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Abstract: Hand detection is a key step in the pre-processing stage of many computer vision tasks
because human hands are involved in the activity. Some examples of such tasks are hand posture
estimation, hand gesture recognition, human activity analysis, and other tasks such as these. Human
hands have a wide range of motion and change their appearance in a lot of different ways. This makes
it hard to identify some hands in a crowded place, and some hands can move in a lot of different ways.
In this investigation, we provide a concise analysis of CNN-based object recognition algorithms,
more specifically, the Yolov7 and Yolov7x models with 100 and 200 epochs. This study explores a vast
array of object detectors, some of which are used to locate hand recognition applications. Further,
we train and test our proposed method on the Oxford Hand Dataset with the Yolov7 and Yolov7x
models. Important statistics, such as the quantity of GFLOPS, the mean average precision (mAP), and
the detection time, are tracked and monitored via performance metrics. The results of our research
indicate that Yolov7x with 200 epochs during the training stage is the most stable approach when
compared to other methods. It achieved 84.7% precision, 79.9% recall, and 86.1% mAP when it was
being trained. In addition, Yolov7x accomplished the highest possible average mAP score, which was
86.3%, during the testing stage.

Keywords: hand detection; Yolov7; Yolov7x; convolutional neural network; object detection

1. Introduction

In everyday life, the hand is a very important part of how people talk to each other
and interact with their surroundings. In order to identify hand movements and other
human actions, the position and movement of a person’s hands need to be meticulously
tracked as they are being written down [1]. Being able to accurately recognize hands
in pictures and videos will help with a wide range of visual processing tasks, such as
understanding gestures and scenes. Because there are so many kinds of hands in pictures,
it is harder to find the hand in uncontrolled situations [2,3]. Hands can have many different
orientations, shapes, and sizes. Occlusion and motion blur make the different looks of
hands even more noticeable [4,5]. Cluttered environments present a significant challenge
for several applications of computer vision, including human–computer interaction [6,7],
sign language recognition [8], hand action analysis [9,10], and complete hand gesture
recognition systems [11,12].

In recent years, hand position estimation and gesture recognition in restricted sit-
uations have attained a level of maturity. However, hand-related applications in un-
constrained environments will be an important trend in the next future. Under these
circumstances, the identification of hands in an unrestricted environment constitutes a
new bottleneck in the work that is related to hands. Therefore, the high-precision hand
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recognition approach will be an essential stage in the process for hand-related applications
that operate in an environment with few restrictions.

The complexity of the hand detection task is directly related to the variety of hand
appearances, which can vary in terms of hand shape, skin color, orientation, scale, and
partial occlusion, among several other features. This can make it challenging for the task to
be performed [13,14]. Therefore, the shared information that was presented in the training
signal for the hand appearance re-construction task can be utilized as an inductive bias in
order to increase the performance of the hand detection job [15,16].

In July of 2022, the Yolov7 model was made available to the public [17]. Overall,
Yolov7 provides a quicker and more resilient network architecture, as well as an improved
method for feature integration, improved object recognition performance, a more robust loss
function, and a higher label assignment and model training efficiency. In addition, Yolov7
offers an improved method for feature integration. Because of this, the computational
hardware that Yolov7 needs to run is significantly less expensive than what is required by
other deep learning models. It is possible to train it far more quickly on smaller datasets
without using any pre-trained weights. The Yolov7 model pre-processing approach is
combined with the Yolov5 model pre-processing method, and the usage of Mosaic data
enhancement is appropriate for small object recognition [18,19]. In terms of its design, the
proposal calls for an extended ELAN that is based on the original ELAN. To overcome the
problem of automatic hand recognition, we incorporated Yolov7 in our experiment.

The following is the most important contribution that this research provides: (1) A
brief description of the Yolov7 family of object identification algorithms, including Yolov7
and Yolov7x with 100 and 200 epochs, may be found in this research. (2) This study explores
a wide range of object detectors. Performance metrics monitor critical data such as the
average mean accuracy (mAP), Intersection over Union (IoU), and the quantity of GFLOPS.

This paper will continue with the following sections: Section 2 provides a summary
of current research papers and an explanation of our methodology. The outcomes of the
experiments are presented in Section 3. Section 4 discusses our findings, while Section 5
outlines our conclusions and directions for future study.

