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Abstract: The aim of this research is to develop an automated pallet inspection architecture with two
key objectives: high performance with respect to defect classification and computational efficacy,
i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field,
the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this
study was the proposal of several tailored augmentations that were generated based on modelling
production floor conditions/variances within warehouses. Secondly, the variant selection algorithm
was proposed, starting with extreme-end analysis and providing a protocol for selecting the opti-
mal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n
architecture generated the highest MAP@0.5 of 96.8% compared to previous works in the racking
domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M
compared to YOLO-v5x at 86.7 M.
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1. Introduction

Warehouses play a critical role in supply chain management (SCM), as they are respon-
sible for storing and managing inventory prior to shipment. With the rise of e-commerce,
further accentuated by the impact of the recent pandemic (COVID-19), warehouses are
experiencing a surge in demand for their services, leading to an increase in operational
complexities [1]. To address these challenges, businesses are turning to technological solu-
tions such as artificial intelligence (AI) [2] and the Internet of Things (IoT) [3] with the aim
of optimizing their operations [4].

Within the warehouse environment, forklifts, pallet racking, and employees are all
seen as critical components, playing a critical role in making sure the inventory is efficiently
stored, maintained, and dispatched. However, issues can arise between these components,
i.e., forklifts may cause damage to pallet racking, due to several reasons such as driver
carelessness, which can lead to serious consequences such as operational downtime, com-
promised stock quality or complete wastage, reputational damage, and, in severe cases,
loss of human life [5]. Currently, the most common approach to preventing pallet damage
is through human-led racking inspections, but these can be time-consuming, expensive,
and prone to bias or judgement errors.

To address these limitations, various solutions have been proposed in the industrial
warehousing market, such as column protectors and sensor-based devices such as Rack-
eye [6]. However, these solutions have their own limitations, such as constrained detection
range and high installation/maintenance costs. Computer vision, also known as machine
vision in the industrial context, can offer an attractive proposition for pallet racking damage
detection, with the potential to significantly reduce costs, broaden coverage, and provide
real-time inference capabilities. By developing lightweight convolutional neural network
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(CNN)-based architectures for racking damage detection and delivering strategical deploy-
ment via edge devices, businesses can potentially improve their warehouse operations by
ensuring the safety of a critical component, i.e., pallet racking, and ultimately guaranteeing
stock preservation prior to shipment.

1.1. Literature Review

Due to automated, non-invasive pallet racking inspection being a relatively new
research domain, there is a lack of relevant literature. Therefore, to conduct a thorough
review, the research base was broadened to include similar fields such as structural health
monitoring (SHM).

In 2012, the computer vision research community experienced a significant advance-
ment in CNNs with the introduction of AlexNet [7], coinciding with the development of
graphical processing units (GPU) for accelerating matrix calculations and the introduction
of the rectified linear activation function (ReLU). ReLU was designed to optimize network
convergence with its simple mathematical composition. In the subsequent years, there
was a proliferation of CNN-based architectures focused on both image classification and
object detection, such as Google-Net [8], ResNet [9], VGG-Net [10], RCNN, Fast-RCNN [11],
and Faster-RCNN [12]. These architectures were developed based on mutual objectives of
improving accuracy, lessening inference time, and easing power consumption.

In a study by Chuan-Zi Dong et al. [13], the authors review computer vision (CV)
methods for various applications in SHM. They bifurcate SHM into local and global
segments. Local SHM involves the detection of defects such as cracks and delamination,
while global SHM focuses on location measurement, structural and vibration analysis, and
modal identification. The authors argue that for CV-based SHM to work effectively in
terms of identifying defects, it is necessary to have large amounts of training data that are
also representative in their manifestation of the real-world scenarios for the given domain.
However, these requirements can be difficult to achieve in manufacturing facilities due to
factors such as production downtime and limited access for data collection. Therefore, the
authors propose a method that utilizes a small set of original images and applies purposeful
data augmentations and architecture selection for generating representative data samples
to create a highly accurate detection network.

