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Abstract: Extensive medical research has revealed evidence of a strong association between hippocam-
pus atrophy and age-related diseases such as Alzheimer’s disease (AD). Therefore; segmentation
of the hippocampus is an important task that can help clinicians and researchers in diagnosing
cognitive impairment and uncovering the mechanisms behind hippocampal changes and diseases of
the brain. The main aim of this paper was to provide a fair comparison of 2D and 3D convolution-
based architectures for the specific task of hippocampus segmentation from brain MRI volumes to
determine whether 3D convolution models truly perform better in hippocampus segmentation and
also to assess any additional costs in terms of time and computational resources. Our optimized
model, which used 50 epochs and a mini-batch size of 2, achieved the best validation loss and Dice
Similarity Score (DSC) of 0.0129 and 0.8541, respectively, across all experiment runs. Based on the
model comparisons, we concluded that 2D convolution models can surpass their 3D counterparts
in terms of both hippocampus segmentation performance and training efficiency. Our automatic
hippocampus segmentation demonstrated potential savings of thousands of clinician person-hours
spent on manually analyzing and segmenting brain MRI scans

Keywords: Alzheimer’s disease; hippocampus segmentation; 2D convolution model; 3D convolution
model; cognitive impairment; brain MRI

1. Introduction

Magnetic resonance imaging (MRI) is a powerful, non-invasive clinical tool used for
numerous purposes in the health industry that range from diagnosing patients to the study
of diseases. MRI scanners work by employing strong magnets to produce a magnetic field
that aligns the protons in the body, causing them to release energy that is picked up by
sensors [1]. As different tissues in the body have varying elemental compositions, each of
them tends to release different amounts of energy. Further processing and transformation
of these energy signals then produces the final magnetic resonance (MR) images.

With rapid advances in MRI technology throughout the past decades, researchers have
been able to study structures of the brain in increasing detail. Unlike some medical imaging
techniques such as X-rays that generate two-dimensional images, MRI machines output
three-dimensional volumes, allowing clinicians to better visualize the spatial relationship
between brain structures. While there are many variations of MRI modes, this paper will
focus on T1-weighted (T1W) MRI because it is especially suitable for identifying structures
in the brain [2]. Further improvements in MRI technology have allowed researchers to
better gather quantitative information such as the concentration of iron in parts of the brain
and the volumes of certain brain structures such as the hippocampus [3].

The hippocampi are two complex structures in the left and right human brain that play
an important role in memory and cognitive function [4]. Morphology, volume, and other
physical characteristics of each hippocampus can be deduced by identifying regions of the
brain corresponding to the hippocampus in a process known as hippocampus segmentation.
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Extensive medical research has also revealed evidence of a strong association between
hippocampus atrophy and age-related diseases such as Alzheimer’s disease (AD) [4–6].
Therefore, segmentation of the hippocampus is an important task that can help clinicians
and researchers in diagnosing cognitive impairment and uncovering the mechanisms
behind hippocampal changes and diseases of the brain.

The “gold standard” of hippocampus segmentation is manual segmentation, in which
an expert in neuroanatomy will manually trace out the hippocampus from high-resolution
magnetic resonance (MR) images. However, this approach is extremely time-consuming
and also requires the presence of an expert who is very familiar with studying brain struc-
tures from MR images [7]. Furthermore, there may be significant variation between how
two different experts identify the hippocampus, leading to considerable inconsistencies
between manual segmentations, although there have been recent attempts made toward a
standardized manual segmentation protocol [8]. These difficulties faced in manual segmen-
tation has led to the research and development of algorithms for automatic hippocampus
segmentation, which can provide fast, consistent results for large datasets of MR images.

Today, most automatic segmentation algorithms make use of different variations of
atlas-based techniques [9]. In the context of hippocampus segmentation, an atlas refers to
a MR image that contains an ideal segmentation of the hippocampus [10]. An atlas must
be transformed to be aligned with a common coordinate system in a process known as
registration, which ensures spatial correspondence with other MR images registered to
the same system [11]. The atlas images can also be compiled MR images generated from
the MR images of multiple individuals from the population. One such example is the
MNI ICBM-152 brain volume template prepared by the Montreal Neurological Institute
(MNI), McGill University [12]. This brain volume template was generated by averaging
over 152 normal brain MR images co-registered onto the same coordinate system.

The simplest atlas-based method is single atlas, which starts off with the input MR
image being registered to the atlas image using a series of linear and non-linear transfor-
mations. This ensures that the MR image is as similar as possible to the atlas image. The
inverse of the transformation used to register the input image is then applied to the hip-
pocampus segmentation of the atlas image, thus generating the segmented hippocampus
in the input image [10]. Although this method is simple and relatively quick, its main dis-
advantage is that the predicted segmentation is heavily dependent on the atlas image used.
If the anatomy of the individual differs greatly from that of the atlas, then the predicted
segmentation will be inaccurate.

Algorithms using the probabilistic atlas have a much lower computational cost since
registration between the atlases is done at the start of the method, and new target MR
images do not have to be individually registered to every atlas used. However, decent
hippocampus segmentation results are still obtained using this method [10]. Popular brain
MRI software such as FreeSurfer and FMRIB Software Library (FSL) use variants of the
probabilistic atlas method for their hippocampus segmentation functions [13,14].

Current research on deep learning and hippocampus segmentation are largely focused
on the design and creation of architectures that leverage either 2D or 3D convolutions.
However, there has been a lack of research to fairly and clearly establish the advantages
and disadvantages of using 2D or 3D convolutions for segmenting the hippocampi from
volumetric MRI data.

The main aim of this paper was to provide a fair comparison of 2D and 3D convolution-
based architectures for the specific task of hippocampus segmentation from brain MRI
volumes. It is worth investigating whether 3D convolution models truly perform better
in hippocampus segmentation and also to assess any additional costs in terms of time
and computational resources. Naturally, one of the main outcomes to track would be
how well each model performs for the task of hippocampus segmentation. However,
another vital outcome to note is the training speed of each model, which directly affects
training efficiency of deep learning models. Deep learning techniques usually require
large volumes of data and incur significant costs in terms of computational resources and
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time. Therefore, training speed is of great relevance when it comes to scenarios such as
training on large datasets of MRI volumes or quickly retraining models for use in certain
target subpopulations. Throughout this paper, emphasis will not be placed solely on model
performance but also on how quickly a well-performing model can be trained.

2. Related Works

Many conventional machine learning methods require extensive data preparation in
the form of manual feature engineering in order to obtain suitable representations of the
data. These often require a substantial amount of time as well as domain expertise, thus
making these methods less suitable for raw, unstructured data such as images. To avoid this
issue, a family of techniques known as representation learning are used. These techniques
are able to accept raw data, automatically discover suitable representations for the data,
and either pass these representations on to another algorithm or use them directly for
prediction [15]. Deep learning is a form of representation learning that uses compositions
of non-linear transformations to form several levels of representations with each level of
representation progressively built up with information from the previous levels. Deep
learning is usually conducted using artificial neural networks (ANNs) with multiple hidden
layers. A specific type of ANN known as the convolutional neural network (CNN) enjoys
immense popularity in the field of computer vision due to its ability to analyze raw images
with minimal processing. Examples of these CNNs include the VGG-16 and ResNet-50
models, which have achieved state-of-the-art results in several image-related tasks such as
classification and object detection [16,17].

In the fields of neuroimaging and neuroscience, deep learning is increasingly being
explored for the analysis of medical images pertaining to the human brain. One such
application is the use of deep learning for hippocampus segmentation. Studies have
indicated that for medical image segmentation tasks, deep learning models can outperform
current existing atlas-based methods in terms of segmentation accuracy and inference
time [18–20]. Hence, the use of deep learning for hippocampus segmentation is an area
that is currently being actively researched.

