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Abstract: Human communication is predominantly expressed through speech and writing, which
are powerful mediums for conveying thoughts and opinions. Researchers have been studying the
analysis of human sentiments for a long time, including the emerging area of bimodal sentiment
analysis in natural language processing (NLP). Bimodal sentiment analysis has gained attention
in various areas such as social opinion mining, healthcare, banking, and more. However, there is
a limited amount of research on bimodal conversational sentiment analysis, which is challenging
due to the complex nature of how humans express sentiment cues across different modalities. To
address this gap in research, a comparison of multiple data modality models has been conducted on
the widely used MELD dataset, which serves as a benchmark for sentiment analysis in the research
community. The results show the effectiveness of combining acoustic and linguistic representations
using a proposed neural-network-based ensemble learning technique over six transformer and
deep-learning-based models, achieving state-of-the-art accuracy.

Keywords: ensemble learning; bimodal; sentiment analysis; neural network; transformer

1. Introduction

As the digital world advances, there has been an increase in the number of day-to-day
interactions over proliferating forms of communication, including newer, nuanced products
such as Siri, Alexa, and Google Assistant, known as virtual personal assistants (VPA), and
the internet of things (IoTs) applications [1,2]. The two key drivers of the digital revolution
are Moore’s Law—the exponential increase in computing power and solid-state memory,
and the substantial progress in enhancing communication bandwidth [3]. This, in fact, has
raised the expectations and demands of customers. As customers become more adept and
demand higher quality products and services, it is becoming a challenge to keep evolving
customer expectations satisfied. Technology has played a major role in the evolution of
customer demands, since it has ushered in and fostered the ‘instant gratification’ culture.
Customers are better informed, with easy access to information, and are able to gain access
instantly from anywhere.

With the growing advancement and adoption of technology, new opportunities and
challenges arise and sentiment analysis becomes an even more important subject. For
businesses, it has become vital to understand their customers’ thoughts, feelings, and
behaviors, in order to better model their strategy and align their offerings accurately with
customer demands. Advances in machine learning (ML) have improved bimodal (employs
more than one data modality) and multimodal (employs more than two data modalities)
sentiment analysis substantially [4,5]. Detecting bimodal sentiment can be an essential
aspect of many applications, mostly in contact centers (CCs), which are the first point of
contact with organizations for most customers. Although very few studies have addressed
the detection and analysis of bimodal sentiment in CC conversations, interest in this area
is steadily gaining traction from vertical organizations and the NLP community at large,
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to analyze CC conversations that take place on different communication channels [6,7].
However, the data produced in CCs are in the form of unstructured data that cannot be fed
into an algorithm directly. Compounded with the fact that NLP is nuanced and subjective,
the problem becomes much more difficult to solve.

The two primary research areas in bimodal sentiment analysis are (1) how to represent
data modalities and (2) how to fuse them together. The recommendation for the former
is that a good representation of raw data should capture sentiment features that can be
generalized over distinctive semantic content. For the latter purpose, it is recommended to
have a fusion mechanism that effectively combines audio and text representations [8]. To
represent text and audio data modalities, various low-level features, often referred to as low-
level descriptors (LLDs), have been employed previously, such as Word2Vec, GloVe, Mel-
frequency cepstral coefficients (MFCC), log-frequency power coefficients (LFPC), energy,
pitch, and log-Mel-spectrograms [9–13]. These features have been mostly used as input to
models such as long short term memory (LSTM), convolutional neural networks (CNNs),
hidden Markov models (HMMs), recurrent neural networks (RNNs), and deep neural
networks (DNNs). Most of the prior work used both low-level features and features
extracted from deep learning (DL) models [14–21].

In contrast to previous work, this study shows the significance of pretrained model
representations of two modalities (audio and text). We also evaluate the performance of
the models following the fusion of text and audio embeddings. The main contribution is
the use of the ensemble learning technique, where multiple classifiers are combined using
various techniques to establish a well-trained single classifier. Ensemble techniques have
demonstrated better performance in diverse classification tasks [22]. This is attributed to
their ability to combine the predictions of multiple models, thereby reducing the impact of
individual model errors and biases [23]. Ensemble techniques are also flexible in terms of
training and updating classifiers, which allows them to adapt to changing data patterns and
improve over time [24]. Numerous studies have demonstrated the superiority of ensemble
techniques over individual classifiers in various domains. For example, in a study on the
classification of gene expression data, an ensemble of support vector machines (SVMs)
outperformed individual SVMs and other popular classification methods, achieving higher
accuracy and stability across different datasets [25]. Another study, on land use/land cover
classification, showed that a hybrid ensemble of decision trees and SVMs achieved higher
accuracy than individual classifiers and other ensemble methods [26].

Furthermore, ensemble techniques have been applied successfully in various real-
world applications, such as intrusion detection in network security [27], diagnosis of
breast cancer [28], and prediction of stock prices [24]. In real-world applications, models
often encounter multiple orientations and other language nuances that can be difficult
for individual classifiers to capture accurately. One of the key advantages of ensemble
techniques is their ability to handle noisy and ambiguous data, which helps in identifying
complex patterns in large volumes of data. By combining the predictions of multiple
classifiers, ensemble methods can reduce the impact of such noise and improve overall
accuracy. Ensemble techniques also provide a flexible framework for incorporating new
data and updating the model over time. As new data becomes available, ensemble methods
can adapt and re-weight the base classifiers to better capture the changing sentiment trends
and dynamics in the data [29,30]. This adaptability is particularly useful in sentiment
analysis applications that involve analyzing social media streams, where the sentiment
can change rapidly in response to events and trends. The aforementioned advantages
demonstrate the flexibility and effectiveness of ensemble techniques in solving today’s
complex classification problems of bimodal sentiment analysis.

