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Abstract: In recent years, there have been significant advances in deep learning and road marking
recognition due to machine learning and artificial intelligence. Despite significant progress, it often
relies heavily on unrepresentative datasets and limited situations. Drivers and advanced driver as‑
sistance systems rely on road markings to help them better understand their environment on the
street. Road markings are signs and texts painted on the road surface, including directional arrows,
pedestrian crossings, speed limit signs, zebra crossings, and other equivalent signs and texts. Pave‑
ment markings are also known as road markings. Our experiments briefly discuss convolutional
neural network (CNN)‑based object detection algorithms, specifically for Yolo V2, Yolo V3, Yolo V4,
and Yolo V4‑tiny. In our experiments, we built the Taiwan RoadMarking Sign Dataset (TRMSD) and
made it a public dataset so other researchers could use it. Further, we train the model to distinguish
left and right objects into separate classes. Furthermore, Yolo V4 and Yolo V4‑tiny results can ben‑
efit from the “No Flip” setting. In our case, we want the model to distinguish left and right objects
into separate classes. The best model in the experiment is Yolo V4 (No Flip), with a test accuracy of
95.43% and an IoU of 66.12%. In this study, Yolo V4 (without flipping) outperforms state‑of‑the‑art
schemes, achieving 81.22% training accuracy and 95.34% testing accuracy on the TRMSD dataset.

Keywords: CNN; Yolo; object recognition; road sign; machine learning

1. Introduction
Technologies for traffic signs and road markings, which have recently risen to the top

of the list of research priorities, are attracting a lot of attention. It has been widely accepted
because of various research studies covering areas such as engineering, traffic safety, ed‑
ucation, and human physical abilities [1,2]. Due to the lack of empirical studies on the
understanding of traffic signs and markings in Taiwan, such a study may need to be con‑
ducted. It is necessary for people who use roads to be able to identify, comprehend, and
obey traffic signs and road marking signs to lower the number of accidents that occur on
such roads. To provide unambiguous information, traffic signs are designed using sev‑
eral fundamentally distinct design styles. In addition, the background of many different
buildings and shop signs makes it hard for the system to identify the street signs automat‑
ically. Thus, it becomes difficult to locate the road signs in many environments [3]. On the
other hand, earlier research has mostly concentrated on deciphering road signs and has
given less consideration to drivers’ acquaintance with and adherence to traffic regulations
as a separate topic in the field of traffic safety investigation [4]. Accidents, such as those
caused by excessive speed or inappropriate lane changes, sometimes occur when drivers
ignore or fail to detect a sign ahead. In addition, there are currently only a handful of
Taiwan‑adapted road sign detection systems, and in many studies, researchers collected
traffic signs from locations around the world for analysis.
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Machine learning‑based approaches proposed by Poggenhans et al. [5] include em‑
ploying optical character recognition to detect road marking signs and artificial neural
networks (ANNs) to categorize them. For feature extraction, theymake use of a histogram
of markings. It is possible to categorize text ground markings by their method, such as
crosswalks, stop lines, arrow signs, and other types of surface markings [6–8].

Danescu and Nedevschi [9] constructed an autonomous road marking identification
and tracking system that used a two‑step segmentation technique for detecting and rec‑
ognizing road markings. Depending on the scenario, the accuracy of the classifications
achieved ranges from 80 to 95 percent, with the lowest accuracy being 80 percent. Qin
and colleagues used a machine vision approach to investigate four different types of road
markings. Images of the marking contours were generated at random using image pro‑
cessing techniques and then extracted from the images. The classification and detection
modules received the extracted features after they were sent to them. Methods such as
You Only Look Once (Yolo) [10] and Single Shoot Detection (SSD) [11–13], as well as a
region proposal‑based method, are used to detect road markings on a map. The region‑
based strategy surpassed the sliding window search method in terms of the number of
suggestions received and the amount of time it took to complete the investigation [14].

To detect objects, the Yolo V4 algorithm, which is based on the cross‑stage partial net‑
work (CSPNet), has been presented. As part of this study, a network scaling approach
is utilized to adjust the depth, width, and resolution of the network in addition to the
topology of the network, which ultimately led to the development of the Scaled‑Yolo V4
algorithm. Yolo V4 was developed specifically for real‑time object detection using gen‑
eral graphics processing units (GPUs). To get the best speed or accuracy trade‑off, C.Y.
Wang et al. [15] redesigned Yolo V4 to Yolo V4‑CSP [16,17].