In the current literature, the majority of deep learning models developed for hippocam-
pus segmentation were based on the original U-Net architecture proposed by Ronneberger,
Fischer, and Brox [21]. Considered to be a type of CNN, the U-Net architecture (as shown
in Figure 1) is composed of a contracting (also called downsampling or analysis) path and a
symmetrical expanding (also called upsampling or synthesis) path. Within the contracting
and expanding paths, “blocks” consisting of convolution operations are used to progres-
sively build up feature maps relevant to the segmentation task. In the contracting path,
contextual information regarding the structures to be segmented is learned by the model.
In the expanding path, the outputs from the contracting path are then progressively upsam-
pled to give them the same resolution as the original inputs. Additionally, high-resolution
feature maps from the contracting path are concatenated to the upsampled feature maps in
the expanding path to allow the model to better localize the final segmented regions.

In the context of hippocampus segmentation, 3D MRI volumes are fed as input to
the deep learning models. Since the U-Net architecture was originally designed for 2D
biomedical images, various modifications were necessary to create models capable of
accepting 3D brain MRI volumes for the task of hippocampus segmentation. To put it
broadly, most deep learning models designed for hippocampus segmentation either use 3D
convolutions instead of 2D convolutions or continue using 2D convolutions and process
the 3D volume on a 2D slice-by-slice basis.
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pus. Additionally, the authors also used attention modules to further process the feature 
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focus on features that were more important in a similar manner to how the human visual 
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Network for Segmentation (SWANS) as proposed by Dinsdale, Jenkinson, and Namburete 
[25]. In this architecture, the authors first used a network that combined the 3D U-Net 
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sphere) into the true segmentation mask. The main benefit of using the spatial transformer 
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Figure 1. Architecture of the original U-Net. The number of feature maps was omitted because it can
vary depending on data, but it roughly corresponds to the width of the blue boxes.

One of the first deep learning architectures developed for segmentation of 3D volumes
was the 3D U-Net proposed by Çiçek et al. [22]. The 3D U-Net model is a direct extension
of the original U-Net—the two architectures are largely similar for both the contracting
and expanding paths. The main difference in 3D U-Net is that all 2D operations (e.g.,
2D convolution) in the architecture were replaced by their corresponding 3D operations
(e.g., 3D convolution). This allowed the 3D U-Net to accept 3D volumetric data as input.
Another modification was the doubling of output channels before each maximum pooling
(MaxPool) operation to avoid computational bottlenecks, which was recommended by pre-
vious studies [23]. The last modification was the addition of batch normalization operations
before each activation function. It should be noted that the last two modifications were
mainly targeted at reducing computational costs and speeding up the training process [22].

Further building upon the 3D U-Net architecture, Lin et al. [24] proposed a modified
architecture known as multi-scale multi-attention U-Net (MSMA U-Net). One of the
main modifications was the use of multiple 3D convolution filters of different dimensions
instead of just a single filter. It was argued that this allowed the network to combine
feature information from varying scales, which helped it to better segment parts of the
hippocampus. Additionally, the authors also used attention modules to further process the
feature maps from the contracting path before their concatenation to the expanding path.
The motivation behind these attention modules was to allow the model to better locate and
focus on features that were more important in a similar manner to how the human visual
system is able to selectively focus on certain regions of interest in a visual scene.

Another network architecture that makes use of the 3D U-Net is the Spatial WArping
Network for Segmentation (SWANS) as proposed by Dinsdale, Jenkinson, and Nambu-
rete [25]. In this architecture, the authors first used a network that combined the 3D U-Net
with a spatial transformer network to learn a deformation transformation. This transfor-
mation then deformed an initial binary segmentation mask (in the shape of an arbitrary
sphere) into the true segmentation mask. The main benefit of using the spatial transformer
network was that it allowed for better segmentation of hippocampi that were located in
different regions across the MRI volumes, which may occur due to bad registration of the
MRI scans.

As mentioned above, 2D convolution models process volumetric MRI data by going
through them slice-by-slice. In 3D MRI scans, there are three main orthogonal axes from
which slices may be taken as shown in Figure 2. Therefore, most 2D convolution models
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adopt a multi-view approach in which they combine the outputs of several networks with
different views to form a final predicted segmentation of the hippocampi.
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One such example is the 2D U-Seg-Net architecture and its ensembles as proposed
by Chen et al. [26]. The U-Seg-Net is a slightly simplified version of the original U-Net
with some convolution operations removed to reduce the number of model parameters. In
order to address the issue of 2D convolution models not being able to capture sufficient
spatial information in the third dimension, the authors built multiple U-Seg-Net models
with each approaching the MRI volume from a different view. Aside from the three
orthogonal views, six other diagonal views of the MRI volumes were also explored. The
outputs of all the U-Seg-Net models were then used to predict the final hippocampus
segmentation mask by combining them using majority voting, which were the 3ViewVote
and 9ViewVote models, with the names indicating how many U-Seg-Net models were
used. As an additional investigation, the authors also performed stacking by training a
CNN called Ensemble-Net, which further processed the inputs of the U-Seg-Net models to
produce the final segmentation predictions. The Ensemble-Net was found to have slightly
better segmentation performance than the majority voting ensemble models, although it
also required more training time.

Another 2D convolution architecture used for hippocampus segmentation is an En-
semble CNN model proposed by Ataloglou et al. [27]. Similar to the U-Seg-Net case, the
authors proposed a multi-view approach with a 2D convolution model responsible for each
view, although only the three main orthogonal views were used.

A common argument for the use of 3D convolution models to process volumetric data
is that they are able to better learn and extract better features from volumes as compared
to the 2D convolution models [28–30]. This is due to the use of 3D filters during 3D
convolutions, which allow the spatial information in the three-dimensional space around
each voxel to be better captured, whereas 2D convolutions can only capture the spatial
information in the two-dimensional space around each voxel within a slice. A visualization
of this is shown in Figure 3. This means that any spatial information across slices that are
relevant to identifying the hippocampus is lost when using 2D convolutions from a single
view because each slice is processed independently of the others.
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However, one counterargument against 3D convolution models is that they are signifi-
cantly more complex than 2D convolution models and have a large number of parameters
within the model to update during training [26,27]. With their large number of parameters,
3D convolution models may have a tendency to overfit (especially when there is insuffi-
cient data), thus resulting in a worse segmentation performance on unseen MRI volumes.
The large number of parameters also means that significantly more computation time is
required to train 3D convolution models as compared to their 2D counterparts. Another
vital outcome to note when comparing models is the training speed of each model, which
directly affects training efficiency of deep learning models [31]. In this paper, a comparison
was made between the 3D U-Net and 2D U-Seg-Net architectures. These two architectures
were chosen mainly because of their architectural similarities with each other; the main
difference was whether 2D or 3D convolutions were used. No extensive modifications such
as the addition of extra network modules (e.g., spatial transformer modules) or training
algorithms that further processed the U-Net outputs were used. This helped to ensure that
any observed differences in our experimental results could be largely attributed to the type
of convolution used in each of these models.

3. Methodology
3.1. Data Description

In the context of this paper, it was necessary for our chosen experimental dataset to
meet the following criteria:

• Have high-quality hippocampus segmentation masks (preferably from manual seg-
mentation), which have been proven to closely follow the morphometric characteristics
of the actual hippocampi;

• Have hippocampus segmentation masks that are obtained using a clinically validated
and standardized set of rules in order to ensure their inter-rater reliability;

• Contain sufficient data for both training and evaluation of our models.