The study seeks to achieve the following:

• Compare multiple pretrained text model representations—BERT, ALBERT, and RoBERTa.
• Compare multiple pretrained audio model representations—2D CNN and Wav2Vec 2.0.
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• Among the models that are tested, conduct an analysis of potential models to be
incorporated in the bimodal approach and compare the performance of individual
models, with a bimodal strategy.

• To further improve the accuracy of their analysis, our proposed ensemble learning
technique will be employed to combine multiple models and minimize the impact of
individual model errors and biases.

The study aims to enhance our understanding of how emotions are expressed in
conversations and improve the reliability of sentiment analysis methods in real-world
applications. The study argues that the proposed approach can better handle noisy and
ambiguous data, adapt to changing sentiment trends and dynamics, and improve overall
accuracy, making it a valuable contribution to the field of sentiment analysis. The MELD
dataset was chosen as the primary data source for this study, as it was considered to be a
suitable alternative to real-world conversations due to its similarity in structure and content.
The rest of this paper is organized as follows: Section 2 presents an overview of related
research; Section 3 details our methodology; Sections 4 and 5 outline the experimental setup
and results, and draw up a comparison of the state-of-the-art methods used, including the
ensemble learning method presented in this paper; Section 6 presents the conclusions and
outlines possible future work.

2. Related Work

In this section, we first introduce and briefly discuss the feature extraction approaches
used in bimodal sentiment analysis. The theory underlying the models used in this research
is then introduced and discussed. Finally, we highlight work closely related to the sentiment
classification task associated with data from multiple modalities, specifically sentiment
analysis in conversations, particularly the architecture and fusion approaches employed.

2.1. Feature Extraction Approaches

The majority of studies have used a mix of low-level and deep features for bimodal
sentiment analysis. The algorithms employed in bimodal sentiment analysis usually involve
both feature extraction and fusion methods, since the data vary fundamentally in terms of
origin, sequence, and mechanism. This section provides an overview of the various feature
extraction approaches used previously.

2.1.1. Low-Level Features

Acoustic features can be broadly classified into two categories: time-domain features
and frequency-domain features. Time-domain features include the short-term energy
of the signal, zero-crossing rate, maximum amplitude, minimum energy, and entropy
of energy [31]. These sets of features are computationally efficient and provide useful
information for detecting certain types of acoustic events [31,32]. However, they have
limited discriminative power and do not capture higher-level features [33,34]. Where there
is limited data, frequency-domain features reveal deeper patterns in the audio signal, which
can potentially help in identifying the emotion underlying the signal [1,35]. Frequency-
domain features include spectrograms, MFCCs, spectral centroid, spectral roll-off, spectral
entropy, and chroma coefficients. LFPC can be classified as both time- and frequency-
domain features [31]. Frequency-domain features capture fine-grained information about
the frequency content of the speech signal, provide useful information for detecting certain
types of acoustic events, and can capture phonetic and phonological information [31,32].
However, they are computationally expensive, sensitive to noise reverberation, and may
require careful normalization and parameter tuning [33,34]. The selection of low-level
features for speech analysis depends on the specific task and characteristics of the speech
signal. Time-domain features may be useful in detecting speech in noisy environments,
while frequency-domain features may be more informative for analyzing prosodic features
of speech. Works that have used low-level features include [1,12,35–38].
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For text-based features, traditional Word2Vec-based models such as continuous bag
of words (CBOW), Skipgram, GloVe, and ELMo have been previously used [10,39–41].
Contrary to other studies , ref. [42] proposed a network-based pattern analysis approach to
extract more salient insights from Reddit textual data. More recently, transformer encoder-
only models have become a popular choice, due to their ability to capture meaningful
features for text classification tasks [43].

2.1.2. Deep Features

The features extracted using pretrained DL models are referred to as deep features.
Typically, these models are initially trained with one, or more than one, large annotated
dataset. In previous research works, pretrained models have been used to extract speech
and textual features for the task of sentiment analysis [35,43–46]. Such works suggest that
deep features can be a better choice in terms of accuracy when compared to low-level
features. Similarly, BERT, GPT, and ELMo models have been used to extract deep features
for various text classification tasks, including sentiment analysis, topic modeling, and
named entity recognition. For instance, in [47], pretrained BERT features were used for text
classification in the medical domain, and in [48], pretrained GPT-2 features were used for
sentiment analysis. In [49], pretrained WaveNet features were used for speech recognition
in noisy environments, and in [50], pretrained transformer features were used for sentiment
analysis of spoken language. Deep features have demonstrated superior performance in
numerous domains in comparison to other types of features. Their popularity for feature
extraction is on the rise due to their capacity to learn significant representations more
effectively [51–55].

2.2. Summary of Models Used in Bimodal Sentiment Analysis

Following our extensive research, we shortlisted three models for this research. We
fine-tuned the models, which involved feature extraction, training, and evaluation for each
data modality.