The following are some of the most important contributions that this research has
made: (1) Includes a condensed explanation of CNN‑based object recognition methods,
with a special emphasis on the Yolo V2, Yolo V3, Yolo V4, and Yolo V4‑tinymodels. (2) Our
experimental studies examine and evaluate several state‑of‑the‑art object detectors, includ‑
ing those used to detect traffic signs, among other things. Vital parameters such as the
mean acquisition time (mAP), the detection time (IoU), and the number of BFLOPS are
measured in performance metrics. (3) Experimentally, we distinguish between left and
right objects. Flip data augmentation can be disabled by setting flip = 0 in the configu‑
ration file for road signs. In this study, Yolo V4 (No Flip) outperformed state‑of‑the‑art
schemes, obtaining 81.22% accuracy in training and 95.34% accuracy in testing the Taiwan
RoadMarking Sign Dataset (TRMSD). (4) We investigate the importance of the flip and no
flip parameters in the Yolo configuration file and provide a full discussion of them.

The following is the organizational structure of this research study. Section 2 dis‑
cusses the related works that have been published recently and the technique we pro‑
pose, which is described in Section 3. Section 4 offers a description of the experiment as
well as the results of the investigation. Section 5 discusses our conclusions as well as our
future work.

2. Materials and Methods
2.1. Road Marking Recognition

Many scientists and engineers have conducted substantial studies into the automated
recognition of road markings [18]. The identification of road markings and signage has
been the subject of earlier research, which has used a number of image processing method‑
ologies [19]. Two types of object detectors are commonly used: one‑stage object detectors
and two‑stage object detectors with several stages. Using a single convolution neural net‑
work (CNN) operation, it is possible to obtain the output of a single‑stage object detector.
The high‑score region proposals received from the first stage are typically fed into the sec‑
ond stage for two‑stage object detectors. Neural networks have effectively recognized road
markings [20]. Kheyrollahi et al. suggested a solution based on inverse perspective map‑
ping and multi‑level binarization to extract robust road marking features [21].
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Ding et al. [22] described amethod for detecting and identifying roadmarkers. To rec‑
ognize five road marking signs, the researchers combined the properties of the histogram
of oriented gradients (HOG) with those of a support vector machine (SVM). Alternately, a
neural network is used to identify road markings, significantly increasing the precision of
the system. Scientists say they are using hierarchical neural networks with backpropaga‑
tion techniques as a learning process [12,23].

Road sign recognition based on the Yolo architecture has also attracted considerable
attention, and several papers have discussed this topic. W. Yang et al. [24] tested Yolo V3
andYoloV4 using the CSUST (Chinese Traffic SignDetection Benchmark) dataset, which is
divided into four categories: warning, speed limit, directional, and prohibitory signs. The
experimental results showed that Yolo V4 outperformed Yolo V3 in target detection, with
better performance in recognizing road signs and detecting small objects. D.Mijić et al. [25]
proposed a suggested solution for traffic sign detection using Yolo V3 and a custom image
dataset. L. Gatelli et al. [26] proposed a vehicle classification method suitable for use in
Brazil that helps management personnel address social needs related to traffic safety.

In [27], there is a proposal for a further technique that makes use of machine learn‑
ing and is intended to detect and classify road markings. This illustration made use of
a binarized normed gradient network, a support vector machine (SVM) classifier, and a
principal component analysis to identify and classify various types of objects. For image‑
recognition networks to act like biological systems, convolution can improve the accuracy
of the results obtained [28]. A CNN has also been used to detect and categorize traffic
signs [29,30]. The latest deep learning methods, such as CNN, have effectively solved the
object recognition problem. On the PASCALVOC [31] dataset, detection frameworks such
as Faster R‑CNN [32] and Fast R‑CNN demonstrate their superior detection performance.
Faster R‑CNN is one of these algorithms, which abandons classical selective search in favor
of region proposal networks (RPNs) to attain superior performance.