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu, accessed on 19 March
2022). The ADNI was launched in 2003 as a public–private partnership led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether

adni.loni.usc.edu
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serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD).

In 2013, a joint project between the European Alzheimer’s Disease Consortium (EADC)
and Alzheimer’s Disease Neuroimaging Initiative (ADNI) came up with a standardized
protocol for manual segmentation of the hippocampus from MRI scans known as the EADC-
ADNI Harmonized Protocol (HarP) [32]. Further follow-up studies showed a significant
increase in inter-rater intraclass correlation coefficient (ICC) when experts performing man-
ual segmentations switched to using HarP [8,33]. HarP was also pathologically validated
by comparison of HarP segmentations and post-mortem MRI scans of AD patients [34].
Upon establishing the validity of the HarP segmentation method, the EADC-ADNI team
also recognized that many automated segmentation algorithms required a large sample of
brain MRI volumes and their corresponding hippocampus segmentation masks (segmented
with HarP) for training. Therefore, a dataset consisting of 135 brain MRI volumes complete
with the benchmark HarP-segmented hippocampus masks was created for use in further
research [35]. More information regarding the EADC-ADNI HarP data (including steps
to download them) can be found in [36]. It should be noted that for every brain MRI
volume, there were two hippocampus segmentation masks corresponding to the left and
right hippocampus. A sample coronal view of a brain MRI volume and its corresponding
combined hippocampus masks can be seen in Figure 4.
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Figure 4. Sample coronal view from brain MRI (left) and combined hippocampus masks (right) of
subject 002_S_0559.

Each brain MRI volume was a cuboid with dimensions of 197 × 233 × 189; each voxel
contained a real number representing the intensity of that voxel in the MRI scan. Note
that unlike colored images with three RGB channels, each volume only had one channel
because MRI scans produce grayscale images.

3.2. Data Preparation

Due to the unique nature of MRI data, it was necessary to perform a specific set of pre-
processing steps before using the data for training and evaluation. Various studies [37–39]
have suggested the following steps along with the rationale behind each of them:

• Re-orientation and registration: achieves good alignment of all MRI volumes.
• Field inhomogeneity correction: corrects abnormally dark or bright regions in the MRI

volumes caused by inconsistencies in the magnetic field of the scanner.
• Non-brain tissue removal: removes irrelevant tissues such as that of the skull, eyes,

and nose, leaving only the brain tissues in each volume.
• Intensity normalization: standardizes the intensities of each volume such that the

same tissue types in each volume should have the same range of intensity values.
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It should be noted that each of the above pre-processing steps was done on a per-
subject basis. Therefore, performing these steps prior to splitting the data into training
and test sets would not introduce any data leakage. The HarP dataset study indicated that
the MRI volumes were already reoriented and registered to the MNI ICBM-152 template
with each voxel representing dimensions of 1 × 1 × 1 mm before the HarP segmentations
were performed on them. This meant that all 135 MRI volumes should be well aligned and
have the same orientation. Further exploration of the data confirmed that all 130 remaining
MRI volumes and masks (after removal of anomalous subjects) had the same orientation.
However, further examination of the affine transformation matrices associated with each
volume suggested the presence of some anomalies.

Generally speaking, each affine transformation matrix (and its inverse) represents
the series of transformations required to map each voxel in the volume to a standardized
reference space within the scanner [40]. In the HarP dataset, there were 15 subjects with
different affine transformation matrices from the rest. One possible explanation is that for
these 15 subjects, their MRI scans were taken using a tilted scan angle to obtain oblique
scans [37]. Oblique scans are usually used to reduce noise caused by artifacts in the path
of the magnetic field, such as air and water within the head of each subject. The use of
oblique scans in these 15 subjects meant that even though registration was performed for
these subjects, their MRI volumes may still not be as well aligned as those of the other
115 subjects [37]. This was further supported by our observations shown in Figure 5, in
which the brain was situated lower in a MRI volume associated with a different affine
transformation matrix.
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Figure 5. Sagittal views from subjects 067_S_1253 (left), 094_S_1293 (middle), and 023_S_0604 (right).
Subject 023_S_0604 had a different affine matrix from the other two subjects.

In order to ensure that majority of the brain MRI volumes were well aligned and
properly registered, these 15 subjects and their volumes were removed from the dataset.
Therefore, the final data consists of the MRI volumes and hippocampus masks of 115 sub-
jects. The next step of pre-processing performed was field inhomogeneity correction, also
known as bias field correction. During the acquisition of an MRI scan, the magnetic field
weakens as it encounters brain tissue, thereby causing inconsistencies in the intensities
through the volumes (even for the same tissue types) [37]. These inconsistencies can make
it difficult for the models to accurately detect the boundaries of different tissue types.
Therefore, the N4ITK algorithm was used to perform field inhomogeneity correction for all
volumes in the dataset [41] as shown in Figure 6 below.



Big Data Cogn. Comput. 2023, 7, 82 9 of 28Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 28 
 

 
Figure 6. Before (left) and after (right) N4ITK bias field correction. Notice the slight change in shade 
of the circled region. 

Removal of irrelevant tissues such as those of the eyes, nose, and mouth from brain 
MRIs, also known as skull-stripping, is essential in reducing the amount of noise within 
each MRI volume. Iglesias et al. [42] proposed an automated skull-stripping algorithm 
known as ROBEX that was shown to produce reliable segmentations of the tissues belong-
ing to the brain. With the ROBEX algorithm, all MRI scans in the dataset were skull-
stripped to obtain volumes containing just the brain tissues; an example is shown in Fig-
ure 7. 

 
Figure 7. Before (left) and after (right) performing ROBEX skull-stripping. 

Due to differences in the types of scanner used and the configuration of each MRI 
scan, volumetric MRI data can have very different ranges of intensity values. The intensity 
values of every MRI volume in the HarP dataset is shown in Figure 8: each line represents 
the intensity value distribution of each MRI volume. Although every MRI volume had a 
similarly shaped intensity distribution, the ranges of the intensity values differed greatly. 
Some MRI volumes had maximum intensity values in the 1000s range, while others had 
maximum intensity values in the region of 6000. 

 

Figure 6. Before (left) and after (right) N4ITK bias field correction. Notice the slight change in shade
of the circled region.

Removal of irrelevant tissues such as those of the eyes, nose, and mouth from brain
MRIs, also known as skull-stripping, is essential in reducing the amount of noise within
each MRI volume. Iglesias et al. [42] proposed an automated skull-stripping algorithm
known as ROBEX that was shown to produce reliable segmentations of the tissues belonging
to the brain. With the ROBEX algorithm, all MRI scans in the dataset were skull-stripped to
obtain volumes containing just the brain tissues; an example is shown in Figure 7.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 28 
 

 
Figure 6. Before (left) and after (right) N4ITK bias field correction. Notice the slight change in shade 
of the circled region. 

Removal of irrelevant tissues such as those of the eyes, nose, and mouth from brain 
MRIs, also known as skull-stripping, is essential in reducing the amount of noise within 
each MRI volume. Iglesias et al. [42] proposed an automated skull-stripping algorithm 
known as ROBEX that was shown to produce reliable segmentations of the tissues belong-
ing to the brain. With the ROBEX algorithm, all MRI scans in the dataset were skull-
stripped to obtain volumes containing just the brain tissues; an example is shown in Fig-
ure 7. 

 
Figure 7. Before (left) and after (right) performing ROBEX skull-stripping. 

