technical Indicators. Expert Syst. Appl. 2020, 149, 113250. [CrossRef]

64. Kanwal, A.; Lau, M.F.; Ng, S.P.H.; Sim, K.Y.; Chandrasekaran, S. BiCuDNNLSTM-1dCNN—A Hybrid Deep Learning-Based
Predictive Model for Stock Price Prediction. Expert Syst. Appl. 2022, 202, 117123. [CrossRef]

65. Pokhrel, N.R.; Dahal, K.R.; Rimal, R.; Bhandari, H.N.; Khatri, R.K.C.; Rimal, B.; Hahn, W.E. Predicting NEPSE Index Price Using
Deep Learning Models. Mach. Learn. Appl. 2022, 9, 100385. [CrossRef]

66. Islam, M.S.; Hossain, E.; Rahman, A.; Hossain, M.S.; Andersson, K. A Review on Recent Advancements in FOREX Currency
Prediction. Algorithms 2020, 13, 186. [CrossRef]

67. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial Time Series Forecasting with Deep Learning: A Systematic Literature
Review: 2005–2019. Appl. Soft Comput. 2020, 90, 106181. [CrossRef]

68. Ellefsen, K.O.; Mouret, J.-B.; Clune, J. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old
Skills. PLoS Comput. Biol. 2015, 11, e1004128. [CrossRef]

69. Duan, H.; Wang, X. Echo State Networks with Orthogonal Pigeon-Inspired Optimization for Image Restoration. IEEE Trans.
Neural Netw. Learn. Syst. 2016, 27, 2413–2425. [CrossRef]

70. Miok, K.; Nguyen-Doan, D.; Škrlj, B.; Zaharie, D.; Robnik-Šikonja, M. Prediction Uncertainty Estimation for Hate Speech
Classification. In Statistical Language and Speech Processing; Martín-Vide, C., Purver, M., Pollak, S., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11816, pp. 286–298, ISBN 978-3-030-31371-5.

71. Barcellos, S.H.; Zamarro, G. Unbanked Status and Use of Alternative Financial Services among Minority Populations. J. Pension
Econ. Financ. 2021, 20, 468–481. [CrossRef]

72. Nobata, C.; Tetreault, J.; Thomas, A.; Mehdad, Y.; Chang, Y. Abusive Language Detection in Online User Content. In Proceedings
of the 25th International Conference on World Wide Web, Montréal, QC, Canada, 11–15 April 2016; International World Wide
Web Conferences Steering Committee: Geneva, Switzerland, 2016; pp. 145–153.

73. Yang, J.; Counts, S. Predicting the Speed, Scale, and Range of Information Diffusion in Twitter. In Proceedings of the International
AAAI Conference on Web and Social Media, Washington, DC, USA, 23–26 May 2010; Volume 4, pp. 355–358. [CrossRef]

74. Chen, C.-C.; Kuo, C.; Kuo, S.-Y.; Chou, Y.-H. Dynamic Normalization BPN for Stock Price Forecasting. In Proceedings of the
2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon Tong, Hong Kong, 9–12 October 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 2855–2860.

75. Almasri, E.; Arslan, E. Predicting Cryptocurrencies Prices with Neural Networks. In Proceedings of the 2018 6th International
Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1–5.

76. Walczak, S. An Empirical Analysis of Data Requirements for Financial Forecasting with Neural Networks. J. Manag. Inf. Syst.
2001, 17, 203–222. [CrossRef]

77. Hutto, C.; Gilbert, E. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. In Proceedings
of the International AAAI Conference on Web and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; Volume 8, pp. 216–225.
[CrossRef]

78. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef]

79. Aryal, S.; Nadarajah, D.; Kasthurirathna, D.; Rupasinghe, L.; Jayawardena, C. Comparative Analysis of the Application of
Deep Learning Techniques for Forex Rate Prediction. In Proceedings of the 2019 International Conference on Advancements in
Computing (ICAC), Malabe, Sri Lanka, 5–6 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 329–333.

80. Liu, S.; Ji, H.; Wang, M.C. Nonpooling Convolutional Neural Network Forecasting for Seasonal Time Series With Trends. IEEE
Trans. Neural Netw. Learn. Syst. 2020, 31, 2879–2888. [CrossRef] [PubMed]

81. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010.

82. Golmohammadi, M.; Ziyabari, S.; Shah, V.; Von Weltin, E.; Campbell, C.; Obeid, I.; Picone, J. Gated Recurrent Networks for
Seizure Detection. In Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia,
PA, USA, 2 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

83. Dong, Y.; Wang, J.; Guo, Z. Research and Application of Local Perceptron Neural Network in Highway Rectifier for Time Series
Forecasting. Appl. Soft Comput. 2018, 64, 656–673. [CrossRef]

https://doi.org/10.1155/2020/6622927
https://doi.org/10.1016/j.eswa.2020.113250
https://doi.org/10.1016/j.eswa.2022.117123
https://doi.org/10.1016/j.mlwa.2022.100385
https://doi.org/10.3390/a13080186
https://doi.org/10.1016/j.asoc.2020.106181
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1109/TNNLS.2015.2479117
https://doi.org/10.1017/S1474747219000052
https://doi.org/10.1609/icwsm.v4i1.14039
https://doi.org/10.1080/07421222.2001.11045659
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1109/TNNLS.2019.2934110
https://www.ncbi.nlm.nih.gov/pubmed/31494562
https://doi.org/10.1016/j.asoc.2017.12.022


Big Data Cogn. Comput. 2023, 7, 152 27 of 27

84. Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 20–22 June 2015.
[CrossRef]

85. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941.
86. Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propaga-

tions. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015. [CrossRef]

87. Kingma, D.P.; Salimans, T.; Welling, M. Variational Dropout and the Local Reparameterization Trick. arXiv 2015, arXiv:1506.02557.
88. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
89. Laves, M.-H.; Ihler, S.; Fast, J.F.; Kahrs, L.A.; Ortmaier, T. Well-calibrated regression uncertainty in medical imaging with deep

learning. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, PMLR, Montreal, QC, Canada,
6–8 July 2020; pp. 393–412.

90. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/ARXIV.1506.02142
https://doi.org/10.48550/ARXIV.1511.00363
https://doi.org/10.48550/ARXIV.1412.6980

	Introduction 
	Incorporating Rational Choice Theory with Neuroscience and AI Systems 
	Brain Modularity and Computational Representations 
	Overview of Machine and Deep Learning Financial Predictive Models 
	Critical Analysis 
	Baseline Models 
	Hybrid Benchmark Models 
	Single Benchmark Models 


	Materials and Methods 
	Data Collection 
	Forex Closing Prices 
	Sentiment Data 

	Proposed Novel Bio-Inspired Model in Predicted Forex Market Price Fluctuations 
	Module 1: Convolutional Orthogonal RNN–MCD (CoRNNMCD) 
	Module 2: Convolutional Orthogonal GRU–MCD (CoGRUMCD) 
	Parallel Feature Extraction and Concatenation 
	Module 3: Decision Making 


	Results and Discussion 
	Design and Implementation 
	Benchmark Models 
	Hybrid Benchmark Models 
	Single Benchmark Models 


	Conclusions 
	References

