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Abstract: Data‑driven models with some evolutionary optimization algorithms, such as particle
swarm optimization (PSO) and ant colony optimization (ACO) for hydraulic fracturing of shale
reservoirs, have in recent times been validated as one of the best‑performing machine learning al‑
gorithms. Log data from well‑logging tools and physics‑driven models is difficult to collate and
model to enhance decision‑making processes. The study sought to train, test, and validate synthetic
data emanating from CMG’s numerically propped fracture morphology modeling to support and
enhance productive hydrocarbon production and recovery. This data‑driven numerical model was
investigated for efficient hydraulic‑induced fracturing by using machine learning, gradient descent,
and adaptive optimizers. While satiating research curiosities, the online predictive analysis was
conducted using the Google TensorFlow tool with the Tensor Processing Unit (TPU), focusing on lin‑
ear and non‑linear neural network regressions. A multi‑structured dense layer with 1000, 100, and
1 neurons was compiled with mean absolute error (MAE) as loss functions and evaluation metrics
concentrating on stochastic gradient descent (SGD), Adam, and RMSprop optimizers at a learning
rate of 0.01. However, the emerging algorithm with the best overall optimization process was found
to be Adam, whose error margin was 101.22 and whose accuracy was 80.24% for the entire set of
2000 synthetic data it trained and tested. Based on fracture conductivity, the data indicates that
there was a higher chance of hydrocarbon production recovery using this method.

Keywords: hydraulic fracturing; proppants; numerical modeling; data‑driven; neural network
optimizers

1. Introduction
Hydrocarbon production decline [1,2] poses substantive threats to energy sustainabil‑

ity; hence, the demand for resolving this challenge in both conventional and unconven‑
tionalwells is on amarathon course. Our contemporary research community has enhanced
the practical and technical hydraulic fracturing [3,4] means to intensify the recovery of oil
and gas in unconventional reservoirs. This well stimulation [5,6] method could also be
termed as fracking [7], which consists of passing high‑pressure fluids that are simplymade
of chemical additives, sand, and water (proppants) for opening and holding up channels
for the production of excess stored hydrocarbons. However, under this technique, it is
often linear to investigate and initiate the fracturing process, observe the fluid flow from
the fractured formation, and determine the fracture propagation. The primary purpose
of hydraulic fracturing is to increase the hydrocarbon productive index targeted at low‑
permeable formations, for instance, shale formations [8–10]. Hydrocarbon production de‑
cline ismostly attributed to formation damage, which is one of the reasons emanating from
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poorly designed drilling and completion fluids [11,12]. The leak of these fluids seals off
the formation of pore throats and void spaces [13,14], preventing the flow of fluids from
the formation to the wellbores.

Empirically, it is often prudent to study and design appropriate hydraulic fractur‑
ing methods before their inception. Researchers [15,16] have investigated several ways
to stimulate non‑productive wells coupled with effective predictive analysis by designing
numerical models to counter poor flow regimes in the formation. Successful predictive
studies are the result of the type and geometric structure of the formation morphology,
the type of proppants [17,18], and their mechanical stress capabilities, fracture length, and
infinite conductivity.

Based on physics‑driven models, Suri‑Islam‑Hossain (SIH) [19] used an extended fi‑
nite elementmethod (XFEM) to simulate fluid leak‑off effects under proppant transport for
fracture propagation. Their hydrodynamic integratedmodel, as shown in Figure 1, demon‑
strated an XFEM initial pressure for fracturing set to 7497 psi. The results of their study
indicate that the proppants’ transport and their relative suspension are largely influenced
by an increased rate of injection.
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Figure 1. Extended finite elementmethod (XFEM) showing its initial pressure for fracturing, adapted
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However, subsequent physics‑driven simulations [20], conducted byWang et al. [21],
explain how permeability testing for coal bed methane deposits can be carried out safely
and effectively without blow‑ups. The authors further indicated that the direction of frac‑
ture can become uncertain, since fracture channels tend to expand in the direction of prin‑
cipal stress. In Figure 2, Wang et al., using PFC2D, modeled and simulated a directional
hydraulic fracturing (DHF), whose findings demonstrated that fracture propagation can
be regulated using the DHF approach [22], as this overcomes its original or principal stress,
and for this reason, it is asserted that fracture propagation extends along and perpendicu‑
lar to the slotting.