Due to differences in the types of scanner used and the configuration of each MRI 
scan, volumetric MRI data can have very different ranges of intensity values. The intensity 
values of every MRI volume in the HarP dataset is shown in Figure 8: each line represents 
the intensity value distribution of each MRI volume. Although every MRI volume had a 
similarly shaped intensity distribution, the ranges of the intensity values differed greatly. 
Some MRI volumes had maximum intensity values in the 1000s range, while others had 
maximum intensity values in the region of 6000. 

 

Figure 7. Before (left) and after (right) performing ROBEX skull-stripping.

Due to differences in the types of scanner used and the configuration of each MRI
scan, volumetric MRI data can have very different ranges of intensity values. The intensity
values of every MRI volume in the HarP dataset is shown in Figure 8: each line represents
the intensity value distribution of each MRI volume. Although every MRI volume had a
similarly shaped intensity distribution, the ranges of the intensity values differed greatly.
Some MRI volumes had maximum intensity values in the 1000s range, while others had
maximum intensity values in the region of 6000.
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Intensity normalization brings the intensity values of each MRI volume into a similar
range. The key benefit of this is that across all the MRI volumes, voxels corresponding to a
specific brain tissue type such as white matter now share a similar range of values. This
helps the hippocampus segmentation models better detect the boundaries between different
tissue types (using the differences in intensities), thus producing better segmentation masks.

For MRI volumes, Z-score normalization has been shown by studies to be a simple
and effective method of intensity normalization [38,39]. For each MRI volume in the HarP
dataset, Z-score normalization is performed according to:

Î(x) =
I(x)− µ

σ
(1)

Î(x) represents the intensity value of the Z score normalized voxel at position x, I(x) rep-
resents the intensity value of the original unnormalized voxel at position x, and µ and σ
respectively represent the mean and standard deviation of all brain tissue voxel intensities
in a subject.

Figure 9 shows the intensity value distribution of each MRI volume after Z-score
normalization. It can be seen that the range and distribution of intensity values in all the
MRI volumes were much more similar and centered around 0.
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In the development of HarP, it was noted that majority of the features useful in identi-
fying a hippocampus were located in and around the hippocampus itself [32]. This meant
that a significant portion of each MRI volume did not contain relevant information that
could help with the segmentation of the hippocampus. Therefore, for each hippocampus of
every subject, a region containing the hippocampus with dimensions of 40 × 56 × 72 was
cropped from each brain volume. This cropping was also performed for the segmentation
masks. This helped to significantly reduce the computational time and memory require-
ments of training the model. At the end of all the pre-processing steps, each of the 115 study
subjects left in the dataset had two cropped brain volumes corresponding to the regions
of interest around the left and right hippocampus as well as two cropped segmentation
masks for the left and right hippocampus.

Imbalanced training data may result in the models being biased toward a particular
diagnosis stage of AD, while imbalanced test data may lead to an overestimation or
underestimation of model performance. Therefore, the data split was performed in a way
that ensured the proportion of CN, MCI, and AD subjects were as balanced as possible in
both training and test data (see Table 1).

Table 1. Number of CN, MCI, and AD subjects in training and test data (proportion shown in
brackets).

Dataset (n = 115) CN Subjects MCI Subjects AD Subjects

Training (n = 90) 29 (32.2%) 30 (33.3%) 31 (34.4%)
Test (n = 25) 8 (32%) 8 (32%) 9 (36%)

Data augmentation is an important component of the deep learning training pipeline
(especially when faced with limited training data) because it helps to increase the diversity
of training samples and reduces overfitting [43]. In the 3D convolution-based deep learning
models designed for hippocampus segmentation, limited training samples is a recurring
issue because each model takes in a 3D volume corresponding to one subject as input. For
2D models, this problem is mitigated by the fact that they are restricted to accepting 2D
slices as inputs. This means that each MRI volume can provide several training samples
for them instead of just one, thus significantly increasing the number of training samples
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they have and reducing overfitting [26]. For the chosen 3D model, data augmentation
was performed on the fly during training. While data augmentation can be performed by
generating new MRI volumes and adding them to the dataset, such a method consumes
a great deal of memory. Instead, on-the-fly data augmentation randomly applies the
augmentation transformation to selected MRI volumes right before they are passed to the
model for training without storing them permanently. This achieves the benefits of data
augmentation without incurring high memory consumption.

3.3. Training and Model Building

Like most deep learning models, the computed loss and its derivatives are then used
to update the model parameters through backpropagation [44]. For the chosen Ensemble
U-Seg-Net model, it is important to note that it is not strictly an ANN by itself. Instead,
it serves as an aggregation function of the outputs of three 2D U-Seg-Net models, each
corresponding to an orthogonal view of an input MRI volume. Therefore, it is important
to understand the architecture of the 2D U-Seg-Net model and its differences from the 3D
U-Net model.

In Figure 10 below, each rectangle represents a collection of feature maps, and the
number above the rectangle represents the number of feature maps. The architecture of
each 2D U-Seg-Net is largely based on the original U-Net, slight modifications were made
to simplify and optimize the architecture. As shown in Figure 10 the 2D U-Seg-Net contains
a contracting path made up of three convolutional blocks followed by an expanding path
made up of three deconvolutional blocks. This is largely similar to the 3D U-Net.
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Within each convolutional block, a 2D convolution using 3 × 3 filters (each with stride
length of 1 in each dimension) was performed once followed by a batch normalization
operation and a ReLU activation function. The reason for performing these operations
once and not twice as in the 3D U-Net was to reduce the number of parameters in the
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model, thereby reducing the number of computations required [26]. At the end of each
convolutional block, a 2D max-pooling operation with 2 × 2 filters and stride lengths of
2 was applied, thus reducing the resolution of each feature map by half. Similar to the
case of 3D U-Net, each convolutional block produced twice the number of feature maps it
originally received as input (with the exception of the first block).

The output feature maps of the final convolutional block were then passed directly to
the first deconvolutional block in the expanding path. This differed from the 3D U-Net,
where further convolutions were performed in the consolidation block before passing the
feature maps to the expanding path. Within each deconvolutional block, a 2D transposed
convolution operation with 2 × 2 filters and stride lengths of 2 was first applied to the
incoming feature maps. The resulting feature maps were then concatenated with feature
maps from convolutional blocks in the contracting path with the same resolution. The
concatenation of the feature maps in the 2D U-Seg-Net differed slightly from that of the
3D U-Net. Firstly, the feature maps to be concatenated were taken from the convolutional
blocks before any convolution was applied (i.e., the start of each convolutional block).
Second, there were only two concatenation operations, and no feature maps from the
contracting path were concatenated to the last deconvolutional block. These modifications
helped to reduce the number of feature maps to be processed in the expanding path, thus
further reducing the computational costs. The final step in each deconvolutional block
(except for the last one) was then to apply a 2D convolution with 3 × 3 filters (with stride
lengths of 1) followed by a batch normalization and the ReLU activation. In addition,
dropout operations were added for regularization purposes. After the 2D transposed
convolution operation was performed, a simple 2D convolution with a single 3 × 3 filter
followed by the sigmoid function was applied to produce an output slice with a single
channel.

There was a total of three 2D U-Seg-Net models to be trained; each corresponded to
the sagittal, coronal, and axial view slices, respectively. The total number of parameters in
each 2D U-Seg-Net model was 697281.