Roadmarking identification requires real‑time processing speed, and a faster R‑CNN
can solve the challenge, but it falls short in terms of inference speed. As an alternative,
today’s leading detection frameworks, such as SSD [12] and Yolo, may be inferred in real‑
time while remaining resilient for applications such as road marking detection. The Yolo
V2, V3, V4, and V4‑tiny methods were used to recognize road markings signs in Taiwan,
which was the subject of our research. We also add the flip method to our data preprocess‑
ing to improve the performance of our proposed method.

2.2. You Only Look Once (YOLO)
A single‑shot detection architecture, on the other hand, utilizes a single CNN as op‑

posed to several CNNs to forecast numerous bounding boxes and the relevant classes con‑
currently. Yolo V2 is a single‑shot detection framework that is at the forefront of the most
recent technological developments. The ability to make real‑time inferences is the most
significant aspect of this detector system. The Yolo V2 detection framework surpasses the
Faster R‑CNN algorithm in terms of both the mean average precision and the inference
speed. Yolo V3 is both an heir to and an improvement over Yolo V1 and Yolo V2 [33] in
that it is both an inheritance and an improvement. In the Yolo V1 technique, input images
are resampled to a predetermined size and divided into an m × m grid. According to pre‑
liminary findings, the network Darknet‑53, which has a larger architecture than VGG‑16,
is more useful in gathering various and intricate knowledge from objects and, as a result,
plays a vital role in enhancing the detection accuracy of Yolo V3. The Yolo V3 algorithm,
which was proposed in 2018, was comprised entirely of CNN [34,35].

On top of that, each image is divided up, and bounding boxes and probability distri‑
butions are calculated for each grid cell [36,37]. Yolo V3 is composed of 106 layers, and
it generates predictions by mixing data from a variety of scales. The output image has
a size of 416 pixels by 416 pixels, and it was produced by blending three different scales
together [38]. Moreover, the detection is carried out on three different layers simultane‑
ously [39]. The width and height measurements that were given to the computer were
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13 × 13 and 26× 26, respectively, as well as 52× 52 [40]. Yolo V4 [41], the most recent ver‑
sion in the Yolo series, was launched in April 2020 as a new edition of the Yolo network.

As a result, we tested Yolo V4 utilizing the integrated dataset in our trials, as we be‑
lieve that model enhancement can lead to breakthroughs in accuracy and efficiency. C.Y.
Wang et al. [42,43] redesigned Yolo V4 to Yolo V4‑tiny to get the best speed or accuracy
trade‑off. A cross‑stage partial network (CSPNet) is designed to attribute the problem to
the same gradient information within network optimization. The complexity of the net‑
work optimization can be significantly reduced while maintaining accuracy [44–46].

2.3. Compared Method
Our systems are depicted in Figure 1. Particularly for the Yolo V2, Yolo V3, Yolo V4,

and Yolo V4‑tiny image processing systems, this study employs a number of CNN‑based
object detection techniques. Furthermore, we employ data augmentation, flip or no flip.
Specifically, in this experiment, we train the model to distinguish among objects on the left
and right sides of the screen that are classified as independent classes [47–49].
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Figure 1. An overview of the system. Figure 1. An overview of the system.

As a result of the fact that the program labels each category in a distinct manner, the
BBox mark tool [34] was developed in order to generate a bounding box for the entire
sign image. This box may have many markings. During the first stage of the experiment,
each label was only compared to a single training model, and there was only one detector
model used for the detection process. The majority of platforms for annotation support
the Yolo labeling format, which results in a single annotation text file being produced for
each image. Each object in the image is marked with a bounding‑box (BBox) annotation in
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each text file. Each object in the image has its own annotation. They are based on the size
of the image and range from 0 to 1. Each of them is represented in the following manner:
<object‑class‑ID> <X center> <Y center> <Box width> <Box height>. The Equations (1)–(6)
serve as the foundation for the adjustment procedure [50].

dw = 1/W (1)

x =
(x1 + x2)

2
× dw (2)

dh = 1/H (3)

y =
(y1 + y2)

2
× dh (4)

w = (x2 − x1)× dw (5)

h = (y2 − y1)× dh (6)

H indicates for the height of the image, dh refers for the absolute height of the image,
W serves for thewidth of the image, anddw represents for the absolutewidth of the picture.
Algorithm 1 describes the Yolo V4 road marking detection process.