Martyushev et al. [23] expounded the use of machine learning (ML) for the predic‑
tive optimization of reservoir pressure in directional hydraulic fracturing (DHF) carbon‑
ate reservoirs. Their study considered hydraulically fractured Well 423 on the D3fm oil
deposit site, as presented in Figure 3. The focus of ML modeling was based simply on
the interactions and influences of the neighboring wells (9070, 430, 424, 427, 433) on Well
423, before and after DHF. The relationship for the model was referred to as the coefficient
of correlation (r), as demonstrated in Figure 3. The result of their research indicates that
the higher the correlation coefficient, the more accurate the reservoir pressure prediction,
and as demonstrated, Well 423, before and after DHF, presents increased pressure levels,
indicating a red region, and low reservoir pressures correspond to a lower correlation co‑
efficient, indicating a yellow and blue region.
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However, reservoir pressures migrating from neighboring wells 429, 427, and 424 to
Well 423 before DHF present a case where the tendency of a well blowout is obvious while
drilling. The ML predictive analysis presented in the case of Martyushev et al. [23] sup‑
ports managerial decision‑making to optimize drilling operations.

Nonetheless, there has also been abundant research on data‑driven models for the
prediction of hydraulic fracturing well stimulation. Dong et al. [24] optimized fracture
parameters using data‑driven algorithms. The authors explain that there is a high cost
and driven uncertainty associated with fracture spacing and half‑length. For this reason,
the research expounded on the use of an evolutionary optimization algorithm (EOA) for
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parametric fracture optimization. Hence, their resulting numerical simulation, based on
a gradient‑boosted decision tree, random forest, support‑vector machine, and multilayer
perception (MLP), demonstrated in Figure 4, shows that among all the four production‑
prediction models, one of the EOA, i.e., particle swarm optimization (PSO), produced the
highest net present value.
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In recent times and in this current study, the neural network prognosis architectures
have not only looked at the deep neural network Keras architectures, such as sequen‑
tial, functional, and subclassing API analysis, but there has also been an advance inves‑
tigation on the use of convolutional neural networks (CNN) and recurrent neural net‑
works (LSTM), with a proposed extension of optimizers. However, the likes of Elbaz and
Shen [25–27] have proven in their research the possibility of advancing the neural network
architecture prognosis.

In other words, while maintaining the TensorFlow Keras Sequential API architecture,
a synthetic dataset for training and testing using the most effective neural network opti‑
mizers from the current study is essential for reducing predicted errors in the petroleum
fracking sector. The stochastic gradient descent [28,29] algorithm used is evaluated for big
datasets, with the intention of selecting batches at random from the total dataset for each
iteration. In order to roughly obtain a minimum, this optimizer sorts to shuffle the data
at random for each iteration. Most importantly, in the case of gradient descent, it is not
suitable for large datasets, as the convex algorithm does not randomly shuffle the entire
dataset, but instead, for every iteration, the whole data is focused on finding the approxi‑
mateminimum. For this reason, SGD produces a lot of noise, based on the batches for each
iteration, and to reach the desired approximate minimum, a higher number of iterations
is needed, which brings the total time for computation to a record high. However, it is
purported that SGD with higher iterations can optimize noise cancellation. Nonetheless,
another means of countering noise production is by the extension of SGD with momen‑
tum, imagine propping a naturally fractured and low permeable formation, where the mo‑
mentum of the proppants in the natural fracture formation gains maximum convergence.
Most of all, while considering the momentum, the likelihood that the desired minimum
could be reached is high; hence, careful regulation of the number of iterations is needed for
better optimization.