Due to the fact that each U-Seg-Net model took in 2D slices from each subject’s volume,
the number of training samples for each model was significantly higher than that of the
3D U-Net. Therefore, as suggested in [26], explicit data augmentation was not performed
during the training of each 2D U-Seg-Net model. Instead, the task of regularization to
prevent overfitting was performed with the added dropout operations in the U-Seg-Net
architecture. The authors of [26] also argued that due to the large number of parameters in
3D convolution models and the limited training samples (since 3D models can only accept
3D volumetric data as input), 3D convolution models were more prone to overfitting. To
investigate this, the 3D U-Net and the Ensemble U-Seg-Net models were evaluated on the
test data. As a measure of their segmentation performance, the Dice Similarity Coefficient
(DSC) was computed for each model as stated in Equation (2) below:

DSC =
2TP

2TP + FP + FN
(2)

where TP represents the number of hippocampus voxels correctly predicted by the model,
FP represents the number of non-hippocampus voxels wrongly predicted by the model
to be part of the hippocampus, and FN represents the number of hippocampus voxels
wrongly predicted by the model to not be part of the hippocampus. DSC takes on values
between 0 and 1; a higher score indicates a better degree of overlap between the predicted
segmentation and ground truth segmentation. As DSC is not significantly affected by class
imbalance, it is one of the most popular metrics used for evaluation of image segmentation
algorithms, especially in the field of medical imaging [45,46].

The entire training and evaluation pipeline was implemented in Python 3.9.7 with
extensive use of the PyTorch deep learning framework [47]. Due to their large numbers of
parameters, the training of deep learning models usually requires significant computational
resources such as graphics processing units (GPUs) [48]. Each input to the 3D U-Net was a
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40 × 56 × 72 volume with a single channel due to the grayscale nature of MRI data. Each
element in the input volume represented the intensity value at the corresponding voxel,
which could be any real number. The output of the 3D U-Net was also a 40 × 56 × 72
volume with a single channel. However, each element in the output volume was a value
between 0 and 1, which represented the probability of the corresponding voxel being part
of the hippocampus.

Throughout the entire training process, the test data were not used in any way to
prevent data leakage, which may result in overestimation of model performances. In the
context of this paper, training of the models aimed to accomplish two things:

1. Obtain models that can generalize well to the unseen test data (i.e., have good hip-
pocampus segmentation performance on unseen MRI volumes).

2. Train the models in as short amount of time as possible without sacrificing model
performance.

Achieving these two aims would allow for fairer comparison of the models, thus
giving the findings greater credibility. Therefore, a significant part of the training process
was hyperparameter tuning, which is crucial in most machine learning training pipelines.
Proper hyperparameter tuning can significantly reduce training times and simultaneously
improve performances of models [49].

In deep learning, there are two main groups of hyperparameters: those related to the
model design and those related to the training process [50]. Examples of hyperparameters
related to model design include number of hidden layers, dropout rates, and choice of
activation functions. As this paper’s goal was to compare the two proposed architectures,
hyperparameters pertaining to the designs of the models were not changed to avoid
modifying their architectures. Instead, hyperparameters such as the learning rate, mini-
batch size, and number of epochs were tuned during the training process.

In the training process, the learning rate decided the size of each step taken during
updates of the gradient descent-based optimizers. Too large of a learning rate may result
in a model being unable to converge, while one that is extremely small may result in
excessively long training times. Therefore, the learning rate is widely recognized by many
deep learning researchers to be arguably the most important hyperparameter to tune
because it plays a huge role in both the model performance as well as the training time of
the model [50–52].

For clarity, a single experiment run referred to performing 5-fold cross validation for
a particular mini-batch size value. The hyperparameters were then chosen based on the
following rules:

1. The number of epochs and mini-batch size chosen should produce average validation
loss and DSC that are near the best values obtained in the experiment run.

2. Average validation loss and DSC should be stabilized around the chosen number of
epochs with no large fluctuations around it. This means that training for a few more
or a few less epochs would yield a similar validation loss and DSC.

3. If there is an alternative mini-batch size and number of epochs that greatly reduces
training time without reducing model performance significantly, then that particular
set of hyperparameters will be chosen. After observing some initial experiments, we
empirically defined a model’s performance to be significantly affected if the average
validation loss increased by more than 0.0004 or the average validation DSC decreased
by more than 0.004.

In the above approach, it should be noted that rules 1 and 2 helped in obtaining models
with good generalization performance, while rule 3 helped with further optimizing for
better training speeds after good generalization performance was achieved.

A slightly modified version of the one-cycle learning rate policy originally proposed
by Smith and Topin [53] was adopted for this research. The one-cycle policy is a variant of
the cyclical learning rate (CLR) policy proposed in one of Smith’s earlier works, in which he
also introduced a method of finding an appropriate upper bound (LRmax) for the learning
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rate, termed the LR range test [54]. In the CLR policy, learning rates are adjusted in cycles;
within each cycle, the learning rate is linearly increased at every update step until LRmax
is reached then linearly decreased back down to the initial learning rate in subsequent
updates.

According to Smith and Topin [53], using the one-cycle policy has the following
advantages:

1. It achieves a phenomenon termed as super-convergence, in which deep learning
models can be trained much faster than with standard training methods.

2. It has a proven approach to finding bounds for learning rates (LR range test to find
LRmax).

3. Its larger learning rates during certain parts of training help to regularize the models,
thus reducing the need for other forms of regularization such as weight decay.

In the experiments, this policy was slightly modified such that a cosine annealing
schedule was used for increasing the initial learning rate to LRmax (i.e., the first half of
the cycle), after which the learning rate was similarly decreased with a cosine annealing
schedule from LRmax to zero. Simultaneously, a cosine annealing schedule was also used
to decrease momentum from an upper bound of 0.95 to a lower bound of 0.85 in the first
half of the cycle then similarly raised back to the upper bound. Figure 11 below shows the
simulated adjustments in learning rate and momentum as training progresses. Such an
approach has been shown by research to yield better results [55].
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Optimization of the model parameters through backpropagation was conducted using
a stochastic gradient descent (SGD) optimizer with Nesterov momentum coupled with the
modified one-cycle learning rate policy—studies have shown that SGD tends to have better
generalization performance compared to other adaptive gradient descent optimizers such
as the Adam optimizer [56,57].

Although small mini-batch sizes may result in longer training times (due to more
updates per epoch), research has indicated that using large mini-batch sizes for training
can hurt the generalization ability of the model [58]. Therefore, mini-batch sizes of 2, 4,
and 8 were explored for the 3D U-Net models using a grid-search approach because these
values were not too large relative to the training data size.

Determining an appropriate number of epochs to train the models was also a vital step
because training for too few epochs could result in the models being unable to learn well,
while training for too many epochs could result in the models overfitting to training data.
Additionally, the number of epochs was also directly related to how long it took to train
the models, which was one of the outcomes of interest. The initial experiments performed
indicated that the 3D U-Net models converged well within 100 training epochs, while
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the U-Seg-Net models generally converged within 50 training epochs. Therefore, epoch
numbers in the range of [1, 100] and [1, 50] were explored for 3D U-Net and U-Seg-Net
models, respectively.

4. Results and Findings
4.1. Segmentation Performance Comparison

With this LRmax, 5-fold cross validation was performed for mini-batch sizes of 2, 4,
and 8. The cross-validation results are shown in Figure 12. The average time taken to train
one epoch for each of the different mini-batch sizes experimented on are also reported in
Table 2.
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Table 2. Training time per epoch for different mini-batch sizes for 3D U-NetL.

Mini-Batch Size Training Time per Epoch (s)

2 8.58
4 8.57
8 8.64

Based on the validation results, it was observed that using a mini-batch size of
2 achieved the best validation loss and DSC of 0.0129 and 0.8541, respectively, across
all experiment runs. Setting the number of training epochs to 50 was also suitable since the
validation loss and DSC did not improve much when training for more than 50 epochs.