2.2.1. RoBERTa

The robustly optimized BERT approach (RoBERTa) is a pretrained language model,
an extension of the original BERT model, which has shown substantially better results
according to the general language understanding evaluation (GLUE) benchmark for eval-
uating natural language understanding systems [43,56,57]. The key difference between
BERT and RoBERTa is in the training phase of the model. It does not rely on next-sentence
prediction and masking is performed during the training time, as opposed to during the
data preparation time for BERT. The ’RoBERTa-base’ version of the model is downloaded
using the transformers library that loads the model from the open-source repository. The
model version used has 110 M parameters and has been pretrained on a larger English
language dataset of 160 GB. With its 24-layer encoder architecture, longer sequences can be
used as input [56]. However, the maximum number of tokens remains limited to 512 tokens,
similar to the limit for BERT, which is then mapped to an embedding size of 1024 [8].

2.2.2. Wav2Vec 2.0

Wav2Vec 2.0 is one of the current SOTA models pretrained in a self-supervised setting,
similar to BERT’s masked language modeling [58,59]. The architecture is made up of
two convolutional neural networks; encoder and context networks. The encoder network
f : X 7→ Z takes input raw audio samples xi ∈ X and outputs low-frequency feature
representations (z1, z2, . . . , zT), which encode about 30 ms of 16 kHz audio every 10 ms.
The context network g : Z 7→ C converts these low-frequency representations into a higher-
level contextual representation ci = g(zi . . . zi−v) for a receptive field v [60,61]. The overall
receptive field, after passing through both networks, is 210 ms for the base version and
810 ms for the large version. The main aim of this model, as reported in their first paper, is
to improve automatic speech recognition (ASR) performance with fewer labeled training



Big Data Cogn. Comput. 2023, 7, 85 5 of 20

data and enable its use for low-resource languages. The model consists of 35 M parameters
and was pretrained on 960 h of unannotated speech data from the LibriSpeech benchmark
audiobooks data [62]. The authors set the embedding size to 512 and the maximum audio
waveform length to 9.5 s.

2.2.3. 2D CNN

Over the years, convolution neural networks (CNNs) have made substantial progress
in image recognition tasks as they are good at automatically learning useful features
from high-dimensional images [63]. CNNs use shared kernels (weights) to exploit the 2D
correlated image data structure. Max pooling is added to CNNs to introduce invariance;
thus, only the relevant high-dimensional features are used in classification tasks [64,65].
This study explores the assumption that CNNs can work well with audio classification tasks
due to the fact that when the log-Mel filter bank is applied to the fast Fourier transform
(FFT) representation of raw audio, linearity is produced in the log-frequency axis, allowing
a convolution operation to be performed along the frequency axis. Otherwise, different
filters (or kernels) would have to be used for different frequency ranges. This property,
along with CNN’s good representation power, allows the model to learn the underlying
patterns effectively within short time frames, resulting in superior performance [1,21,66].
To put it simply, the intuition here is to consider the audio segments as input images. The
CNN layer will identify local contexts by applying n convolutions over the input audio
images along the time axis, and generate sequences of vectors. In our paper, we employed
two 2D CNNs—one trained on MFCCs and the other on log-Mel-spectrogram matrices.

2.3. Sentiment Analysis Architecture and Fusion Approaches

Over the years, sentiment analysis research has shifted from analyzing full documents
or paragraphs to a finer level of detail—identifying sentiment towards particular phrases
or words, audio and visual cues [7,67,68]. Correspondingly, sentiment analysis has gained
much more research interest, mainly because of its potential application in dialogue systems
to produce sentiment-aware and considerate dialogues [67]. However, studies using real-
life conversational data are scarce. While this area is attracting a plethora of research work
focusing on algorithmic aspects, such studies are typically evaluating a selection of datasets
and little effort is dedicated to the expansion of the research scope, where bimodal data is
explored within the setting of conversational datasets [6]. In this section, we briefly discuss
the previous studies on the two different approaches to data modality sentiment analysis.

2.3.1. Bimodal

The bimodal approach utilizes two modal input representations to judge the sentiment
of each utterance. Current bimodal-based approaches are scarce and the few of those
who have focused on this have mainly preferred to use textual and acoustic modalities for
sentiment analysis tasks.

In [69], a method was used that statistically combined features with N-grams, senti-
ment words, and domain-specific words to predict user sentiments. Their work applied
a combination of acoustic and linguistic rules through a multi-dimensional model on CC
data using SVMs, MaxEnt entropy, and traditional Bayesian as classifiers. The main contri-
bution of their work is the approach they took to incorporate the results from each of the
classifiers while also adding language and acoustic rules to the model. The F1 score of their
proposed method improved to 69.1%, against the baseline F1 score of 65.4%. In [35], a novel
transfer learning method is proposed to be used when there is training data with as few as
125 examples per emotion class. Their method is comparable to that in our study, as they
combine pretrained embeddings for both text and audio. In their experiment, sub-words
from BERT-base and wav2vec2-large-960h representations are aligned through an attention-
based recurrent neural network. Their method reported better performance compared to
previous SOTA and frequently cited works using feature representations such as LLDs
and GloVe embeddings and pretrained ASR representations. Correspondingly, both audio



Big Data Cogn. Comput. 2023, 7, 85 6 of 20

and textual pretrained representations were fused through an attention mechanism over a
bidirectional recurrent neural network—BiLSTM in [21]. The audio features extracted were
34-dimensional feature vectors from each frame, including MFCC, and zero-crossing rate,
among others, and GloVe embeddings were used as textual features. Several other works
explored fusing bimodal information—linguistic and acoustic. In [18,46], an approach
was adopted to combine utterance-level audio and textual embeddings before the softmax
classification layer. In [44], a different approach was followed, which used pretrained
representation from an ASR model with semantic information.