Algorithm 1. Yolo V4 road marking detection process.

1. Create grids with a size of (n × n) using the provided image data.
2. Make a total of K bounding boxes and give an estimate of the number of anchor boxes in

each box.
3. Utilizing CNN, fully extract all object features from the image.
4. Predict the b =

[
bx, by, bw, bh, bc

]T and the class = [R1, R2, R3 . . . R15 ]T .
5. Choose the optimum confidence IoUtruth

pred of the K bounding boxes with the threshold IoUthres.
6. If IoUtruth

pred means that the bounding box includes the object. Otherwise, the bounding box
does not contain the object.

7. Select the group that has the best projection of being true when using non‑maximum
suppression (NMS).

8. Shows the results of tests performed on road markings.

Nevertheless, NMS is structured in the following ways: First, arrange predictions
according to their level of confidence in their accuracy. If we look at the predictions for
the same class and find that the IoU with the existing prediction is more than 0.5, we have
no choice but to start with the best rankings and ignore the prediction that is currently in
place. The last stage of the process results in the production of a categorized image that
bears a label indicating the class.

2.4. Experiment Setting
Table 1 explains our experiment setting. In addition, we used the default settings of

Yolo V2, Yolo V3, Yolo V4, and Yolo V4‑tiny. In this default setting, Yolo implements image
flipping. Our experiment set flip = 0 for Yolo V4 and Yolo V4‑tiny, which means not using
flip when processing the image.

Table 1. Experiment Setting.

Model Flip

Yolo V2 Yes
Yolo V3 Yes
Yolo V4 Yes

Yolo V4 (No Flip) No
Yolo V4‑tiny Yes

Yolo V4‑tiny (No Flip) No
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3. Results
3.1. Data Pre‑Processing

The Nvidia RTX 3080 GPU accelerator and an Intel i7‑11700 Central Processing Unit
(CPU) with eight core processors were utilized as the training model environment for the
purpose of detecting and recognizing road markings. The random‑access memory (RAM)
is equipped with 32 gigabytes of DDR4‑3200 memory.

The condition of the image being flipped is shown in Figure 2. A flipped image, com‑
monly described as a reversed image, is a fixed or motion picture that is formed by mir‑
roring the original image across a horizontal axis. A flipped image is one that has been
reflected across the vertical axis [51,52]. A flip is a feature in a photograph that enables us
to rotate a picture horizontally or vertically. Furthermore, Figure 2a depicts the original
image, Figure 2b depicts the flipped vertical image, Figure 2c depicts the flipped horizontal
image, and Figure 2d depicts both images.
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3.2. Dataset
Furthermore, this experiment with the Taiwan road marking sign was performed us‑

ing pictures that we collected from video and image sources. 80% of the dataset is used for
training, while 20% is used to test the results. The video was recorded by the dashboard
camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road Mark‑
ing Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for each
class to avoid data imbalance. Therefore, the total number of images in our dataset is 6009,
and their dimensions are 512 by 288. Our study included a total of 15 classes, numbered
P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn Right”,
“Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow Sign”,
“Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our study also
included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a depicts the labels
of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and Class P9 consist
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of the most instances, totaling more than 400 instances. All classes in this data set have
more than 300 instances, and Figure 3b illustrates the labels correlogram of the dataset.

Table 2. Taiwan Road Marking Sign Dataset (TRMSD).

Class ID Chinese Name English Name Image Total Image

P1 右轉 Turn Right

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

405

P2 左轉 Turn Left

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

401

P3 直走 Go Straight

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

407

P4 直走或右轉
Turn Right or
Go Straight

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

409

P5 直走或左轉
Turn Left or
Go Straight

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

403

P6 速限40 Speed Limit (40)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

391

P7 速限50 Speed Limit (50)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 

401

P8 速限60 Speed Limit (60)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

3.2. Dataset 

Furthermore, this experiment with the Taiwan road marking sign was performed us-

ing pictures that we collected from video and image sources. 80% of the dataset is used 

for training, while 20% is used to test the results. The video was recorded by the dash-

board camera during the daytime in Taichung, Taiwan. Table 2 displays the Taiwan Road 