Another observation was that when larger mini-batches were used, the model con-
verged slower. This meant that the model required more training epochs to reach the
optimum validation loss and DSC. Furthermore, Table 2 shows that using larger mini-
batches for 3D U-NetL training did not result in a significant reduction in training time per
epoch. Combined with the higher number of training epochs required, this indicated that
the larger mini-batches would require a longer training time with no improvement to 3D
U-NetL’s generalization performance.
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Therefore, the optimum set of hyperparameters to use for 3D U-NetL was a mini-batch
size of 2 with 50 training epochs.

Similar to the 3D U-NetL experiments, the LR range test was first performed to find a
suitable value of LRmax for the 3D U-NetR model. Based on the results, the selected LRmax
for 3D U-NetR was 0.0035; the 5-fold cross validation results and training time per epoch
are shown below in Figure 13 and Table 3, respectively.

Table 3. Training time per epoch for different mini-batch sizes for 3D U-NetR.

Mini-Batch Size Training Time per Epoch (s)

2 8.52
4 8.53
8 8.52
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the ±1 standard deviation in the values.

The results of the 5-fold cross validation for 3D U-NetR were largely similar to that
of 3D U-NetL: the best validation loss (0.0138) and DSC (0.8518) were achieved with a
mini-batch size of 2. An appropriate number of epochs to train for was 60 since model
performance did not significantly improve beyond 60 epochs. Training with larger mini-
batches caused the 3D U-NetR to converge slower and required more training epochs. Just
as in the case of 3D U-NetL, larger mini-batches did not reduce the training time per epoch
significantly.

Therefore, the optimum set of hyperparameters to use for 3D U-NetR was a mini-batch
size of 2 with 60 training epochs.

The hyperparameter values in Table 4 below were then used to train the final 3D
U-NetL and 3D U-NetR models on the full training dataset before evaluating them with the
test data.
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Table 4. Final hyperparameters to use for 3D U-NetL and 3D U-NetR.

Model LRmax Mini-Batch Size Number of Epochs

3D U-NetL 0.005 2 50
3D U-NetR 0.0035 2 60

In order to compare against the 3D U-NetL and 3D U-NetR models, two Ensemble
U-Seg-Net models were assembled for the left and right hippocampus, which we will refer
to as EnsembleUSegNetL and EnsembleUSegNetR, respectively. Since each of the ensemble
models were made up of three 2D U-Seg-Net models, there were a total of six models to
tune and train for. The names, hippocampus side, and view slices of each of these models
are described in Table 5 below.

Table 5. Description of 2D U-Seg-Net models for training.

Ensemble Model Constituent 2D Models Hippocampus View

EnsembleUSegNetL

U-Seg-NetL0
U-Seg-NetL1
U-Seg-NetL2

Left
Left
Left

Sagittal
Coronal

Axial

EnsembleUSegNetR

U-Seg-NetR0
U-Seg-NetR1
U-Seg-NetR2

Right
Right
Right

Sagittal
Coronal

Axial

The initial observations shown in Figure 14 below revealed that the optimal validation
losses obtained with all three mini-batch sizes were very similar. In Table 6 below, the
training time per epoch showed an approximately 40% decrease in training time for an
epoch when the mini-batch size was doubled. While these results may suggest choosing
the largest mini-batch size, it should be noted that the validation DSC corresponding to a
mini-batch size of 112 (0.08395) was much better than that of mini-batch sizes 224 (0.8302)
and 448 (0.8226).
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Table 6. Training time per epoch for different mini-batch sizes for U-Seg-NetL1.

Mini-Batch Size Training Time per Epoch (s)

112 11.12
224 6.65
448 4.04

For a U-Seg-NetL1 model with a mini-batch size of 112, a suitable number of epochs to
train for was 18. This is because the validation loss and DSC were relatively stable and near
their optimal values when the model was trained for 18 epochs. Training for more epochs
resulted in overfitting as seen in the gradual divergence in training and validation loss.

The finalized hyperparameters for the six U-Seg-Net models are shown in Table 7
below.

Table 7. Final hyperparameters to use for all 2D U-Seg-Net models.

Model LRmax Mini-Batch Size Number of Epochs

U-Seg-NetL0 0.009 160 20
U-Seg-NetL1 0.008 224 18
U-Seg-NetL2 0.0085 288 22
U-Seg-NetR0 0.009 80 25
U-Seg-NetR1 0.008 224 25
U-Seg-NetR2 0.008 288 20

Each of these models was trained on the full training dataset with the finalized hyper-
parameters. They were then used to form the final EnsembleUSegNetL and EnsembleUSegNetR
models, which were then subsequently evaluated using the test data.

4.2. Evaluation Metrics

In the context of this paper, DSC represents the degree of overlap between a predicted
segmentation and the ground truth segmentation, precision represents the proportion
of predicted hippocampus voxels that are actually part of the hippocampus, and recall
represents the proportion of actual hippocampus voxels that were correctly predicted by
each model.

However, it should be noted that since the DSC metric was the harmonic mean of
precision and recall, it was the main measure of segmentation performance. This is because
it penalized models for both false predictions of voxels as part of the hippocampus as well
as failures to detect actual hippocampus voxels.

Tables 8 and 9 below show the values of these metrics obtained after each model was
evaluated on the test data. It should be noted that for each metric, values were computed
for every test subject, which were then averaged to give the final metric values.

Table 8. Metrics (averaged over all test subjects) obtained from evaluation on left hippocampus
test MR images. The best metrics between 3D U-NetL and EnsembleUSegNetL are in bold. Rows
highlighted in gray are the constituent 2D U-Seg-Net models that formed the EnsembleUSegNetL.

Model DSC Precision Recall
3D U-NetL 0.86155 0.88132 0.84950

EnsembleUSegNetL 0.86843 0.88653 0.85543
U-Seg-NetL0 0.83427 0.85802 0.82694
U-Seg-NetL1 0.83976 0.82444 0.86088
U-Seg-NetL2 0.82825 0.86929 0.79860
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Table 9. Metrics (averaged over all test subjects) obtained from evaluation on right hippocampus
test MR images. The best metrics between 3D U-NetR and EnsembleUSegNetR are in bold. Rows
highlighted in gray are the constituent 2D U-Seg-Net models that formed the EnsembleUSegNetR.

Model DSC Precision Recall
3D U-NetR 0.86604 0.87576 0.86122

EnsembleUSegNetR 0.86777 0.90486 0.83913
U-Seg-NetR0 0.83850 0.88712 0.80544
U-Seg-NetR1 0.85867 0.87402 0.84617
U-Seg-NetR2 0.82817 0.86775 0.80240

Additionally, we evaluated the 3D U-Net and Ensemble U-Seg-Net models separately
on the CN, MCI, and AD subjects in the test data and obtained the respective DSC values.
They are shown in Table 10 below.

Table 10. DSC values obtained from evaluation of CN, MCI, and AD subjects. The worst-performing
DSC value for each model was the AD values (Alzheimer Disease).

DSC

Model CN MCI AD

3D U-NetL 0.87437 0.87558 0.83769
3D U-NetR 0.88316 0.87047 0.84690

EnsembleUSegNetL 0.87801 0.87954 0.85004
EnsembleUSegNetR 0.88370 0.87916 0.84350

4.3. Training and Speed Comparison

On the other hand, 2D convolution models such as the Ensemble U-Seg-Net are also
popular due to their faster training speeds. This is because the 3D convolution models
usually have a significantly higher number of parameters to be updated, thus resulting in
significantly more computations. This was clearly demonstrated in the two chosen models:
the 3D U-Net model had approximately 10 times more parameters than the Ensemble
U-Seg-Net model. Therefore, the training times taken to fully train each model were noted
and compared.