Another study, which was distinct yet relatable to our work, explored the classification
of psychiatric illnesses, initially through single data modality (audio and text) and then
through hybridization of both modalities [13]. Text features from the RoBERTa model and
speech features including MFCC were used. In their hybrid model, a “late fusion” approach
was highlighted with a fully connected neural network layer to map the outputs from
both models. Their results indicated that their proposed hybrid text model outperformed
the single data modality models. Table 1 provides a summary of bimodal sentiment
analysis studies.

Table 1. Summary of works on bimodal sentiment analysis.

Work Model Dataset Result Drawback

[69] SVMs, MaxEnt entropy,
Bayesian classifiers

China Mobile
CC corpus

It combines multiple classifiers to improve
F1 score to 69.1%.

Large amount of training data
is required.

[35] BERT, Wav2Vec 2.0,
RNNs IEMOCAP It achieved high unweighted accuracy of

73.9% with relatively few training examples.
It may not perform as well on
larger-size data.

[21] GloVe, CNN,
TDNN, BiLSTM IEMOCAP

It combines both audio and textual
unimodels and significantly improves
weighted accuracy to 70.4%.

High computational demands.

[46] BERT, BiLSTM, XLNet IEMOCAP Their best bimodal achieves 73.5% and
71.4% accuracy by using pretrained models.

It may not generalize well to
different datasets or languages.

[18] ARE, TRE,
MDRE, MDREA IEMOCAP

It effectively achieves better accuracy than
other SOTA methods, with accuracy ranging
from 68.8% to 71.8%.

The small dataset used in the study
restricts its wide applicability.

[44]
CNN, LSTM, RNN
and logistic model
tree (LMT)

IEMOCAP,
SWBD-sentiment

The use of pretrained models improved
weighted accuracy to 71.7% and 70.10% for
IEMOCAP and SWBD-sentiment,
respectively.

The model’s complexity poses a
challenge in applications where
quick processing is important.

[13] belabBERT,
neural network

Manual data
collection

Hybridization of belabBERT with a basic
audio classification network pushed its
accuracy of 75.68% to 77.0%.

The results are only demonstrated
through a very small Dutch
language dataset.

2.3.2. Multimodal

Multimodal methods detect sentiments in conversations through analysis of more
than two modal input representations. As the information contained in unimodal data can
often be biased and interfered with by external noise factors, researchers on multimodal
sentiment analysis tasks are receiving widespread attention for their unique approaches to
combining different modalities [70]. Although multimodal sentiment analysis is not the
scope of this paper, key lessons have been drawn from the studies mentioned in this section.

A wide range of work has been conducted previously, and researchers have proposed
models based on DNNs, RNNs, CNNs, and LSTMs over multiple data modalities [71–73]
with varying fusion techniques [74–79]. Recently, the effectiveness of novel DL archi-
tectures, such as transformers [80] and graph convolution nets [15], as fusion methods
have been explored and highlighted as computationally efficient. In [81], BERT-based
self-supervised learning (SSL) features were used for text, while other modalities were
represented with low-level features, and fusion mechanisms were based on RNN and
self attention. In the work of [8], pretrained SSL models were used as feature extractors,
and a transformer-based fusion mechanism was employed. In contrast to our work, their
proposed fusion mechanism represents audio, text, and video modalities. The authors
emphasize that their proposed fusion mechanism is both efficient and more accurate than
previous SOTA methods when dealing with high-dimensional SSL features, in terms of the
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size of embedding and large sequence length when working with three modalities. Another
proposed fusion method is GraphMFT, where graph neural networks (GNNs) are leveraged
to integrate and complement the information from multimodal data [70]. The results indi-
cate that this method achieved better performance than previous SOTA approaches. Other
relevant multimodal approaches previously proposed include ConGCN [82], MMGCN [83],
MFN [84], ICON [85], BC-LSTM [79], CMN [86], and DialogueRNN [87]. Table 2 provides
a summary of bimodal sentiment analysis studies.

Table 2. Summary of works on multimodal sentiment analysis.

Work Model Dataset Result Drawback

[70] BiLSTM, GNNs IEMOCAP, MELD An improvement of 2.73% on IEMOCAP
and 1.99% on MELD recorded.

Computationally intensive and untested
generalizability to other datasets.

[71] DNNs, ELM IEMOCAP
DNN-based approach significantly
enhanced weighted accuracy, to 54.3%,
against other approaches.

Absence of comparison with the latest
methods, small dataset size for evaluation.

[72] CNN IEMOCAP Results demonstrate an improved
performance of 71.8% weighted accuracy.

Lack of comparison with other advanced
methods, and the evaluation is conducted
on a relatively small dataset.

[73] CNN, LSTM RECOLA
Achieves significantly better performance
in comparison to traditional
designed features.

Focuses on only two emotions, limiting
its generalizability to other
emotion categories.