Marking Sign Dataset (TRMSD). Besides, we use images that range from 391 to 409 for 

each class to avoid data imbalance. Therefore, the total number of images in our dataset 

is 6009, and their dimensions are 512 by 288. Our study included a total of 15 classes, 

numbered P1 through P15. These classes were as follows: “Go Straight, Turn Left”, “Turn 

Right”, “Turn Right or Go Straight”, “Turn Left or Go Straight”, “Zebra Crossing”, “Slow 

Sign”, “Overtaking Prohibited”, “Barrier Line”, “Cross Hatch”, and “Stop Line”. Our 

study also included the following speed limits: “40”, “50”, “60”, and “70”. Figure 3a de-

picts the labels of the TRMSD datasets, which contain 15 classes. Class P7, Class P2, and 

Class P9 consist of the most instances, totaling more than 400 instances. All classes in this 

data set have more than 300 instances, and Figure 3b illustrates the labels correlogram of 

the dataset. 

Table 2. Taiwan Road Marking Sign Dataset (TRMSD). 

Class ID Chinese Name English Name Image Total Image 

P1 右轉 Turn Right 

 

405 

P2 左轉 Turn Left 

 

401 

P3 直走 Go Straight 

 

407 

P4 直走或右轉 Turn Right or Go Straight 

 

409 

P5 直走或左轉 Turn Left or Go Straight 

 

403 

P6 速限40 Speed Limit (40) 

 

391 

P7 速限50 Speed Limit (50) 

 

401 

P8 速限60 Speed Limit (60) 

 

400 400

P9 速限70 Speed Limit (70)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

398

P10 Zebra Crossing
(Crosswalk)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

401



Big Data Cogn. Comput. 2023, 7, 54 8 of 19

Table 2. Cont.

Class ID Chinese Name English Name Image Total Image

P11 Slow Sign

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

399

P12 Overtaking
Prohibited

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

404

P13 Barrier Line

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

409

P14 Cross Hatch

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

398

P15 Stop Line

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

403

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

P9 速限70 Speed Limit (70) 

 

398 

P10  
Zebra Crossing 

(Crosswalk) 

 

401 

P11  Slow Sign 

 

399 

P12  Overtaking Prohibited 

 

404 

P13  Barrier Line 

 

409 

P14  Cross Hatch 

 

398 

P15  Stop Line 

 

403 

 

 
(a) Labels 

Figure 3. Cont.



Big Data Cogn. Comput. 2023, 7, 54 9 of 19Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 19 
 

 
(b) Labels correlogram 

Figure 3. Taiwan Road Marking Sign Dataset (TRMSD). (a) Labels, and (b) Label correlograms. 

4. Discussion 

4.1. Yolo Training Result 

Figure 4 illustrates the training results for each model in the experiment. According 

to the findings of our research, utilizing a learning rate of 0.00261 for the analysis, a learn-

ing rate decay of 0.1 at each iteration, and a momentum learning rate of 0.949 for the model 

helps improve the Yolo model while it is being trained. To overcome the problem of over-

fitting, we incorporate cross-validation and early stopping into our experiment design. A 

common procedure is to perform 5-fold cross-validation to obtain an out-of-sample pre-

diction error. The rules for early stopping indicate how many times a learner can repeat 

an activity before becoming overly proficient. Max batches = 30,000 iterations are used in 

this experiment, as well as the step policy: steps = 24,000 and 27,000, scales = 0.1 and 0, 

momentum = 0.949, decay = 0.0005, saturation = 1.5, exposure = 1.5, and mosaic = 1. Gen-

erally, m × class object detectors require a maximum batch size of 2000 × m for execution. 

The training process is terminated in the experiment after 30,000 iterations (2000 × 15 clas-

ses). Other variables are employed in the training process, including the current iteration 

number and the scale (0.1, 0.1). This value is adjusted on a consistent basis, and the for-

mula for determining the current learning rate is as follows: learning rate × scales [0] × 

scales [1] = 0.00001. 