Architectures mentioned earlier such as VGG, ResNet, and Google-Net are known as
state-of-the-art (SOTA) models trained on large benchmark datasets, and they can be uti-
lized via transfer learning for generalization on specific datasets for use in different sectors
such as healthcare, security, and renewable energy. However, the complex internal archi-
tecture of these SOTA models means high computational demand, requiring cloud-based
infrastructure for deployment. Although cloud deployment may be preferred in certain
domains/applications, it is not recommended in certain manufacturing scenarios [14,15]
due to constrained capacity, i.e., close-to-the-source data actioning, limited battery life, and
security concerns.

He et al. [16] proposed a novel approach for defect detection in industrial settings,
explicitly focusing on defect identification in steel surfaces. The authors introduced a
multilevel feature-fusion network (MFN), combining features from various aspect ratios,
i.e., at different stages of the architecture, aimed at information conservation. The proposed
architecture achieved striking results, with the defect identification accuracy reported as
99.67% and 82.3% MAP for defect localization. Moreover, the system was able to operate at
a detection speed of 20 ft/s while retaining 70% MAP.

The authors of [17] focused on defect determination in metal castings and proposed a
custom CNN architecture. They compared the performance of the developed architecture
with state-of-the-art (SOTA) models such as Inception, ResNet, and MobileNet. The authors
implemented a depth-wise convolutional process, comparable to the one used in MobileNet,
in addition to optimization strategies such as blur-pooling, stochastic weight average,
and the squeeze–Excitation (SE) technique. Although the authors argued the proposed
architecture was preferred due to the limited number of parameters compared to the



Big Data Cogn. Comput. 2023, 7, 120 3 of 15

SOTA models, the accuracy of the proposed architecture was significantly lower at 81.87%
compared to Inception, outputting an accuracy of 91.48%.

Moving closer to the pallet racking domain, Fahimeh Farahnakian et al. [18] inves-
tigated automated damage detection in pallet racking based on the image segmentation
mechanism. The authors implemented Mask-RCNN as the architecture with ResNet-101
selected as the backbone for feature extraction. The achieved performance with respect to
the mean average precision was reported as 93.45% based on an intersection over union
(IoU) of 50%. Looking deeper at the development pipeline, it was observed that the training
dataset was not representative of the production floor as it was not captured in a warehouse
environment, raising concerns about the true generalization of the proposed architecture.
In contrast, our research gives true representation a high degree of importance on by
utilizing a real dataset, ascertained from multiple manufacturing facilities, in addition to
representative data augmentation strategies for scaling and variance injection purposes.

Hussain et al. [19] proposed a strategically placed edge device solution for pallet
racking inspection that was based on MobileNetV2 base architecture. The authors justi-
fied MobileNetV2 selection as depth-wise utilization within the architecture resulted in
a lightweight architecture with reduced internal convolutions, achieving a respectable
mean average precision of 92.7%. The developed architecture was aimed for deployment
onto constrained hardware such as a Raspberry Pi [20]. Extending their work further,
Hussain et al. [21] further improved their research, proposing a rack feature modelling
pipeline, with the goal of overcoming data scarcity. For this, the authors selected Yolov7
as the single-stage architecture due to its lightweight internal composition and real-time
inference capabilities. The reported mean average precision was 91.1%, i.e., less compared
to their preceding performance with MobileNetV2, with a decrease in MAP of 1.6%.

In summary, pallet racking damage prevention and inspection can be split into three
categories: mechanical, sensor-based, and machine vision. Purely mechanical solutions
are based on damage prevention via rackgurads and lack any intelligence for reporting
damage. Sensor-based solutions such as Rackeye [6] have limited intelligence, i.e., report
damage exceeding a certain threshold with respect to an accelerometer; however, they are
commercially expensive, as a sensor must be placed on every racking leg. The latter, i.e.,
machine vision, is an emerging area within pallet racking inspection, seen as a non-invasive
method for pallet racking inspection strategically placed on the forklift, hence reducing cost
and providing broader coverage. Based on the works presented in the literature review,
it can be confidently concluded that there is a lack of research directly focused on the
implementation of machine vision for automated pallet racking inspection. One of the
reasons for the slow adoption of AI for this domain is due to the absence of open-source
pallet racking datasets, along with the difficulties of attaining image data from within
manufacturing facilities due to operational constraints and access restrictions. Without
sufficient training samples of pallet racking, researchers have been unable to generate
meaningful research output for the automated inspection of defective pallet racking.