Adaptive moment estimation (Adam) [30] is an extension of SGD [31]; whereas, the
weights of the entire network under training are optimized by a single learning rate, Adam,
on the other hand, concentrates on upgrading each network’s weights. Based on its wide
usage, several researchers have indicated it as the benchmark for deep learning and stan‑
dard optimization approaches, since it does not support overtime computation and re‑
quires less memory for computation, thereby reducing the entire cost of computation.
While there has been overwhelming research curiosity for better adaptation of deep learn‑
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ing optimizers, previous studies in the research community [32,33], few intelligent appli‑
cations based on the root mean square propagation (RMSprop) optimizer have been pub‑
lished. This adaptive optimizer takes its roots from RProp, known as resilient backpropa‑
gation. Since RProp contradicts the theory behind stochastic gradient descent, RMSprop
was developed as an extension of RProp. As a result, just as Adam focuses on each net‑
work’s weight, so does RMSprop. In this case, a weight’s specified learning rate is grad‑
ually split by the size of its most recent gradients, averaged over time, and determined
using the mean square method. Figure 5 presents an illustrative performance of the cur‑
rent study’s choice of gradient and adaptive optimizers for themanipulation and tweaking
of the synthetic fracking dataset to optimize the predictive petroleum industry. The pre‑
vious neural network modeling, as conducted by [34], defined an input shape of 28, 28, 1
and upon successfully splitting the improvised data at a dtype float 32, built its model us‑
ing Keras Sequential, and with activation functions set to ReLU, and SoftMax introduced a
loss function of cross entropy under the following optimizers, seen in Figure 5. It is empir‑
ically significant to note that the resulting experiment indicates that the Adam optimizer
achieved the best performing algorithm, as it is followed by RMSprop and SGD.
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Another typical study on various optimizers based on different datasets conducted
by Mohapatra et al. [35] demonstrates the efficacy of AdaSwarm compared to SGD, Ada‑
Grad, AdaDelta, RMSprop, AMSGrad, Adam, emulating SGD with PSO parameters. The
adaptive gradient‑based optimizers under a series of compiled models were used for deep
learning comparative mean squared and mean absolute errors (MSE/MAE) loss function
analysis. The authors, while focusing on swarm intelligence, thus AdaSwarm and the ex‑
ponentially weighted momentum particle swarm optimizer (EMPSO), whose various pa‑
rameters were measured against gradient descent (GD), defined the capabilities of these
optimizers to execute precise gradient approximations, which further exposes the novelty
of their conducted research. Based on the neural network algorithms (EMPSO/AdaSwarm)
and subsequent differential and non‑differential models proposed byMohapatra et al. [35],
it resulted that the gradient‑free adaptive swarm intelligence algorithm (AdaSwarm) had
proven superior over other optimizers, such as RMSprop, SGD, and Adam.

In this current study, stochastic gradient descent (SGD), and Adam and RMSprop op‑
timizers for hydrocarbon production recovery predictive analysis were modeled based on
high‑pressure hydraulic fracturing. Moreover, the concentration of gradient descent and
adaptive optimizers is used to train and test hydraulic fracturing on numerically mod‑
eled datasets, based on the Google TensorFlow machine learning algorithms. A linear
and non‑linear neural network regression (NNR) based on these selected optimizers was
used to optimize highly modified proppants [36] for effective fracture propagation and
production recovery.
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2. Methods
2.1. Data‑Driven Modeling

Building up models generates data that emanates from intelligent tools. Being aware
of the difficulty in reading log data, it is practical to use synthetic data for modeling, mak‑
ing a clear‑cut validationwith real data. However, in the absence of physics‑driven simula‑
tions, as demonstrated in Figure 1, data‑driven model analysis can be the easiest computa‑
tionally intelligent tool at hand. Moreover, the wholistic parameters involved in modeling
data generation originate from the initial reservoir conditions, hydraulic fracture charac‑
teristics, and hydrocarbon production. Figure 6 provides the detailed methods and flow
chart for an effective propped fracture prognosis.
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2.2. Numerical Modeling
Based on a commercial black oil simulator, CMG’s integrated third‑party geomechan‑

ics‑based hydraulic fracturing tools, shown in Figure 7, were used to numerically model
the data, which generated input and output parameters, with concentrations on porosity
(ϕ), height (h), fracture length (Lf), fracture width (wf), fracture permeability, and a pro‑
ductivity index (flowing bottom‑hole pressure, Pwf).