The average loss value of Yolo V2 during the training stage is 0.1162, and the training 

loss remains stable after 3000 epochs. Further, Yolo V2 exhibits a mAP of 76.75% and an 

IoU of 53.61%. Yolo V4 (No Flip) achieves the highest mAP, 81.22%, while training with 

IoU at 65.98% and a loss value of 0.429. Followed by Yolo V4-tiny (No Flip) with mAP 

80.47% and IoU 63.79%. Next, Yolo V3 got a mAP value of 78.31% and an IoU of 58.62%, 

as shown in Table 3. In addition, Table 4 shows the training results for each class, P1 to 

P15. Classes P1, P6, P7, P8, P9, P11, and P15 achieve above 90% accuracy. The intersection 

over union (IoU) metric is used to evaluate object detectors, as indicated in Equation (7) 

[53,54]. 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑  ∩  𝐴𝑟𝑒𝑎𝑔𝑡

𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑  ∪  𝐴𝑟𝑒𝑎𝑔𝑡
 (7) 

Our method computes the area of overlap between the predicted bounding box and 

the ground truth bounding box, and this information is placed in the numerator of the 

Figure 3. Taiwan Road Marking Sign Dataset (TRMSD). (a) Labels, and (b) Label correlograms.

4. Discussion
4.1. Yolo Training Result

Figure 4 illustrates the training results for eachmodel in the experiment. According to
the findings of our research, utilizing a learning rate of 0.00261 for the analysis, a learning
rate decay of 0.1 at each iteration, and a momentum learning rate of 0.949 for the model
helps improve the Yolo model while it is being trained. To overcome the problem of over‑
fitting, we incorporate cross‑validation and early stopping into our experiment design. A
common procedure is to perform 5‑fold cross‑validation to obtain an out‑of‑sample pre‑
diction error. The rules for early stopping indicate how many times a learner can repeat
an activity before becoming overly proficient. Max batches = 30,000 iterations are used in
this experiment, as well as the step policy: steps = 24,000 and 27,000, scales = 0.1 and 0, mo‑
mentum = 0.949, decay = 0.0005, saturation = 1.5, exposure = 1.5, andmosaic = 1. Generally,
m × class object detectors require a maximum batch size of 2000 ×m for execution. The
training process is terminated in the experiment after 30,000 iterations (2000 × 15 classes).
Other variables are employed in the training process, including the current iteration number
and the scale (0.1, 0.1). This value is adjusted on a consistent basis, and the formula for deter‑
mining the current learning rate is as follows: learning rate× scales [0]× scales [1] = 0.00001.

The average loss value of Yolo V2 during the training stage is 0.1162, and the training
loss remains stable after 3000 epochs. Further, Yolo V2 exhibits a mAP of 76.75% and an
IoU of 53.61%. Yolo V4 (No Flip) achieves the highestmAP, 81.22%, while trainingwith IoU
at 65.98% and a loss value of 0.429. Followed by Yolo V4‑tiny (No Flip) with mAP 80.47%
and IoU 63.79%. Next, Yolo V3 got a mAP value of 78.31% and an IoU of 58.62%, as shown
in Table 3. In addition, Table 4 shows the training results for each class, P1 to P15. Classes
P1, P6, P7, P8, P9, P11, and P15 achieve above 90% accuracy. The intersection over union
(IoU) metric is used to evaluate object detectors, as indicated in Equation (7) [53,54].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(7)
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Table 3. Training performance results.

Model Loss Value Precision Recall F1‑Score IoU (%) mAP@0.50
(%)

Yolo V2 0.1162 0.68 0.83 0.74 53.61 76.75

Yolo V3 0.1493 0.73 0.81 0.77 58.62 78.31

Yolo V4 0.5817 0.72 0.81 0.76 58.23 77.76

Yolo V4
(No Flip) 0.429 0.81 0.86 0.84 65.98 81.22

Yolo V4‑tiny 0.3289 0.66 0.81 0.73 52.83 80.55

Yolo V4‑tiny
(No Flip) 0.2428 0.76 0.86 0.81 60.45 84.77

Table 4. Training performance results for each class.