1.2. Paper Contribution

This research was focused on delivering an automated pallet inspection architecture
with two key objectives, i.e., high performance and computationally light weight. As
mentioned earlier, the automated racking domain is a developing field and, hence, the
procurement of racking images with the aim of collating a racking dataset can be a cumber-
some task. Hence, the first contribution was the proposal of several augmentations that
were selected based on modelling production floor conditions within warehouses. The
proposed augmentations had to be representative of the real-world application in order to
provide high model generalization, leading to high accuracy.

Secondly, as in addition to high accuracy, the proposed architecture selection mech-
anism would need to have a lightweight footprint in order for it to be deployable on the
edge in constrained environments, the variant selection algorithm was proposed, starting
with extreme-end analysis and providing a protocol for selecting the optimal architecture
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with respect to accuracy and lightweight footprint. Our proposed methodology resulted in
the selection and development of the optimal architecture, achieving the highest reported
MAP@0.5 of 96.8% compared with other works in this domain with the computational com-
plexity at its lowest, i.e., number of parameters: 1.9 M compared to 86.7 M for YOLO-v5x.

2. Methodology
2.1. Dataset

From the reviewed literature, we ascertained that there was an absence of open-
source data set for pallet racking. As a result, we collected our initial dataset from various
manufacturing facilities, including Tile Easy, Lamteks, and Welt Handel. The data collection
process involved utilizing a smartphone (iPhone 8) with a 12 MP camera for capturing
images of racking. The rationale for selecting a 12 MP camera was based on the camera
specification’s similarity to the potential deployment hardware, i.e., Raspberry Pi camera.

The angle of capturing images was carefully considered to simulate the end-point
device deployment, i.e., forklift adjustable brackets. Hence, to simulate this scenario, the
user captured images by holding out the phone at waist height with the camera facing
towards the racking and walking towards the racking. This enabled representative samples,
simulating the deployment environment. Figure 1 shows normal and defective samples. It
is evident from Figure 1 that variance exists at a global and internal class level. For global
variance, we can observe various color variations within the image frames due to different
racking colors and the layout of stock placed near the racking. For normal images, i.e.,
Figure 1A, global variance plays a pivotal role, whilst for the defective racking in Figure 1B,
it can be observed that in addition to global factors, there are varying degrees of defects
that need to be taken into account, i.e., minor damage may be misclassified as normal.
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2.2. Domain-Inspired Augmentations

The initial dataset consisted of approximately 100 images comprising normal and
defective pallet racking instances. This sample size was simply too small for any purposeful
training as the architecture would not have enough samples from which it can learn and
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provide optimal weight convergence, i.e., network generalization. Data augmentations
are traditionally used to scale image datasets both in terms of size and variance, but
applying ‘blanket’ augmentations without domain logic rationale does not guarantee true
generalization. Therefore, we focused on applying domain representative augmentations
that were demonstrative of the manufacturing floor conditions with reference to pallet
racking. Our first objective was to ensure the network would be rotationally invariant to
facilitate the dynamic placement tolerance of the edge device and the resultant variations
in the captured images. This variance was modelled by implementing ’angled’ rotations
via a matrix formula, expressed as (1)

A =

[
cosθ −sinθ
sinθ cosθ

]
(1)

To factor in potential physical contact and resultant device displacement due to loaded
pallets, pixel-shifting components (ix, iy) were integrated into the dataset augmentation
mechanism (2). This would facilitate better network convergence on images captured on
the production floor where the edge device may experience slight displacement due to
pallet movement.

A =

[
1 0 ix
0 1 iy

]
(2)

The translation matrix A was then transformed into an array consisting of ux, represen-
tative of the input image, uy, representative of the resultant image, and A as the translation
matrix, expressed as (3)

uy(x, y) = ux(A11x + A12x + A13, A21x + A22y + A23 (3)

Figure 2 presents a sample augmentation result for the displacement of 11◦ left and
right, which may be the result of the edge device being offset due to unwarranted contact
with loaded pallets.
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Figure 2. Device displacement modeling.