[78] GloVe, LSTM,
neural network CMU-MOSI An improvement of 4.0% on CMU-MOSI

highlighted.
Lack of interpretability, and the absence of
a detailed comparative evaluation.

[79] LSTM MOSI, MOUD,
IEMOCAP

A significant improvement of 5–10% over
the SOTA, and it exhibits high robustness
in terms of generalizability.

Complex model, challenging training and
optimization, and uses a single evaluation
metric only.

[80] Transformers
CMU-MOSI,
CMU-MOSEI,
IEMOCAP

The model outperforms prior SOTA
approaches in both word-aligned and
unaligned scenarios.

Modest experiment gains over existing
approaches, and more recent models may
have surpassed its performance.

[15] Graph neural
networks

IEMOCAP, AVEC,
MELD

SOTA performance reported against
previous methods.

Computationally expensive, highly
dependent on input quality, and lacks
interpretability.

[81] RNN, BERT IEMOCAP, MELD,
CMU-MOSEI

Achieves better performance than
previous approaches.

It does not include ablation studies to
assess the performance thoroughly.

[8] RoBERTa, Wav2Vec,
FABNET

CMU-MOSEI,
CMU-MOSI,
IEMOCAP, MELD

The models, through the effective fusion
mechanism, outperformed prior
multimodal approaches.

Computationally expensive and requires a
significant amount of data for training.

3. Methodology

In this section, we focus on the public benchmark dataset, and the features used for
comparison. Figure 1 highlights the pipeline used in the study, consisting of multiple steps
followed to obtain the results of each experimental approach.

3.1. Dataset Selection

MELD is a multimodal and multi-party dataset for emotion recognition in conversa-
tions [88]. It is an extended version of the EmotionLines [89] dataset and contains dialogue
instances similar to those available in EmotionLines, but, unlike EmotionLines, it includes
information in the form of text, video, and audio. It comprises over 1400 conversations,
a total of 13,700 utterances, which are categorized into seven emotions: neutral, surprise,
fear, sadness, joy, disgust, and anger. The utterances are also categorized into three labels
(positive, negative, and neutral) which are those in our experiments. There are three or
more speakers in each conversation and the extracts are collected from the TV show called
Friends. The audio part of the dataset was retrieved from converting MPEG-4 Part 14 files
into a WAVE format. Each audio utterance was stored in a 32-bit PCM WAVE format
sampled at 16,000 Hz. As shown in Table 3, the training, development, and test sets in
our experiments consist of 9988 and 1108, and 2608 audio files and textual utterances,
respectively. The textual data is a comma-separated values (CSV) file with two columns:
text and sentiment label.
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Figure 1. The architecture of the pipeline for an ensemble-learning-based technique for bimodal
sentiment analysis.

Table 3. Description of the MELD dataset.

Data Type Description

Modalities Audio, text
Sentiment classes Positive, neutral, negative

# training set 9988/8.72 h
# development set 1108/0.96 h

# testing set 2608/2.31 h
# positive sentiment 3087
# neutral sentiment 6434

# negative sentiment 4183
Elicitation Play-acted

3.2. Feature Selection

Following our extensive analysis, several features were shortlisted. However, we
restricted ourselves to using only a few, which will be explained in this section.

3.2.1. Text Features

A bidirectional transformer model—RoBERTa-base—was used for generating word
embeddings as input for our text-based sentiment classification task. Transformer models
use word embeddings as input similar to Word2Vec; however, the models can handle
longer input sequences and the relations within these sequences. This ability, combined
with the attention mechanism described in the original “attention is all you need” BERT
paper [43], enables it to find long-range dependencies in the text, leading to more robust
language models. As explained above, RoBERTa is an enhanced version of BERT, as it is
much better trained and designed, which reduces the overall training time required [56].

3.2.2. Audio Features

MFCC and Mel-spectrograms were extracted for audio-based sentiment classification
tasks. MFCC represents the short-term power spectrum of a sound by transforming the
audio signal to mimic the human cochlea. The Mel scale, as opposed to linear scales,
approximates human-based perception of the sound [90]. The filter–source theory defines
the source to be the vocal cords and the filter represents that vocal tract. The length and
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shape of the vocal tract determine how sound is produced by a human and the cepstrum
can describe the filter, i.e., represent sound in a structured manner [91]. Mel-frequency
cepstral coefficients (MFCC) are coefficients that capture the envelope of the short-time power
spectrum. On the other hand, a spectrogram represents the frequency and time of an audio
signal. The Mel-spectrogram is a representation of the audio signal on a Mel scale. The
logarithmic form of the Mel-spectrogram helps in understanding emotions better, because
humans perceive sound on a logarithmic scale. As different emotions exhibit different MFCC
and Mel-spectrogram patterns, their represented images were used individually as input
to a deep learning 2D CNN network, thus, helping us to evaluate which of the two feature
representations is better suited to classify the emotion with audio data.

In relation to Wav2Vec 2.0, the features are extracted using a latent feature encoder, that
converts the raw waveform into a sequence of feature vectors every 20 ms. This is then fed
to the context network (transformer encoder) and processed through 12 and 24 transformer
blocks for the base and large versions, respectively. The dimension size increases from 512
(output of the CNN) to 768 for the base and 1024 for the large, as the input goes through a
feature projection layer.