The 2000‑dataset model was numerically focused on shale formations. The current
study’s 3D design [37–39] two‑phase flow simulation in assumed vertical reservoirs was
saturated with oil and gas. The striated vertical and transverse propped fracture prop‑
agation of the simulated reservoir obtained its operation perpendicular to its minimum
principal stress, yet in the direction of its maximum principal stress. According to Oritz
et al. [40] their study initiated the most appreciable dual‑permeability procedure for mod‑
eling two‑phased shale plays and natural fractures [41]. Their applicable method for sim‑
ulating naturally induced fractures and hydraulic fractures was made possible by CMG‑
IMEX. Notwithstanding, input parameters modeledwith CMG by Kulga et al. [42] yielded
promising hydraulic fracturing [43] parameters for numerically synthesizing the data
in Table 1.



Big Data Cogn. Comput. 2023, 7, 57 7 of 18

Table 1. Input Parameters for CMG Numerical Modeling.

Reservoir Conditions Hydraulic Fracture Parameters FBHP

Pi [psi] T [◦F] Yg A [acres] h [ft] k [md] ϕ [%] Lf [ft] kf [md] wf [in] Pwf

Min. 500 100 0.5 1000 60 0.00001 4 500 2000 0.01 510

Max. 5000 300 0.9 2000 500 0.1 30 1500 100000 0.4 756
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Figure 7. CMG hydraulic fracturing simulation in shale reservoir adapted with permission from
Ref. [40], 2021, Arias Ortiz, D. A.

According to the minimum and maximum synthetic data generated, the initiation of
propping fractures in vertical shale reservoirs is mostly termed to have initial reservoir
conditions with pressures (Pi) of about 500 psi, thermal conditions of 100 degrees Fahren‑
heit (T), and an area (A) of about 1000 acres. Additionally, while considering an efficient
predictive analysis, synthetic data for hydraulic fractures obtained a maximum fracture
length (Lf) of 1500 ft at a height (h) of 500 ft and 30% porosity (ϕ) and a fractured perme‑
ability (kf) at 0.1 mD. Nonetheless, the width of the fracture based on the data was from
0.1 to 0.4 to conductively expound the pore channels for higher productivity or to increase
flowing bottom‑hole pressure.

2.3. Fluid‑Fracture Equations
Figure 8 schematically demonstrates a one‑wing infinite homogenous two‑dimensional

formation hydraulic fracturing model that was originally proposed by Perkins and Kern,
also known literally as the P‑K equation [44]. This fracture flow diagram depicts how high‑
pressure proppants or fluids move in the direction of the x‑axis with a constant height of
h on the y‑axis. The diameter of the fracture morphology on the z‑axis remains the width.
It is interesting to note that the fracture length is exponentially greater than that of a con‑
stant height and width. These are mathematically represented based on the following P‑K
assumptions:
(a) There is no storage effect nor fluid leak off.
(b) At the tip, the net pressure remains zero.
(c) Fluids are Newtonian and incompressible.
(d) Fluid injection is assumed to be in constant volumetric flow rate.
(e) Because much less energy is needed to propagate a fracture than to simply allow the

fluid to flow along it, the toughness of the formation can be disregarded.
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Nordgren’s improvedmodel adds storage and leak‑off effects to make P‑K’s equation
more convincing and practical, as presented in Equations (10)–(12) [49,50];

L =
Q0

2πCLH
t

1
2 (10)

w0 = 4

(
Q0

2µ

π3E′CLH

) 1
4

t
1
8 (11)

P0 = 2

E′3Q0
2
µ

π3CLH6

 1
4

t
1
8 (12)

For hydrocarbon production recovery in vertical shale wells, there is an inflow of the
two‑phase process.

Further Fracture Assumptions
1. The rate of flow is assumed.
2. Fracture is conducted in vertical wells.
3. Time for injection is considered.
4. Existing proppants at high pressure are included.

2.4. TensorFlow
TensorFlow is an all‑inclusive open‑source machine learning platform. Its large, ver‑

satile ecosystem of tools, libraries, and community resources enables academics to im‑
prove the state‑of‑the‑art of machine learning while simultaneously enabling developers
to swiftly construct and deploy ML‑powered products. TensorFlow was developed by en‑
gineers and researchers on the Google Brain team, a division of Google’s Machine Intelli‑
gence Research department, for the purpose of conductingmachine learning and deep neu‑
ral network research. The technique is versatile enough to be applied in several other indus‑
tries. TensorFlow offers non‑guaranteed backward compatibility for various languages, in
addition to established Python and C++ APIs.