To increase the model’s ability to generalize and adapt to the different levels of light in-
tensities commonly found within different production facilities, the second criteria focused
on adjusting pixel-level intensities resulting in brighter and darker augmented images.
These were ascertained by introducing pixel-level brightness manipulation for simulat-
ing variations in LUX intensity. Modeling varying LUX intensities was focal for broader
deployment potential as different manufacturing facilities have varying LUX levels due
to multiple factors, i.e., location, regulatory requirements, and the nature of the stored
inventory. The mathematical expression for brightness augmentation, aimed at adjusting
pixel values for the given sample image to increase or decrease the brightness, is expressed
as (4)

zx(i, j, k) = min
(
max

(
α× zy(i, j, k) + β, 0

)
, 255

)
(4)
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where zx signifies the resultant image, zy represents the input image, α is the brightness
factor, β equates to the bias, i and j represent the pixel coordinates, and k signifies the color
channel, i.e., red, green, or blue. The min and max functions were utilized to ensure that
the resulting pixel values were clipped within the valid range of 0 to 255.

To account for variations in camera quality, pixel blurring was introduced at multiple
degrees. Pixel-level noise was also injected to model extreme scenarios such as dust
particles clogging the camera lens causing distorted samples. The mathematical expression
for image blurring augmentation can be represented as (5)

i(x, y) = Σ_(i = −k)(k) Σ_(j = −k)(k) w(i, j)× J(x + 1, y + 1) (5)

where i(x,y) is the blurred image, J(x,y) is the original image, and w(i,j) is a convolution
kernel that determines the amount and direction of blurring. The size of the kernel is
represented by k, and larger values of k result in more blur.

The resultant datasets after applying the representative data augmentations discussed
above are presented in Table 1.

Table 1. Transformed datasets.

Dataset Samples

Training 1905
Validation 129

2.3. Proposed Architecture Selection Mechansim

The selection criteria for the architecture were based on domain-specific deployment
requirements. As mentioned earlier, due to the constrained nature of the deployment
environment, the architecture would need to satisfy multiple requirements such as being
lightweight in order to be hostable on an edge device, along with reduced computational
load for energy conservation and real-time inference capacity. In addition to the stringent
deployment requirements, the architecture would need to provide high accuracy in order
to justify its efficacy compared to similar works.

The preceding requirements ruled out two-stage detectors such as Faster-RCNN due
to their architectural depth and computational load, making them practically infeasible for
deployment onto an edge device such as Raspberry Pi. As a single-stage detector, based
on these requirements of a single-stage object detector being preferred over a two-stage
detector, YOLOv5 was selected as the base architecture. Interestingly, it contains multiple
variants within its arsenal (YOLOv5-N/S/M/L/X), as shown in Table 2, permitting de-
velopers to select the most suitable variant for their application based on the performance
with respect to accuracy, computational load, and real-time inference capacity.

Table 2. YOLO-v5 variant comparison.

Model Average Precision
(@50) Parameters FLOPs

YOLO-v5s 55.8% 7.5 M 13.2B
YOLO-v5m 62.4% 21.8 M 39.4B
YOLO-v5l 65.4% 47.8 M 88.1B
YOLO-v5x 66.9% 86.7 M 205.7B

YOLOv5 is essentially an evolution of its preceding variants with incremental im-
provements, primarily the introduction of modules such as Mosaic, BottleneckCSP, Focus,
Spatial Pyramid Pooling (SPP) [22], and Path Aggregation Network (PANet) [23], as shown
in Figure 3. Internally, the architecture comprised firstly the backbone required for feature
extraction purposes from the input images, neck module, and three separate heads for
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detection. Additionally, cross-stage partial networks (CSPs) were implemented in coor-
dination with the backbone for suppressing the computational load. Furthermore, the
implementation of the focus layer aimed to reduce the number of parameters, i.e., FLOPs,
along with CUDA memory, resulting in an improved forward–backward propagation rate.
YOLOv5 also integrates the SPP module, aimed at expanding the receptive field whilst
performing the segregation of significant contextual features.
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Finally, the head maintains the same implementation logic deployed by its predeces-
sors, i.e., YOLO-v3 and YOLO-v4, comprising three convolutional layers for predicting
bounding box locations, classes, and scores. However, the principal expression for compil-
ing object coordinates in YOLO-v5 has been altered compared to the preceding variants,
which were expressed as (6)–(9)

bx = σ(tx) + cx (6)

by = σ(ty) + cy (7)

bh = ph × eth (8)

bw = pw × etw (9)
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The altered formula for computing respective object coordinates in YOLO-v5 is ex-
pressed as (10)–(13)

bx = (2× σ(tx)− 0.5) + cx (10)

by = (2× σ(ty)− 0.5) + cy (11)

bh = ph × (2× σ(th))
2 (12)

bw = pw × (2× σ(tw))
2 (13)