Tables 11 and 12 below show the training time taken by each model. Note that for
EnsembleUNetL and EnsembleUNetR, there are no values for training time per epoch.
This is because training was not explicitly done for these ensemble models since they only
aggregated the outputs of their constituent 2D U-Seg-Net models. Additionally, their total
training times were taken to be the sum of the total training times of the respective 2D
U-Seg-Net models. This accurately reflected the training time of the ensemble models in
this study since the 2D U-Seg-Net models were trained sequentially on one single GPU.

Table 11. Training speeds of left hippocampus models on full training data. The shortest total
training time between 3D U-NetL and EnsembleUSegNetL is in bold. Rows highlighted in gray are
the constituent 2D U-Seg-Net models that formed the EnsembleUSegNetL.

Model Training Time per Epoch (s) Total Training Time (s)
3D U-NetL 10.31 515.60

EnsembleUSegNetL - 447.01
U-Seg-NetL0 6.11 122.24
U-Seg-NetL1 8.32 149.69
U-Seg-NetL2 7.96 175.08
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Table 12. Training speeds of right hippocampus models on full training data. The shortest total
training time between 3D U-NetR and EnsembleUSegNetR is in bold. Rows highlighted in gray are
the constituent 2D U-Seg-Net models that formed the EnsembleUSegNetR.

Model Training Time per Epoch (s) Total Training Time (s)
3D U-NetR 10.39 623.28

EnsembleUSegNetR - 556.10
U-Seg-NetR0 9.08 227.11
U-Seg-NetR1 6.54 163.51
U-Seg-NetR2 8.27 165.48

4.4. Discussion

For the segmentation of the left hippocampus, we can see in Table 8 that
EnsembleUSegNetL obtained higher DSC, precision, and recall scores as compared to
3D U-NetL. In terms of the hippocampus segmentation task, the higher precision and recall
indicated that when compared to 3D U-NetL, EnsembleUSegNetL was less likely to falsely
identify non-hippocampus voxels as part of the hippocampus and also was more capable of
correctly detecting the actual hippocampus voxels. This meant that the EnsembleUSegNetL
outperformed the 3D U-NetL when it came to hippocampus segmentation, which was re-
flected in the higher DSC score. An extracted coronal slice from the predicted segmentation
masks and the ground truth hippocampus mask is shown in Figure 15 below.
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Figure 15. Sample coronal slices of predicted left hippocampus segmentation masks overlaid on the
brain MRI in the order of ground truth (green), EnsembleUSegNetL (blue), and 3D U-NetL (red) from
left to right.

For the segmentation of the right hippocampus, it was observed that in compari-
son to 3D U-NetR, while EnsembleUSegNetR had higher DSC and precision scores, it
performed considerably worse in terms of recall (0.86122 for 3D U-NetR vs. 0.83913 for
EnsembleUSegNetR). The worse recall score meant that the EnsembleUSegNetR was less
likely to correctly identify all the voxels belonging to the hippocampus. Conversely, it
was also noted that EnsembleUSegNetR performed much better in terms of precision as
compared to 3D U-NetR (0.90486 vs. 0.87576). This indicated that the EnsembleUSegNetR
was much less likely to erroneously predict non-hippocampus voxels to be part of the
hippocampus. Together, these observations suggested that the EnsembleUSegNetR had
more conservative predictions for the right hippocampus as compared to 3D U-NetR.
This can be seen in Figure 16 below, where the yellow circles highlight the region that
EnsembleUSegNetR failed to detect as part of the right hippocampus.



Big Data Cogn. Comput. 2023, 7, 82 22 of 28Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 22 of 28 
 

 
Figure 16. Sample coronal slices of predicted right hippocampus segmentation masks overlaid on 
the brain MRI in the order of ground truth (green), EnsembleUSegNetR (blue), and 3D U-NetR (red) 
from left to right. Yellow circles show the hippocampus region missed by EnsembleUSegNetR. 

However, this did not inherently mean that the EnsembleUSegNet was worse at seg-
mentation performance since falsely labeling non-hippocampus parts of the brain as hip-
pocampus is also undesirable. Overall, EnsembleUSegNetR still managed to outperform 
3D U-NetR in terms of segmentation performance since it had a slightly higher DSC score. 

One possible explanation for this contrast in model behavior between the left and 
right hippocampus is the natural anatomical differences between them. Many neurologi-
cal studies have highlighted the presence of asymmetry between the left and right hippo-
campi—the shape and size of each hippocampus is affected differently by various factors 
such as age and disease [59–63]. These variations could have resulted in different learning 
behaviors for each model, such as using different sets of features to identify the left and 
right hippocampi. 

For both the left and right hippocampi, the total training times of the EnsembleUSeg- 
Net models were less than that of the 3D U-Net models. The total training time of Ensem-
bleUSegNetL was approximately 68.59 s less than that of 3D U-NetL, while the total train-
ing time of EnsembleUSegNetR was approximately 67.18 s less than that of 3D U-NetR. 
This corresponded to an approximately 13.3% and 10.7% reduction in total training times 
when switching from 3D U-NetL and 3D U-NetR to EnsembleUSegNetL and Ensem-
bleUSegNetR, respectively. 

Furthermore, the total training times for the EnsembleUSegNet models were calcu-
lated in a manner that assumed each 2D U-Seg-Net model could only be trained one at a 
time. With access to better hardware such as multi-GPU clusters, all three U-Seg-Net mod-
els can be trained in parallel. This would greatly reduce the total training time of each 
EnsembleUSegNet to the training time of the constituent U-Seg-Net model that took the 
longest to train. 

Overall, it was evident that despite the use of 3D convolutions, 3D U-Net models did 
not manage to outperform the EnsembleUSegNet models in the task of hippocampus seg-
mentation. This could possibly indicate that the spatial information required to identify 
the hippocampus can be captured and learned using multiple 2D convolution networks 
that approach the 3D MRI volume from different views. 

Given that the EnsembleUSegNet was generally able to achieve better segmentation 
performance within a shorter training time, it had a higher training efficiency than the 3D 
U-Net. This observation could possibly be extended to the other 2D and 3D convolution 
models developed for hippocampus segmentation. 

Together, these findings when comparing the 2D EnsembleUSegNet and 3D U-Net 
seemed to suggest that the use of multiple 2D models not only had the advantage of hav-
ing faster training speeds but was also able to reach and surpass the hippocampus seg-
mentation performance of 3D convolution models. Future research involving deep learn-
ing for hippocampus segmentation can build on these findings and explore more in the 
direction of 2D convolution model ensembles to segment the hippocampus. 

Figure 16. Sample coronal slices of predicted right hippocampus segmentation masks overlaid on
the brain MRI in the order of ground truth (green), EnsembleUSegNetR (blue), and 3D U-NetR (red)
from left to right. Yellow circles show the hippocampus region missed by EnsembleUSegNetR.

However, this did not inherently mean that the EnsembleUSegNet was worse at
segmentation performance since falsely labeling non-hippocampus parts of the brain as
hippocampus is also undesirable. Overall, EnsembleUSegNetR still managed to outperform
3D U-NetR in terms of segmentation performance since it had a slightly higher DSC score.

One possible explanation for this contrast in model behavior between the left and
right hippocampus is the natural anatomical differences between them. Many neurological
studies have highlighted the presence of asymmetry between the left and right hippocampi—the
shape and size of each hippocampus is affected differently by various factors such as age
and disease [59–63]. These variations could have resulted in different learning behaviors for
each model, such as using different sets of features to identify the left and right hippocampi.