4. Experiments

In this section, we describe several experiments conducted in this research, including
all details related to their implementation. We classify them into; textual, acoustic, bimodal,
and ensemble learning, as shown in Figure 2.

Figure 2. Flow chart portraying all experiments carried out.

4.1. Implementation Details

This section presents the details of the model’s implementation and the experimen-
tal setup. We implemented our model by following the official guidance on Hugging
Face’s transformer library [92]—a Python library providing detailed code explanations for
building BERT-based models [93]. A sequential data processing and modeling framework
was built using mainly the PyTorch and Keras libraries. Other libraries that were used
for extracting acoustic features and model training included TensorFlow, scikit-learn, and
librosa. The training was conducted using a single NVIDIA Quadro T1000 GPU, and the
operating system was Windows 10. For evaluation purposes, we calculated weighted
accuracy, loss, precision, recall, and F1 score and generated a confusion matrix graph.

4.2. Textual

In this experiment, we extracted features from the MELD text data modality and used
them as input into the model, as described in Section 2.2.1. The features extracted are
vectors represented in tensors: ‘input ids’ and ‘attention_mask’. The model also adds [SEP],
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which is a marker for the ending of a sentence, and [CLS] to the start of each input, so
the transformer model knows it is a classification problem. In addition to that, a special
token called [PAD] is also added, which defines the maximum length of a sequence that
the transformer can accept. All the sequences that are greater in length than max_length
are truncated, while shorter sequences are padded with zeros. Another token is also added
which encodes unknown tokens as [UNK].

In the first experiment, we used the RoBERTa-base model with a basic configuration.
The size of an extracted embedding was 768. In our second experiment, we used the
concatenated outputs of the last four hidden layers. The size of an extracted embedding
increased to 3072. In both experiments, the maximum training sequence length was set to
60, batch size to 16, the number of epochs to 10, and early stopping with the patience of
3 epochs. The training set contains utterances of less than 60 tokens. In addition, the loss
was computed using a softmax layer with cross-entropy and one-fifth of the training steps
were set as warm-up steps. While training, we used Adam optimization, with a learning
rate of 0.00002.

4.3. Acoustic

The MFCC and Mel-spectrogram features for 2D CNN implementation on the MELD
audio data modality were extracted using the librosa library—a python package commonly
used for music and audio analysis. For computational reasons, the audio duration to be
loaded was set to 41 s. The maximum audio length for MELD data is also 41 s. The number
of MFCCs returned was set to 30 and the Mel-spectrogram was set to 60. The batch size
was set to 16. The 20-epoch training of 2D CNNs started with four convolutional layers,
max pooling with a dropout rate of 0.2, and activation function as “relu”. The final layer
used activation softmax, loss was computed with cross-entropy, and the optimizer was set
as Adam, with a learning rate of 0.001.

In the case of Wav2Vec 2.0, the feature encoder has a total receptive field of 400 samples,
or 25 ms of audio at a sample rate of 16,000 Hz. We used a maximum sequence length of
MELD audio data as input to the network. The variable audio lengths used as input were
passed through a temporal CNN network as explained in Section 2.2.2. The batch size was
set to 16, the maximum number of epochs to 100, and early stopping with the patience of
30 epochs. The size of each dimensional vector was 768, the same as in RoBERTa, since
both are transformer-based models. The extracted embeddings were then passed to six
linear layers before passing to a softmax layer. The loss criterion was set as cross-entropy,
one-fifth of the training steps were calculated as warm-up steps and the optimizer was
Adam, with a learning rate of 0.00002.

4.4. Bimodal

In our bimodal experiment, we applied two settings immediately before modeling.
In our first setting, RoBERTa’s pooler output embeddings were merged with Wav2Vec
2.0 embeddings. In our second setting, RoBERTa’s last four hidden layers’ outputs were
concatenated, and the embeddings were merged with Wav2Vec 2.0 embeddings. This
was achieved by first casting layers to a tuple and concatenating over the last dimension.
Following that, the mean of the concatenated vector over the token dimension was taken
as the final output. For modeling, we introduced a simple concatenation function at the
start of the modeling architecture, where embeddings from text and audio modalities are
joined and fed as a single input for model training. In both settings, the batch size was set
to 16, the maximum number of epochs to 100, and early stopping with the patience of 30
epochs. The size of each dimensional vector was 768, but in the case of the RoBERTa’s last
four hidden layers, the size was 3072. For the first setting, the concatenated dimension
size was 1536, while for the second, it was 3840. The concatenated embeddings were then
passed to five linear layers before passing to a softmax layer. The loss criterion was set
as cross-entropy, one-fifth of the training steps were calculated as warm-up steps and the
optimizer was Adam, with a learning rate of 0.00002.
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4.5. Ensemble Learning

Following our unimodal and bimodal experiments for sentiment analysis, ensemble
learning methods were employed to further enhance the model’s performance. Four
different ensemble learning methods were used, including max voting, averaging, weighted
averaging, and our proposed neural-network-based ensemble learning method.

Max voting is a classification method that utilizes multiple models to make predictions
for each data point. Each model’s prediction is considered a ‘vote’, and the final prediction
is determined by the majority of the models. A similar approach is taken in the averaging
method, where predictions from all models are averaged to generate the final prediction.