2.4.1. Data Pre‑Processing and Splitting
In spite of this, the deep neural network analysis developed for the present study used

a linear and non‑linear method while focusing on selected optimizers (SGD, Adam, and
RMSprop) under the impact of learning rates, activation, and loss functions.

Moreover, there was no need to pre‑process or normalize the data because it had al‑
ready been cleaned before importing, based on the Pandas library. The complete length of
the 2000 synthetic data was trained at 80% and tested at 20%.

2.4.2. Deep Neural Network (Non‑Linear Regression)
The study generated a model for non‑linear regression [51–53] to determine the influ‑

ence and prediction of various fractured input parameters over the production recovery
with Keras sequential stable input dense layer of 100, 10 and an output layer shape of 1,
shown in Figure 9 and Table 2. Moreover, while maintaining a learning rate of about 0.01,
the activation function for the input layer was set to a rectified linear unit (ReLU; thus, a
non‑linear activation function intended for deep neural networks).

The generated model for training the data was compiled, setting the loss function to
themean absolute error and the optimizers to the stochastic descent gradient (SGD), Adam,
and RMSprop, respectively, for each of themodels’ build‑ups. Figures 10–15 demonstrates
loss curves for various input parameters emanating from fractured height, width, length,
permeability, and porosity of the formation and fractured conductivity raw synthetic data,
validated in Figure 9.
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Table 2. Output screen; standard model summary for all training.

Model: “Proppant_Fracturing_ML_Modeling”

Layer (Type) Output Shape Param #

Input_layer (Dense)
dense_6 (Dense)
output_layer (Dense)

(None, 1000)
(None, 100)
(None, 1)

2000
100100
101

Total params: 102,201
Trainable params: 102,201
Non‑trainable params: 0
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2.4.3. Neural Network (Linear Regression)
Production recovery prediction analysis engaged a linear neural network regressor

utilizing the Keras sequential model for the synthetic data. The model was compiled with
an input shape of 1 and a linear activation, unlike ReLU, as indicated for the non‑linear re‑
gressor mentioned earlier. However, while the study maintained its reliability, the model
was compiled with the same loss functions (MAE) and selected optimizers for training the
model with a 0.01 learning rate and an epoch of 100. Figures 16–20 illustrate the predictive
version of the linear regression.
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3. Results and Discussion
The performances of optimizers for the various regressors used to predict hydraulic

fracturing and production recovery are compiled in Table 3. For better lay understand‑
ing, the average of all optimizers based on the various input parameters was obtained.
However, Stochastic descent, Adam, and RMSprop optimizers indicated very good perfor‑
mance optimizers, just as other known optimizers demonstrated the capabilities of mold‑
ing and shaping the fitted model into an accurate form.

Table 3. Keras optimizers for production recovery prediction.

Parameters
Loss Functions/MAE

h [ft] ϕ [%] Lf [ft] wf [in] k [md] Conductivity
[mD.in] Average

Non‑
Linear

Keras
Optimizers

SGD 61.50 399.11 366.46 620.66 61.50 61.72 261.83

ADAM 125.86 65.46 155.50 93.45 72.6 94.42 101.22

RMSprop 231.91 106.36 174.33 124.99 169.38 177.10 163.87

Parameters
Loss functions/MAE

h [ft] ϕ [%] Lf [ft] wf [in] k [md] Conductivity
[mD.in] Average

Linear
Keras

Optimizers

SGD 347.88 225.58 487.19 255.78 260.98 198.30 295.95

ADAM 221.07 234.23 157.91 251.87 255.49 134.83 209.23

RMSprop 220.25 225.56 253.81 249.91 253.81 192.46 232.63
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3.1. Non‑Linear Optimizers
The performances of Keras optimizers based on the neural network ReLU compiled

the model into a non‑linear form. The input data parameters, while considering SGD, ob‑
tained an average loss function or a mean absolute error of 261.83, Adam’s optimizer com‑
puted as 101.22, and RMSprop was 163.87. The final loss comparative analysis indicates
that the lower the loss, the more accurate the prediction would be.