2. Materials and Methods
2.1. Hand Recognitions with Convolutional Neural Network (CNN)

The segmentation of skin tone was used by many older hand recognition algorithms to
isolate hands from their backgrounds, which was a time-consuming and ineffective process,
after removing other skin regions from the original image, such as the face. In the hue,
saturation, and value (HSV) color space, Dardas et al. [20] suggested a thresholding method
for fragmenting hands into individual colors. This was done after first removing other
skin regions, such as the face. After trying out a number of different color spaces, Girondel
and colleagues [21] found that the Cb and Cr channels in the YCbCr color space were
particularly effective for the skin recognition job. Sigal et al. [22] proposed the Gaussian
mixture model, which performed admirably under a variety of lighting condition.

Accurate hand detection is essential for many applications. Mittal et al. [23] came up
with a technique that utilizes a collection of movable pieces. Karlinsky et al. [24] suggested
a method for hand detection that makes use of sensing the hand’s relative position in
relation to other human body components [25]. Recognizing hand gestures and detecting
fingertip locations can be broken down into three classes based on [26]. The first set of
papers addresses the issue of gesture recognition. The second set of works is devoted
to fingertip detection, while the third set tackles both gesture recognition and fingertip
detection head-on. Moreover, Nunez et al. [27] combined a neural network with a long
short-term memory (LSTM) network to recognize 3D hand gestures based on a skeleton’s
temporal properties [28].

Recently, there has been a surge in interest in CNN-based detection approaches as
a research issue in the computer vision field. This is due to the fact that deeper and
higher-level features can be learned from networked systems. By utilizing CNN, one is
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able to effectively address both the multi-scale and varied rotation difficulties that were
previously described. Recent research has concentrated on three primary avenues with the
goal of producing improved object detection systems; these principals are also suited for
CNN-based hand detection. The following is an explanation of each of the three primary
directions: (1) Changing the fundamental architecture of these networks should be the first
primary step in this approach. (2) The second primary aim is to exploit the data themselves
by increasing the variety qualities of the training data. This is the second principal direction.
(3) Thirdly, using proxy tasks for reasoning and other top-down processes to improve
object detection representations is a promising avenue of research [29]. This third main
direction guides our efforts. Through the use of hand appearance reconstruction, we are
able to include universally available data into our detection system. Reconstruction can
deal with significantly more complex information of the hand than was ever presented in
earlier hand identification challenges, such as scales, contours, skin colors, and even partial
occlusions of the hand [30,31].

2.2. Yolov7 Architecture

You Only Look Once version 7 (Yolov7) is a real-time object detector that only uses a
single stage. In July 2022, it was presented to the Yolo family for the first time. The Yolov7
paper claims that it is the quickest and most accurate real-time object detector that has
been developed to this day [17]. Through major improvements to its overall performance,
Yolov7 has created a significant new benchmark.

Image frames are characterized by a backbone in a model known as Yolo [32]. Yolo
predicts the positions and classes of objects around which bounding boxes should be
created. These features are integrated and mixed in the neck, and then they are passed
along to the head of the network. To arrive at its ultimate forecast, Yolo engages in a
post-processing procedure known as non-maximum suppression (NMS) [33].

The authors of Yolov7 improve on previous research that has been conducted on this
subject. They do so while keeping in mind the amount of memory that is required to keep
layers stored in memory as well as the distance that a gradient must travel before it can
back-propagate through the layers. If they make the gradient shorter, their network will be
able to learn more effectively. The E-ELAN layer aggregation, which is an extended version
of the efficient layer aggregation network (ELAN) computational block, is the one that they
decide to go with as the final layer aggregation. Object detection models will typically
consider the resolution that the network is trained on, as well as the depth and width of the
network. The authors of Yolov7 scale the network depth and width in conjunction with one
another while simultaneously concatenating layers. Studies on ablation demonstrate that
this technique maintains an optimal model design even when scaled to different scales [19].

Yolov7 suggested a re-parameterized convolution that was intended. The creators
of this model observed that there was a layer in this proposed planned re-parameterized
model that included residual or concatenation connections; its RepConv should not have
an identity connection. This was one of the findings of the model. RepConvN, which
does not contain any identity links, can serve as a suitable replacement for it under
these conditions. Within a single convolutional layer, RepConv utilizes a combination of
3 × 3 convolutions, 1 × 1 convolutions, and identity connections. To develop the archi-
tecture of the intended re-parameterized convolution, the authors used RepConv without
identity connection (also known as RepConvN) after performing research on the com-
bination of RepConv with various architectures and the resulting performance of those
combinations. According to the findings of the research article, there should not be any
identity connections when a convolutional layer that included residual or concatenation
was replaced by a re-parameterized convolution.