Weighted averaging extends the averaging method by assigning different weights to
each model, based on their importance and accuracy. In our proposed neural-network-
based ensemble learning method, a neural network model was created and trained using
the predictions of all six models for 250 epochs and a batch size of 10.

To perform these ensemble methods, the predictions from each of the six models were
saved and then loaded as a single dataset. The ensemble methods were then applied to this
dataset to generate the final prediction.

5. Results and Discussion

In this section, we present the results of the experiments conducted on the MELD
dataset. This work aims to present comparable results of text and audio modalities while
also presenting the results of a simple bimodal fusion technique as well as ensemble
learning. We aimed to highlight the effectiveness of ensemble learning in the task of
bimodal sentiment analysis. At the time of writing, we did not find any work similar to our
focus on using ensemble learning on diverse models of two modalities for enhancing the
task of sentiment analysis classification.

5.1. Text Data Experiment

As mentioned in Section 4.2, the RoBERTa model was used for text-only input data
experiments. BERT and ALBERT were chosen as baseline models for this experiment. This
eventually helped in comparing the model results and shortlisting the best-performing
model for the fusion experiment. Table 4 shows the results of all models on the MELD
dataset. The RoBERTa model produced state-of-the-art results for the MELD dataset when
compared with the benchmark model results uploaded on the ‘paperswithcode’ website.
The RoBERTa model with basic configuration achieved almost the same performance as
with a different configuration where outputs of its last four hidden layers were concate-
nated, as opposed to using the pooler output layer. The results shown in Figure 3 confirm
that RoBERTa performs best in its basic configuration. RoBERTa outperforms other models
mainly due to three reasons. Firstly, it was trained on a significantly larger corpus of text
data, for an extended period, which enabled it to learn more intricate patterns and improve
its ability to generalize. Secondly, it employs dynamic masking instead of static masking,
which increases the maximum sequence length, resulting in more efficient learning. Fur-
thermore, it does not utilize the next-sentence-prediction task, which again contributes to
more efficient learning. Lastly, the model weights are randomly initialized instead of using
pretrained weights for all tasks, making it more adaptable to new tasks and improving its
overall performance [56].

Table 4. Experimental results of MELD text dataset.

Model Weighted
Accuracy % Loss Precision Recall F1 Score

BERT 70.0 0.84 0.70 0.70 0.70
ALBERT 69.1 0.85 0.69 0.69 0.69
RoBERTa 71.0 0.84 0.71 0.71 0.71

RoBERTa last four hidden layers 70.5 0.84 0.70 0.71 0.70
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(a) BERT (b) ALBERT

(c) RoBERTa (d) RoBERTa-lfhl

Figure 3. Test results of the four transformer-based models used for textual data modality sentiment
classification, highlighting predicted vs. actual classes.

5.2. Audio Data Experiment

As defined in Section 4.3 , 2D CNN was trained with two different features, i.e., MFCC
and Mel-spectrogram. Further, pretrained Wav2Vec 2.0 base and large models were also
experimented with. In this experiment, only audio data was used for the task of model
training and predictions. Both models were compared against each other as opposed to
using baseline models. An evaluation was conducted using metrics such as weighted
accuracy, loss, precision, recall, and F1 score. As illustrated in Table 5, the best-performing
model was the one trained on the Mel-spectrogram. The performance of 2D CNN was
close to that of the best-performing model. Figure 4 provides insights into predicted vs.
actual classes. When comparing the accuracy of audio data modality models with text data
modality models, it is clear that the latter show superior performance, as presumed.

Table 5. Experimental results of MELD audio dataset.

Model Weighted
Accuracy % Loss Precision Recall F1 Score

2D CNN MFCC 50.3 1.04 0.46 0.50 0.46
2D CNN Mel-spectrogram 51.3 1.02 0.46 0.51 0.42

Wav2Vec 2.0 base 49.0 1.01 0.48 0.49 0.46
Wav2Vec 2.0 large 50.0 1.02 0.47 0.50 0.47
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(a) 2D CNN MFCC (b) 2D CNN spectrogram

(c) Wav2Vec 2.0 base (d) Wav2Vec 2.0 large

Figure 4. Test results of the four models used for audio data modality sentiment classification,
highlighting predicted vs. actual classes.

5.3. Bimodal Experiment

As defined in Section 4.4, RoBERTa and Wav2Vec 2.0 were the chosen models for this
experiment, in which both text and audio data were used for the task of model training and
predictions. The best-performing model was the one trained on RoBERTa’s concatenated
last four hidden layers and Wav2Vec 2.0 outputs, as illustrated in Table 6. Figure 5 provides
insights into predicted vs. actual classes. When comparing the weighted accuracy of this
experiment with the unimodal experiments, it is seen that although the bimodal models
outperform the audio data modality-only models, they still do not show better performance
than the text data modality-only models.

Table 6. Experimental results of bimodal (text + audio) MELD dataset.

Model Weighted
Accuracy % Loss Precision Recall F1 Score

RoBERTa + Wav2Vec 2.0 67.9 0.86 0.68 0.68 0.68
RoBERTa last four hidden layers + Wav2Vec 2.0 68.4 0.85 0.68 0.68 0.68
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(a) RoBERTa + Wav2Vec 2.0 (b) RoBERTa last four hidden layers + Wav2Vec 2.0

Figure 5. Test results of bimodal sentiment classification, highlighting predicted vs. actual classes.