3.2. Linear Optimizers
The model was compiled based on the linear activation function, and the input pa‑

rameters fitted the models to obtain an average Adam optimizer loss function of 209.23.
Generally, the linear optimizers for the fracture propagation data were determined to have
performed inadequately, in contrast to the same optimizers for non‑linear functions. This
could be as a result of inadequate neurons used, unfavorable learning rates, and a limited
number of iterations. However, Figure 21. draws out the entire computation for this study,
demonstrating the best optimizer. As mentioned earlier, the lower the loss, the higher the
performance; hence, from the visual bar graph, Adamdemonstrated the lowest loss for the
synthetic fracture propagation data.
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3.3. Production Recovery Optimization
The synthetic data emanating from CMGmodeling was shuffled and indexed to read

production recovery, as demonstrated in Figure 21. However, the model used for the ear‑
lier prediction indicated that, out of the entire 2000 synthetic datasets replicated, the Adam
optimizer prediction, with a 101.22 loss function, was at best 80.24% accurate. Production
recovery was based on the flowing bottom‑hole pressure; hence, a plot to determine the
fracture conductivity where the propped fracture tends to convey formation fluids into the
wellbore is demonstrated in Figure 22.

The measure of permeability and fracture width from the data generated explains that
the shale formation under review has a better chance of maximizing hydrocarbon production.
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3.4. Validation and Limitations
Theweight of this studywas comparedwith thework ofDong et al. [24], who in recent

times developed a machine learning algorithm coupled with other multilayer perception
algorithms with an emphasis on particle swarm optimization (PSO). After several tweaks,
the authors noticed the PSO, provided the best results, as indicated in Figure 3. Drawing an
intense analysis between PSO andAdamoptimizers, the current study did notmodel using
PSO, which is recommended for consideration in subsequent research while considering
AdaSwarm [25], which is embedded in the NumPy and TensorFlow libraries.

Neural network optimizers, as researched byMohapatra et al. [25], explicitly provide
a comparative analysis of various optimizers, which throws enough light on the current
study. In addition, while considering the efficacy of SGD, Adam, and RMSprop, it is quite
fair to validate their performances with other relevant datasets. Furthermore, since some
of Mohapatra et al.’s derived models consisted of second‑order differential equations, val‑
idation of their optimizers is best for the current study’s non‑linear neural network re‑
gressions. In so doing, it is worth noting that, when the average of the previous study’s
loss functions from SGD, Adam, and RMSpropwithholding tolerance was duly compared,
Adam still performed much better, even considering other datasets.

However, it is advisable to keep in mind that there was probably not enough model
and other hyperparameter tweaking to enhance optimization. In the case of Adam, the
algorithmwas able to achieve an accuracy of 80.24%. Most importantly, Adam’s remaining
accuracy of 20% could be further optimized to 100% accuracy if long periods of iterations
at an epoch of, i.e., 500 to 1000 for both linear and non‑linear neural network training could
be considered, with a decreasing learning rate of 0.001.

4. Conclusions
The data‑driven sensitive machine learning algorithms, with an emphasis on SGD,

Adam, and RMSprop optimizers, have indeed paved an additional artificially intelligent
way to optimize synthetic data and its input parameters for fracturing hydrocarbon wells
with low permeability indexes, and their tendency to optimize production recovery pre‑
dictions. Moreover, based on high‑pressure proppants, the novelty of the study was able
to identify, using Google TensorFlow libraries, that:
• The linear function for the trained deep neural network on the synthetic dataset was

not fully optimized, and the weakest optimizer among them was stochastic gradient
descent (SGD), with a mean absolute error of 295.95.
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• While iterating for a non‑linear algorithm, Adam emerged as the best‑performing op‑
timizer, with a loss function of 101.22.

• The proliferation of non‑linear neural network algorithms for the prediction and op‑
timization of hydraulic fracture morphology is highly recommended.

• The synthetic data and other conventional data are both suitable for machine learn‑
ing algorithms and for decisive decision‑making procedures. Google TensorFlow li‑
braries present easy access to coding and validation.

• The overall novelty of the study is that it automates data‑driven prognosis by optimiz‑
ing the hydraulic fracture parameters, from complex CMG numerical modeling to us‑
ing Keras Sequential API algorithms and several optimizer compilations for decision‑
making analysis.

• This study limits the complexity of physics‑driven computational fracking analysis
andprovides an industrial automationmeans of predicting the expectations and reme‑
dies for fracking petroleum shale reservoirs.
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