Class
ID Yolo V2 Yolo V3 Yolo V4 Yolo V4

(No Flip)
Yolo

V4‑Tiny
Yolo V4‑Tiny
(No Flip)

P1 68.95 74.87 76.49 95.20 81.88 95.60

P2 61.40 63.57 64.43 81.22 74.48 84.16

P3 67.80 70.27 68.13 52.51 69.04 62.98

P4 40.87 45.44 42.69 57.15 63.45 73.66

P5 31.67 35.10 27.35 53.02 50.36 72.76

P6 100.00 100.00 100.00 100.00 100.00 100.00

P7 91.15 90.10 90.81 90.33 86.32 88.89

P8 98.48 98.18 98.78 99.78 95.64 95.59

P9 99.99 99.98 99.99 99.98 100.00 100.00

P10 85.24 87.93 85.21 90.48 90.27 93.40

P11 97.45 97.08 99.59 97.69 98.36 98.96

P12 68.32 64.42 72.36 59.56 70.45 70.73

P13 69.76 70.43 63.67 63.04 61.10 95.43

P14 87.08 87.48 89.51 87.23 78.85 81.65

P15 83.04 89.75 87.36 91.14 88.01 87.74

Average 76.75 78.31 77.76 81.22 80.55 84.77

Our method computes the area of overlap between the predicted bounding box and
the ground truth bounding box, and this information is placed in the numerator of the
covariance matrix. Alternatively, the denominator is the area of union, which is defined
as the area included by both the predicted bounding box and the ground truth bounding
box in the same coordinate system. Taking the area of overlap and dividing it by the area
of the union gives the result of IoU. There are three categories that the result examples can
be placed into: (1) True positive (TP): the model predicted a label and matched it correctly
as per ground truth. (2) False positive (FP): the model predicted a label, but it is not part
of the ground truth. (3) True negative (TN): the model does not predict the label and is
not part of the ground truth. The Equations (8) and (9) describe both the precision and the
recall [55,56].

Precision (P) =
TP

TP + FP
(8)

Recall (R) =
TP

TP + FN
(9)
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Another assessment index, F1 [57], is depicted in Equation (10).

F1 =
2 × Precision × Recall

Precision + Recall
(10)

The Yolo loss function, calculated using Equation (11) is [58].
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ŵi

)2
+

(√
hi −

√
ĥi
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where Iobjij denotes whether the object appears in cell i, and I
obj
ij denotes that the jth bound‑

ing box predictor in cell i is responsible for the prediction. The next step is to utilize(
x̂, ŷ, ŵ, ĥ, ĉ, p̂

)
to represent the center coordinates of the predicted bounding box, as

well as its breadth, height, confidence, and category likelihood. The vast majority of boxes
are empty of their contents. This results in a problem known as class imbalance, in which
we train the model to recognize background more frequently than we train it to recognize
objects. As a solution, we reduce the significance of this loss by a factor of λnoobj = 0.5.

4.2. Result Discussions
Table 5 describes the test performance results of each algorithm. Yolo V4 (No Flip)

showed the highest mAP of 95.43% in the experiment, with an IoU of 66.18%, precision of
83%, recall of 93%, and an F1‑score of 91%. Next, YoloV4 achieves amAPof 93.55%with an
IoU of 66.24%. Yolo V4‑tiny (No Flip) showed 92.98%mAP and 64.7% IoU. Yolo V3 reached
the lowest mAP value with a mAP value of 89.97% and an IoU of 61.98. augmentation as
flip = 0.

Table 5. Testing performance results.

Model Recall Precision F1‑Score TP FP IoU (%) mAP@0.50
(%)

Yolo V2 0.94 0.73 0.82 5006 1883 56.79 90.53
Yolo V3 0.88 0.79 0.83 4694 1259 61.98 89.97
Yolo V4 0.93 0.82 0.87 4970 1096 66.24 93.55
Yolo V4
(No Flip) 0.95 0.83 0.89 5074 1003 66.12 95.43

Yolo V4‑tiny 0.88 0.72 0.80 4707 1802 58.15 87.53
Yolo V4‑tiny
(No Flip) 0.94 0.82 0.88 4996 1065 66.86 94.42

Depending on the outcomes of the tests, it can be determined that the “No Flip” pa‑
rameter has the potential to increase the performance of the Yolo V4 and Yolo V4‑tiny
results. In addition, the Yolo V4 mAP increased by 1.98%, from 93.55% to 95.43%. Fur‑
thermore, Yolo V4‑tiny mAP rose 6.89% from 87.53% to 94.42%. In our experiment, we
disabled flip data augmentation by setting flip = 0. We would like the model to be able to
classify Left and Right objects as distinct classes.