For both the left and right hippocampi, the total training times of the EnsembleUSeg-
Net models were less than that of the 3D U-Net models. The total training time of
EnsembleUSegNetL was approximately 68.59 s less than that of 3D U-NetL, while the
total training time of EnsembleUSegNetR was approximately 67.18 s less than that of 3D
U-NetR. This corresponded to an approximately 13.3% and 10.7% reduction in total train-
ing times when switching from 3D U-NetL and 3D U-NetR to EnsembleUSegNetL and
EnsembleUSegNetR, respectively.

Furthermore, the total training times for the EnsembleUSegNet models were calculated
in a manner that assumed each 2D U-Seg-Net model could only be trained one at a time.
With access to better hardware such as multi-GPU clusters, all three U-Seg-Net models
can be trained in parallel. This would greatly reduce the total training time of each
EnsembleUSegNet to the training time of the constituent U-Seg-Net model that took the
longest to train.

Overall, it was evident that despite the use of 3D convolutions, 3D U-Net models
did not manage to outperform the EnsembleUSegNet models in the task of hippocampus
segmentation. This could possibly indicate that the spatial information required to identify
the hippocampus can be captured and learned using multiple 2D convolution networks
that approach the 3D MRI volume from different views.

Given that the EnsembleUSegNet was generally able to achieve better segmentation
performance within a shorter training time, it had a higher training efficiency than the 3D
U-Net. This observation could possibly be extended to the other 2D and 3D convolution
models developed for hippocampus segmentation.

Together, these findings when comparing the 2D EnsembleUSegNet and 3D U-Net
seemed to suggest that the use of multiple 2D models not only had the advantage of
having faster training speeds but was also able to reach and surpass the hippocampus
segmentation performance of 3D convolution models. Future research involving deep
learning for hippocampus segmentation can build on these findings and explore more in
the direction of 2D convolution model ensembles to segment the hippocampus.

Aside from comparing the 3D U-Net and EnsembleUSegNet models, the seg- menta-
tion performance of the 2D U-Seg-Net models that formed the EnsembleUSegNet models



Big Data Cogn. Comput. 2023, 7, 82 23 of 28

were also obtained. In Tables 11 and 12, it can be seen that for both the left and right hip-
pocampi, the individual 2D U-Seg-Net models all had lower DSC scores than the 3D U-Net
and EnsembleUSegNet models, meaning that they had worse hippocampus segmentation
performance. This indicated that a single 2D U-Seg-Net model that only analyzed each
MRI volume from one view (e.g., axial) was unable to capture sufficient spatial information
required to accurately identify the hippocampus.

It was also noted that in segmentation of the left hippocampus, out of all the 2D
U-Seg-NetL models, U-Seg-NetL1 (0.83976) had the highest DSC score. Likewise, for the
right hippocampus, the 2D U-Seg-NetR model with the highest DSC score was U-Seg-NetR1
(0.85867). Both of these models were trained using the coronal view slices of the left or
right hippocampus, respectively, hence suggesting that coronal views of MRI volumes may
contain more spatial information relevant to the identification of the hippocampus. This
notion is also further reinforced by research that proposed the use of coronal MR images for
identification and evaluation of the hippocampus [64]. Future research involving multiple
2D convolution models can explore this hypothesis in further detail and possibly build
upon it by assigning higher importance to the submodels that correspond to the coronal
views of the MRI volumes.

Many scientific studies have established the relationship between AD and hippocam-
pal size and shape [5,6,60,63]. To better study the implications of AD on hippocampus
segmentation, we separately evaluated the models using CN, MCI, and AD test subjects.
As seen in Table 10, all 3D U-Net and EnsembleUSegNet models had significantly lower
DSC scores when evaluated on test subjects with AD, thus indicating that segmentation
performances were worse for hippocampi affected by AD. One possible explanation for
this is the abnormal morphology of the hippocampi in AD patients, such as shape irregu-
larities, which could make it more difficult for deep learning models to learn the relevant
spatial information. Therefore, it is important for future research involving deep learning
and hippocampus segmentation to take note of this potential issue and possibly develop
methods to help models better learn from the MRI volumes of AD patients.

4.5. Limitations

One of the main limitations of the experiments in this study was the sole use of the
HarP dataset. While the HarP dataset was built with the intention of providing researchers
with sufficient, reliable brain MRI relevant to hippocampus segmentation, it still had some
shortcomings. Firstly, subjects in the HarP dataset were recruited from the United States
or Canada, which meant that majority of them were Caucasians. Therefore, the findings
obtained from the HarP dataset might not be generalizable to populations with other
ethnicities because research has shown anatomical variations in brain structures across
different ethnicities [65,66]. Secondly, subjects in the HarP dataset had ages between 60
and 90 years old. Research has indicated that the brain morphology and volume can
vary greatly between older adults such as those in the HarP dataset and younger adults
below the age of 40 [67]. Hence, the findings in this study may not be as applicable in
hippocampus segmentation in a younger population. Lastly, hippocampal volume and
morphology can be affected differently by a variety of other neurological disorders such as
schizophrenia and depression [6]. As the HarP data subjects were obtained from the ADNI
database, which has a primary focus on AD, subjects with other neurological disorders
were not included. This makes it more challenging to ascertain whether the findings of this
study can be applied generally to hippocampus segmentation for subjects with different
neurological disorders.

Another limitation was the variety of hyperparameters explored in the experiments.
While important hyperparameters such as learning rate, mini-batch size, and the number
of training epochs were optimized, there were still other hyperparameters such as the
choice of optimizer and activation functions that could have been experimented with.
However, due to a lack of consistent access to computing hardware such as GPUs, there
was a limitation of the number of experiments that could have been performed. As such, it
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is possible that with further adjustment of the other hyperparameters, better segmentation
performances could have been achieved.

5. Conclusions and Future Work

This study aimed to empirically compare the use of 2D and 3D convolutions in con-
structing deep learning models for the task of hippocampus segmentation. This included
determining whether architectures built with either convolution modes had any significant
advantages or disadvantages in terms of segmentation performance and training speed.
Experiments were conducted using the HarP dataset, and steps were taken to ensure that
the final models for comparison were as optimized as possible for both segmentation
performance and training speed. The results showed that as compared to using a single
3D convolution model, smaller 2D convolution model ensembles provided an advantage
in terms of both hippocampus segmentation performance and training speed. Further
observation of the model performances also revealed two interesting findings. Firstly,
coronal MRI views of the human brain seemed to contain more spatial information that
contributed to the identification of the hippocampi. Secondly, both 2D and 3D convolution
deep learning models tended to struggle more with segmenting the hippocampi of patients
with advanced AD.

Based on the observations and limitations of this paper, there are a few potential
research directions that can be further investigated. Future research can be performed using
datasets that contain different subjects such as those of other ethnicities and age groups or
those with other neurological disorders. By doing so, it can be determined if the findings
of this study can be extended to these other subpopulations as well. Additional research
can also be performed to investigate the optimal 2D view(s) of brain MRI for hippocampus
segmentation and help develop ensemble 2D convolution models that make use of these
view(s) for better segmentation. Lastly, more research should be conducted to thoroughly
investigate the reasons why deep learning models find it more difficult to segment the
hippocampi in AD-affected brains. Developing models that can perform hippocampus
segmentation well in AD patients is especially vital since the morphometric characteristics
of the hippocampus is increasingly being used in the diagnosis of AD.

Successful application of deep learning models for the task of hippocampus segmen-
tation could potentially save clinicians thousands of person-hours spent on manually
analyzing and segmenting MRI scans. In order to reach such a stage, more research has
to be conducted to modify and redesign the current deep learning architectures to obtain
efficient models capable of excellent hippocampus segmentation. It is hoped that the find-
ings of this study can potentially provide some direction for future deep learning models
built to perform hippocampus segmentation and help researchers make informed decisions
regarding the design of such architectures.
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