In accordance with the structural diagram, the Yolov7 network may be broken down into
three distinct components: the input network, the backbone network, and the head network [34].
The Yolov7 network, firstly, pre-processed the image, resized it to 640 × 640 × 3, and input it
into the backbone network. The length and width of the feature map were successively cut
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in half by the CBS composite module, the ELAN module, and the MP module. At the same
time, the number of output channels was raised to be equal to twice the number of input
channels. As shown in Figure 1, the CBS composite module performed the convolution + BN
+ activation function on the input feature map. In Yolov7, the same as Yolov5, Silu was used
as the activation function. It was suggested that we use the ELAN module. To continuously
enhance the network’s learning capabilities without ruining the initial gradient path,
cardinality was expanded, shuffled, and merged. With the help of group convolution, we
were able to increase the channel count and cardinality of the computational blocks while
maintaining the same channel count in our feature map ensembles as we did in our initial
design. Finally, the output from the ELAN module has twice as many channels as the
input. Both the feature map’s dimensions and the number of channels were cut in half by
the max-pooling operation performed by the MP module’s top branch. After the initial
convolution, the length and breadth of the feature map were cut in half by the lower branch,
while the kernel size and stride were increased by one and two, respectively. The two levels
of the tree were joined into one. After all that work, we had a feature map with input and
output channels that were the same size [35].
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Figure 2 describes our research workflow. In our experiment, we use the hand de-
tection process using images from the Oxford Hand Dataset [23] as input data. Next, we
train our dataset with Yolov7 and Yolov7x, with 100 and 200 epochs for each model. We
will then study and discuss the results of the training and testing phases of Yolov7, which
involves calculating the bounding box with NMS.
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Most annotation programs output their findings in the Yolo labeling format, which
creates a single text file with annotations for each image. Each text file has an annotation
consisting of a bounding box, sometimes known as the abbreviation “BBox”, for each of the
graphical elements that are displayed in the image. The scale of the annotations has been
adjusted so that it is proportional to the image, and their values vary from 0 all the way up
to 1 [36]. The Equations (1)–(6) will serve as the foundation for the adjustment technique
used in the calculation using the Yolo format.

dw = 1/W (1)

x =
(x1 + x2)

2
× dw (2)

dh = 1/H (3)

y =
(y1 + y2)

2
× dh (4)

w = (x2 − x1)× dw (5)

h = (y2 − y1)× dh (6)

H is used to denote the height of the image, dh is used to refer to the absolute height
of the image, W is used to denote the width of the image, and dw is used to represent the
absolute width of the picture.
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3. Results
3.1. Oxford Hand Dataset

The Oxford Hand Dataset [23] is a free, extensive, and publicly available image dataset
of hands that has been gathered from a wide range of public image dataset sources.

Annotations are included in each picture for all the many examples of hands that can
be seen clearly by humans in that picture. Over the course of the entire dataset, there are a
total of 13,050 hand instances. While there are 11,019 data points assigned to each hand
instance in the training set, there are only 2031 data points assigned to each hand instance
in the testing set. During the process of collecting data, there were no limitations imposed
on the subject’s attitude or visibility, and there were also no limitations imposed on the
environment that was immediately surrounding the subject. Annotations are included in
each picture for all the hands that can be readily discerned by humans in the picture. The
annotations need to be aligned about the wrist, but the bounding rectangles do not have to
be aligned along any axis. The files in the ‘annotations’ folder store the annotations for the
four corners of the hand-bounding box in the normal MATLAB “.mat” format.

The structure is composed of boxes, with hand-boxes standing in for the various
indices that are associated with the cell array. On this dataset, we perform the data pre-
processing and then convert the data into the Yolo format. The dataset is broken up into
two sections: seventy percent is used for training, and thirty percent is used for testing.
Both sections include pictures of a variety of things that can be held in the hand. The
illustration of a representative image from the Oxford Hand Dataset collection may be
found in Figure 3.
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3.2. Training Result

The training procedure and its outcome will be detailed at this point. The training for
test batch 0 labels and test batch 0 predictions is depicted in Figure 4. Yolov7 uses a genetic
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algorithm to generate the anchor boxes on its own. They call this procedure “auto anchor”,
since it automatically recalculates the anchor boxes to make them a better fit for the data
if the default ones are inadequate. This information is then integrated with the k-means
method to produce k-means evolved anchor boxes. An additional auxiliary head can be
placed at any point in the network’s middle layers to provide deep supervision, with the
shallow network weights and the assistant loss serving as the guiding parameters. Even in
circumstances in which the model weights would normally converge, this method can be
valuable for making changes to the model. In Yolov7’s design, the training head is called
an auxiliary head, while the lead head is responsible for overseeing the production of the
final output. The lead head prediction is used as guidance by Yolov7 to generate coarse-
to-fine hierarchical labels, which are then used for auxiliary head learning and lead head
learning, respectively.