Table 6 describes the performance results of each class, P1 to P15. Class P6 obtained
the highest average mAP of 100%, followed by Class P9 with 99.87% mAP, and Class P11
with 99.68%mAP. In contrast, a minimummAP of 76.79% was obtained by Class P5. Class
P5 is a Turn Left or Straight sign; this class is like Class P4 (Turn Right or Straight). Fur‑
thermore, Class P4 reaches 82.19% mAP, and this value is slightly different from Class P5.
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Overall, all classes in the experiment achieved a high mAP above 90%. Most of the marks
for Speed Limit 60, Speed Limit 50, Speed Limit 40, and Speed Limit 70 receive highermAP
than those for other classes. This is because the model can recognize numbers well, and
this class is very different from other classes.

Table 6. Testing performance results for each class.

Class
ID Yolo V2 Yolo V3 Yolo V4 Yolo V4

(No Flip)
Yolo

V4‑Tiny
Yolo V4‑Tiny
(No Flip) Average

P1 86.61 85.57 89.03 98.35 86.80 98.38 91.56
P2 80.99 82.01 86.59 96.66 84.22 96.53 88.78
P3 87.08 84.42 91.23 92.21 78.38 87.38 87.85
P4 77.84 73.63 78.58 92.60 71.14 91.58 82.19
P5 70.82 66.78 73.9. 88.20 65.44 85.88 76.79
P6 100.00 100.00 100.00 100.00 99.99 100.00 100.00
P7 93.56 96.02 99.08 98.38 97.50 97.91 95.99
P8 96.92 97.51 98.76 99.03 98.49 98.49 98.10
P9 99.90 99.83 99.95 99.86 99.86 99.87 99.87
P10 96.59 98.30 98.73 97.38 95.26 97.87 95.16
P11 99.15 99.69 99.97 99.91 99.50 99.50 99.63
P12 92.26 89.87 99.14 97.58 79.94 91.84 92.19
P13 85.85 82.96 93.67 79.28 71.62 81.76 84.00
P14 97.00 97.73 98.52 96.50 92.99 94.53 94.65
P15 93.34 95.18 96.01 95.57 91.82 94.74 92.94

Average 90.53 89.97 94.95 95.43 87.53 94.42 91.98

The road marking sign Class P11 recognition result is shown in Figure 5. All mod‑
els can detect and recognize marks well, with varying accuracy. Yolo V4 (No Flip) can
recognize two signs of P11 with 99% and 95% accuracy, respectively.

Nevertheless, Figure 6 illustrates the recognition results for Class P8. Yolo V4 (No
Flip) can recognize three signs with an accuracy of 88%, 90%, and 65%, respectively, as
shown in Figure 6d. Furthermore, Yolo V4 and Yolo V4‑tiny can only detect two signs of
class P8 with the same image as in Figure 6c,f. The outcomes of the incorrect recognition
of the road markings are depicted in Figure 7. Some models may not recognize all the
markings in the image. They only recognize 1 sign, as shown in Figure 7a–f. The Yolo V4‑
tiny underwent double detection, as shown in Figure 7e. Furthermore, this experiment’s
result can be applied to countries in Asia and other languages.
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5. Conclusions
The purpose of this experiment is to provide a brief review of CNN‑based object iden‑

tification algorithms, with a special emphasis on the YoloV2, YoloV3, YoloV4, andYoloV4‑
tiny algorithms, as well as the Yolo V4‑tiny algorithm. Our experimental studies examine
and evaluate several state‑of‑the‑art object detectors, including those used to detect traffic
signs, among other things. The evaluation criteria measure important parameters such as
the mean acquisition time (mAP), the detection time (IoU), and the number of BFLOPS.

Based on the results of our investigation, we came up with the following summary:
(1) Yolo V4 and Yolo V4‑tiny results can take advantage of the “No Flip” setting. In our
scenario, we want the model to discriminate between Left and Right objects as distinct
classes. (2) The best model in the experiment is Yolo V4 (No Flip), with a testing accuracy
of 95.43% and IoU 66.12%. (3) We build our Taiwan Road Marking Sign Dataset (TRMSD).
In the future, we will combine road marking recognition with explainable artificial intelli‑
gence (XAI) and test with another dataset. Furthermore, wewill be upgrading our TRMSD
dataset and focusing on pothole sign recognition.
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