As mentioned earlier, YOLO-v5 generates three outputs for the detection task: object
class, bounding box, and object-ness scores. To calculate the loss function, two types of
losses were fused: binary cross entropy for calculating the class and object-ness loss, and
complete intersection over union (CIoU) for ascertaining loss with respect to the location.
Hence, the formula for computing the loss function is expressed as (14)

loss = λLcls + λ2Lobj + λ3Lloc (14)

The method by which the object-ness loss was calculated was dependent on the
prediction layer size. YOLO-v5 deploys a tertiary prediction layer mechanism, i.e., layers
of varying dimensions, with each of these layers assigned different weights. The default
balance weights for each layer can be calculated via (15)

Lobj = 4.0× Lsmall
obj + 1.0× Lmedium

obj + 0.4× Llarge
obj (15)

2.4. Proposed YOLO-v5 Variant Selection Mechanism

Table 3 presents the proposed algorithm for selecting criteria to ensure the optimal
variant with respect to the domain application, i.e., high accuracy and less computational
payload. The aim was to train and evaluate the extreme-end variants, i.e., YOLO-v5-nano
and YOLO-v5-xtra, and incrementally select the next variant from the small model in the
case of it having a smaller MAP@0.5 compared to the larger variant by a margin of 5%.
Hence, the train function takes in two YOLO-v5 models (YOLOv5nano and YOLOv5xtra),
a training dataset (Td), and a validation dataset (Vd), as presented in Table 1. It trains both
models on Td and evaluates their MAP@0.5 scores on Vd. If the MAP@0.5 score of YOLO-
v5xtra is greater than the MAP@0.5 score of YOLO-v5nano by more than 5%, the function
enters a loop to increment YOLO-v5nano to the next variant, i.e., YOLO-v5medium, and
evaluates its MAP@0.5 score on Vd. If the MAP@0.5 score of the new model is greater
than the MAP@0.5 score of YOLO-v5xtra by more than 5%, the function selects the new
model as the best model and exits the loop. Otherwise, the function continues to increment
YOLO-v5nano to the next variant and evaluate its MAP@0.5 score until a compatible model
is found. If the MAP@0.5 score of YOLOv5xtra is not greater than the MAP@0.5 score of
YOLOv5nano by more than 5%, the function selects YOLOv5nano as the best model and
returns it. The next variant function takes in a YOLOv5 model and returns the next variant
in the sequence. The train function uses this function to increment YOLO-v5nano to the
next variant. The loop in the train function exits if YOLO-v5nano is equal to YOLO-v5xtra
or if one of the variants other than YOLO-v5xtra has an MAP@0.5 difference of less than
5% compared to YOLO-v5xtra.
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Table 3. Pseudo algorithm.

train(YOLOv5nano, YOLOv5xtra, Td, Vd):
YOLOv5nano.train(Td)
YOLOv5xtra.train(Td)
nano_map = YOLOv5nano.evaluate(Vd)
xtra_map = YOLOv5xtra.evaluate(Vd)
while True:

if xtra_map—nano_map > 0.05:
YOLOv5nano = YOLOv5medium.train(Td)
new_map = YOLOv5nano.evaluate(Vd)
if new_map—xtra_map > 0.05:
YOLOv5nano = YOLOv5medium
break

else:
xtra_map = new_map

else:
best_model = YOLOv5nano
break

if YOLOv5nano == YOLOv5xtra:
break

YOLOv5nano = next_variant(YOLOv5nano)
nano_map = YOLOv5nano.evaluate(Vd)

return best_model

next_variant(model):
if model == YOLOv5nano:

return YOLOv5medium
elif model == YOLOv5medium:

return YOLOv5large
elif model == YOLOv5large:

return YOLOv5xtra
else:

return model

3. Results
3.1. Hyperparameters

To ensure transparency in the reported results, global training parameters or hyper-
parameters were defined as presented in Table 4, before initiating any training. These
hyperparameters were used for training all YOLO-v5 variants under experimentation.
Google Collaboratory, part of the Google Cloud Platform (GCP), was selected as the train-
ing and evaluation platform due to free GPU access, facilitating faster training. However,
GPU access was time-bound, and, hence, the number of epochs was capped at 40, whilst
pretrained weights based on the IMAGENET dataset were utilized to increase the accuracy
of the model.