Further, Yolov7’s training phase involves the splicing together of four separate photos.
After being subjected to a random processing step during the splicing phase, each of the
four distinct images has dimensions and configurations that are different from the others.
We will utilize the validation script to examine our model. The ‘task’ setting allows users
to customize whether their model’s performance is measured on the full training set, the
validated test set, or the test set alone. The default location for results is the runs/train
directory; for future training sessions, a new ex-experiment directory is created and given a
unique name, such as runs/train/exp1, runs/train/exp1, etc. We look at the train and val.jpg to
see the mosaics, labels, forecasts, and augmentation effects. It is worth noting that training
requires an Ultralytics Mosaic Data loader, a device that combines four images into a single
mosaic. After training our model for 100 and 200 epochs, we save our weights.

Fine-tuning, the final phase of training, is discretionary. In this stage, we will unfreeze
the whole model we just built and retrain it at a much slower learning rate on our data.
By gradually changing the previously trained features to accommodate the new data,
significant gains may be possible. We can adjust the learning rate in the hyperparameters-
configurations file. The learning rate with these hyperparameters is drastically reduced
compared to the standard settings. The weights will initially be set to the last saved values
from the previous step. As per the established practice in PyTorch, we have saved our
trained model with the .pt file extension.

The mAP@0.5 will be monitored during the training phase to determine how well our
detector is learning to detect on the validation set; a higher number indicates improved
performance. One of the most crucial parts of the Yolov7 training is the dataset written
in Yet Another Markup Language (YAML). Class names and the location of the data used
for training and checking are listed in this file. For the training script to correctly identify
the locations of the images, labels, and classes, this file path must be passed along as an
argument. The dataset already includes these data. Table 1 describes the training process
of the Yolov7 and Yolov7x models with 100 and 200 epochs. Yolov7x achieves the highest
precision of 84.7%, recall of 79.9%, mAP of 86.1%, the training time needed of 8.616 h, and
size of 142.1 MB when training with 200 epochs.

Table 1. Training performance of Yolov7 and Yolov7x.

Model Epoch Class Images Labels P R mAP@0.5 Training Time (hours) Size (MB)

Yolov7x 100 All 1205 2487 0.536 0.446 0.465 4.522 142.1
Yolov7x 200 All 1205 2487 0.847 0.799 0.861 8.616 142.1
Yolov7 100 All 1205 2487 0.591 0.509 0.539 2.599 74.8
Yolov7 200 All 1205 2487 0.774 0.663 0.742 5.313 74.8
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Further, Yolov7 exhibits a precision value of 77.4%, recall of 66.3%, mAP of 74.2%, the
training time of 5.313 h, and size of 74.8 MB while training with 200 epochs. Based on the
experiment result, the 200-epoch model achieves the highest performance of all models in
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the experiment and the epochs affected the training result. The bigger the epoch, the better
the performance, but the longer the processing time. Figure 5 depicts the Yolov7x training
graph with (a) 100 epochs and (b) 200 epochs.
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In addition, we have the option of acquiring the precision–recall curve, which is stored
in a persistent manner following each validation. Figure 6 shows Yolov7x’s accuracy and
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recall for both 100 and 200 epochs. These are the measurements we use to measure how
well our Oxford Hand Dataset works in simulations using the Yolov7 and Yolov7x models.
The measures include the F1 score, precision, recall, and accuracy. Among them, precision
and recall are defined in Equations (7) and (8) [37], and then accuracy and F1 are defined in
Equations (9) and (10) [38].
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Ultralytics has used the binary cross-entropy with the logits loss function that is offered
in PyTorch for the purpose of calculating the amount of loss that has occurred in terms of
both the class probability and the object score [39]. The true positive (TP) is the number
of “yes”s in the real situation where the model evaluation is also a “yes”, and the true
negative (TN) is the number of “no”s in the real situation where the model evaluation is
also a “no”. The terms are abbreviated as “TP” and “TN”, respectively. A false positive (FP)
occurs when the observed data do not match the predicted values from the model, while a
false negative (FN) occurs when the observed data do match the predicted values from the
model [40].