5.4. Ensemble Experiment

As explained in Section 4.5, four different experiments were conducted to assess the
impact of ensemble learning on the prediction results of the models previously experi-
mented on in this study. As shown in Table 7, we can see there is no improvement with
“max voting” and “averaging” techniques. However, with “weighted averaging”, there is
an improvement of 0.3%, while with our proposed “neural network” technique, there is
an improvement of 3.42% when compared with the text-only highest-performing model.
This is because neural-network-based ensemble learning can learn complex relationships
and patterns in the data, automatically select informative features, and adjust parameters
to improve performance, while traditional ensemble techniques can only model linear
relationships and require manual feature engineering and hyperparameter tuning [23].

Table 7. Experimental results of ensemble learning techniques.

Ensemble Learning Technique Weighted Accuracy %

Max voting 59.9
Averaging 68.6

Weighted averaging 71.3
Neural-network-based ensemble learning 74.4

5.5. Implications

From the experimental results, it can be determined that ensemble methods can
improve the accuracy and robustness of sentiment analysis models by reducing the impact
of individual model biases and errors, and by leveraging the strengths of different models
to capture diverse aspects of sentiment.

Our study shows that by combining the predictions of multiple models, ensemble
methods can achieve more accurate and reliable sentiment analysis results in various
applications, such as product review analysis, social media monitoring, and customer
feedback analysis. Numerous studies in the domain have demonstrated that by combining
the predictions of multiple classifiers, ensemble methods can reduce the risk of overfitting,
improve accuracy and robustness, and provide a more balanced view of outputs [22,29].

By leveraging the strengths of multiple models, ensemble techniques can provide more
authentic sentiment analysis results that can be applied to a wide range of applications, from
CC conversation analysis to brand reputation management. It can also help companies to
monitor and analyze CC customer agent performance, identify emerging trends and issues,
and respond quickly and effectively to customer needs and preferences, eventually helping
businesses to make more informed decisions and improve their overall performance and
competitiveness [94,95]. It can also help in tracking the effectiveness of their communication
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and engagement strategies with customers and help in personalizing them, which can
result in building stronger and more positive relationships with customers [96].

Overall, the implications are broad and far-reaching. As sentiment analysis contin-
ues to grow in importance and popularity, ensemble techniques are likely to become an
increasingly important tool for achieving more accurate and effective results.

6. Conclusions and Future Work

In this paper, we presented multiple techniques for classifying sentiment using differ-
ent types of data. As illustrated in Table 8, a set of experiments was conducted to compare
the performance of different models, including state-of-the-art models, for sentiment clas-
sification using uni- and bimodal datasets and variations in those models. We calculated
weighted accuracy, loss, precision, recall, and F1 score for evaluating the best-performing
models in our experiments. According to the experimental results, RoBERTa achieved
the highest accuracy compared to other models in the text-only setting, whereas 2D CNN
trained on Mel-spectrogram features achieved the highest in the audio-only setting. In
our bimodal approach—based on the output of the model trained on RoBERTa’s concate-
nated last four hidden layers along with Wav2Vec 2.0 features—this version showed higher
performance than the other approach adopted. Lastly, to overcome the shortcomings of
models with lower accuracy, we proposed simple neural-network-based ensemble learn-
ing. To evaluate our ensemble learning approach, we considered other ensemble learning
techniques in our final set of experiments. Our proposed ensemble learning approach
outperformed the second-best technique by 3.12%.

Table 8. Performance comparison of unimodal and bimodal models with proposed neural-network-
based ensemble learning technique on the MELD dataset.

Model Weighted Accuracy %

BERT 70.0
ALBERT 69.1
RoBERTa 71.0

RoBERTa last four hidden layers 70.5

2D CNN MFCC 50.3
2D CNN Mel-spectrogram 51.3

Wav2Vec 2.0 base 49.0
Wav2Vec 2.0 large 50.0

RoBERTa + Wav2Vec 2.0 67.9
RoBERTa last four hidden layers + Wav2Vec 2.0 68.4

Max voting 59.9
Averaging 68.6

Weighted averaging 71.3
Neural-network-based ensemble learning 74.4

Our proposed approach is well-suited for analyzing bimodal data, which encompasses
sentiment expressed through both spoken language and nonverbal cues, a common feature
of CC interactions. By combining the results of both text-based and audio-based sentiment
analysis, ensemble learning bimodal sentiment analysis can achieve a more comprehensive
and nuanced understanding of the sentiment expressed, leading to more reliable insights
for decision-making purposes. It offers various potential applications in different domains,
particularly in identifying the sentiment of customer conversations within the CC domain.
Additionally, it can be used in social media analysis to monitor the sentiment of online
conversations related to a particular topic or brand, helping companies to identify and
respond to customer complaints or concerns.

The main limitation of this work currently lies in the fact that it relies extensively on
the quality, as well as the number of distinctive models, for generating a good-performing
neural-network-based ensemble learning model. An interesting avenue to explore in the
future could be relying on a few highly performing models for this experiment.
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In the future, we would like to use our method to reproduce the results of this study
on other datasets and ensure our proposed method is consistent. Further, as progress is
made in the field of deep learning techniques, our work can provide a basis to enhance
bimodal sentiment analysis, particularly audio sentiment analysis, and explore the benefit
of implementing ensemble learning on such bimodal datasets.
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