Table 4. Hyperparameters/configuration.

Epochs 40
Image Size 640

Cache RAM
Device Type GPU
Pretraining IMAGENET

3.2. Performance Evaluation Metrics

Multiple metrics were utilized for the purpose of evaluating the YOLO-v5 variants
under experimentation, including precision, recall, and F1 scores, in addition to intersection
over union (IoU). IoU was employed because the nature of the application was focused on
defect localization as opposed to image classification. The Jaccard index, an interchangeable
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term for IoU, enabled the processing of similarity calculations between the predicted Kg
bounding boxes and the ground truth Kg, expressed as

IoU =
area

(
Kp ∩ Kg

)
area

(
Kp ∪ Kg

)
The values of Kp and Kg were set from the onset as 0.5, which meant there must be an

overlap of 50% between the predicted and the ground truth bounding box coordinates for
the prediction to be considered. The mean average precision (MAP) was used because it
considers the sensitivity of the predictions. Initially, precision, recall, and F1 score were
calculated for a confidence threshold of 50%. Then, the MAP was computed using the
average precision (AP) for each class, where S was representative of the number of classes,
expressed as

MAP =
1
S ∑S

i=1 APi

3.3. YOLO-v5 Extreme End Analysis

As per the proposed training algorithm, the first experimental iteration was based
on training and evaluating the extreme-end variants of YOLO-v5, i.e., nano and extra.
Training was carried out on the transformed pallet racking dataset presented in Table 1
based on the proposed augmentations. For integrity, all training was marshalled by the
hyperparameters, outlined in Table 4.

Figure 4 presents the performance of the two variants with reference to MAP @ IoU (0.5).
It is evident from Figure 4 that both variants showed impressive performance upon reaching
the final epochs, with YOLO-v5x having the upper hand (99.4%) compared to YOLO-v5n,
reaching 96.8%. Additionally, from the convergence analysis in Figure 4, it can be concluded
that YOLO-v5x had reached convergence by the 20th epoch, whilst YOLO-v5n at the same
time reached an MAP of 63.3%.
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Based on the results present in Figure 4, YOLO-v5x is the dominant variant; however,
as per the proposed training algorithm, the difference in MAP between the two variants
is less than 5%, i.e., 2.6%. Hence, the next variant, i.e., YOLO-v5s, would not replace
YOLO-v5n for retraining and rather the computational complexities of the two trained
architectures would be taken into account.

Figure 5 presents the computational complexity comparison for the two variants based
on (A) the number of parameters and (B) the number of FLOPs. Starting with the number
of parameters, it is evident from Figure 5A that YOLO-v5n was more efficient in terms of
being lightweight, containing 1.9 million parameters, compared to YOLO-v5x, comprising
86.7 million parameters.
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Similarly, for the FLOP comparison, presented in Figure 5B, YOLO-v5n was more
effective compared to YOLO-v5x with a difference of 201.2B. Observing the complete set
of results in terms of accuracy and computational performance, presented in Table 5, and
keeping in mind the deployment environment, YOLO-v5n was selected. The rationale
for this was due to the fact that although YOLO-v5x provided higher MAP, the difference
was small (2.6%), whilst computationally, YOLO-v5x was significantly more expensive
compared to YOLO-v5n. As the deployment environment mandated a computationally
lightweight architecture due to constrained deployment hardware, YOLO-v5n was the
preferred choice.

Table 5. YOLO-v5: nano vs. x performance comparison.

Model MAP-IoU@0.5 Parameters FLOPs

YOLO-v5n 96.8% 1.9 M 4.5B
YOLO-v5x 99.4% 86.7 M 205.7B

Difference 2.6% 84.8 201.2B

The importance of the above evaluation is manifested in Figure 6, presenting the
memory size requirements for the two YOLO-v5 variants under experimentation. For
both deployment frameworks, OpenVino and ONNX, YOLO-v5n was more effective by a
significant margin.
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3.4. YOLO-v5n Detailed Performance Evaluation

After selecting YOLO-v5n as the optimal architecture due to high accuracy along with
high computational efficacy, the trained architecture was evaluated in more depth, focusing
on additional metrics in addition to MAP such as precision and recall. Figure 7 presents the
performance breakdown across a range of metrics for YOLO-v5n. The evaluated architecture
provided impressive results for precision (89.6%), recall (92.7%), and MAP@0.5 (96.8%).
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However, from Figure 7, it can be observed that there is an outlier in the form of
MAP@0.95. This is presented in a more focused view in Figure 8. MAP@0.95 can be
interpreted as a more stringent requirement for accepting a predicted box, i.e., requiring
95% overlap with respect to the ground truth. Hence, from Figure 8, we can observe that
when experimenting with MAP@0.95, the architecture only achieved 51.2%, whilst 96.8%
was achieved with MAP@0.5. Although MAP@0.95 may be required in certain applications,
in our particular application, MAP@0.5 was sufficient, as any positive inference from the
architecture would be followed by a visual inspection for verification purposes by the
forklift driver or floor manager.
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Figure 9 presents the validation loss for YOLO-v5n for the three key benchmarks. The
class loss was the most effective, reaching a loss of 0.004, followed by the object loss at
0.025, with the box loss, referring to the bounding boxes, reaching 0.035. The presented
validation losses further endorsed the high efficacy of the trained architecture.
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4. Discussion

The results section demonstrated the evaluation processes for selecting the YOLO-
v5 variant for the given application. After its selection, YOLO-v5n was evaluated on
broader metrics and demonstrated its high efficacy both in terms of accuracy and being
computationally lightweight. In order to truly manifest the effectiveness of the proposed
training algorithm, augmentations, and generalization capacity of the architecture, Table 6
presents a comparison of our work with other works focused on the same domain, i.e.,
automated pallet racking inspection.

Table 6. Comparison of studies.

Our Research Research by [18] Research by [19] Our Research [21]

Approach Object Detection Segmentation Object Detection Object Detection
Dataset Size 2034 75 19,717 2094

Classes 2 1 2 5
Detector YOLO-v5n Mask-RCNN MobileNetV2 YOLOv7

MAP@0.5(IoU) 96.8% 93.45% 92.7% 91.1%

It is evident from Table 6 that the proposed architecture provided the highest perfor-
mance with respect to MAP@0.5 of 96.8%. In doing so, the proposed approach resulted
in better performance than [21], which utilized YOLO-v7 with a higher number of im-
ages. The research presented in [19] provided the second-highest performance, based on
MobileNet-V2 architecture. However, it required 19,717 images for training, compared to
the 2034 images used in our research.

Hence, it can be said with confidence that the proposed augmentations and variant
selection algorithm were sufficient for proposing a highly efficient architecture that was
able to generalize on the domain dataset whilst generating a lightweight footprint, making
it suitable for deployment onto constrained edge devices.

5. Conclusions

In conclusion, this research presented YOLO-v5n as the preferred architecture for
automated pallet racking inspection, achieving an MAP@0.5 of 96.8%, higher than all other
works presents in this domain, as evident from Table 6. The proposed methodology played
a critical role in providing a robust architecture in terms of generalization, accuracy, and
lightweight footprint.

Firstly, the high accuracy is a manifestation of the fact that the proposed augmentations
were representative of the domain application and contributed towards generating a highly
generalized architecture. In order to meet the lightweight requirement necessary for edge
deployment, the proposed variant selection algorithm made sure the trade-off between
accuracy and computational complexity was efficiently addressed. As a result, YOLO-
v5n was selected even though YOLO-v5x provided higher accuracy due to the significant
computational load baggage required for the latter.

As a future direction, the authors will look to include a larger variety of faults found
within pallet racking, along with segmenting faults into various classes such as vertical
damage, support damage, base defects, and horizontal beam damage. The proposed
methodology has the potential to be manipulated and integrated into other domains [24]
with similar requirements around CNN-based detections requiring lightweight architec-
tures for deployment in constrained environments [25].
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