Precision (P) =
TP

TP + FP
(7)

Recall (R) =
TP

TP + FN
(8)

Accuracy (Acc) =
TP + TN

TP + FN + FP + FN
(9)

F1 = (2 × Precision × Recall)/(Precision + Recall) (10)

The integral over the precision p(0) is the average mean average precision (mAP) and
IoU shown in Equation (11) and Equation (12), respectively:

mAP =
∫ 1

0
p(0)do (11)
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where p(0) denotes the level of accuracy achieved by the object detection. IoU determines
the percentage of overlap between the bounding box of the prediction (pred) and the
ground-truth value (gt) [41].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(12)

Furthermore, FLOPS can be recorded in different measures of precision. In our
experiment, we implement the GigaFLOPS/GFLOPS: 109 FLOPS, and this could be seen in
Equation (13).

FLOPS = cores× cycles
second

× FLOPS
cycle

(13)

Moreover, Equation (14) [42] shows the calculation of the Yolo loss functions.

Yolo Loss Function = λcoord ∑s2

i=0 ∑B
j=0
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where S is the total number of grid cells in the image, B is the number of bounding boxes 
that are projected to exist within each grid cell, and c is the class that is predicted to exist 
between each grid cell. Moreover, 𝑝௜(c)  denotes the confidence probability score. For any 
box j of cell i, 𝑥௜௝ and 𝑦௜௝ represent the co-ordinates of the center of the anchor box, hij 
denotes the height, 𝑤௜௝ represents the width of the box, and 𝐶௜௝ denotes the confidence 
score. Finally, λcoord and λnoobj are the weights to decide the significance of localization. 
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where S is the total number of grid cells in the image, B is the number of bounding boxes 
that are projected to exist within each grid cell, and c is the class that is predicted to exist 
between each grid cell. Moreover, 𝑝௜(c)  denotes the confidence probability score. For any 
box j of cell i, 𝑥௜௝ and 𝑦௜௝ represent the co-ordinates of the center of the anchor box, hij 
denotes the height, 𝑤௜௝ represents the width of the box, and 𝐶௜௝ denotes the confidence 
score. Finally, λcoord and λnoobj are the weights to decide the significance of localization. 
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where S is the total number of grid cells in the image, B is the number of bounding boxes 
that are projected to exist within each grid cell, and c is the class that is predicted to exist 
between each grid cell. Moreover, 𝑝௜(c)  denotes the confidence probability score. For any 
box j of cell i, 𝑥௜௝ and 𝑦௜௝ represent the co-ordinates of the center of the anchor box, hij 
denotes the height, 𝑤௜௝ represents the width of the box, and 𝐶௜௝ denotes the confidence 
score. Finally, λcoord and λnoobj are the weights to decide the significance of localization. 
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where S is the total number of grid cells in the image, B is the number of bounding boxes 
that are projected to exist within each grid cell, and c is the class that is predicted to exist 
between each grid cell. Moreover, 𝑝௜(c)  denotes the confidence probability score. For any 
box j of cell i, 𝑥௜௝ and 𝑦௜௝ represent the co-ordinates of the center of the anchor box, hij 
denotes the height, 𝑤௜௝ represents the width of the box, and 𝐶௜௝ denotes the confidence 
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where S is the total number of grid cells in the image, B is the number of bounding boxes 
that are projected to exist within each grid cell, and c is the class that is predicted to exist 
between each grid cell. Moreover, 𝑝௜(c)  denotes the confidence probability score. For any 
box j of cell i, 𝑥௜௝ and 𝑦௜௝ represent the co-ordinates of the center of the anchor box, hij 
denotes the height, 𝑤௜௝ represents the width of the box, and 𝐶௜௝ denotes the confidence 
score. Finally, λcoord and λnoobj are the weights to decide the significance of localization. 

obj
i ∑

cεclasses
(pi(c)− p̂i(c))2

(14)

where S is the total number of grid cells in the image, B is the number of bounding boxes
that are projected to exist within each grid cell, and c is the class that is predicted to exist
between each grid cell. Moreover, pi(c) denotes the confidence probability score. For
any box j of cell i, xij and yij represent the co-ordinates of the center of the anchor box,
hij denotes the height, wij represents the width of the box, and Cij denotes the confidence
score. Finally, λcoord and λnoobj are the weights to decide the significance of localization.

4. Discussion

As shown in Table 2, we tested Yolov7 and Yolov7x with 100 and 200 epochs and
found that both performed equally well. Our model is ready to move on to the inference
phase after producing good results during training. The final forecast is an ensemble of
all these enriched versions of the images. Test-time augmentations can be applied to the
predictions after inference to further increase their accuracy (TTA). If we want to keep our
frames-per-second (FPS) rate high, we will have to ditch the TTA because it produces an
inference that is two to three times longer.

Table 2. Testing performance of Yolov7 and Yolov7x with Oxford Hand Dataset.

Model Epoch Class Images Labels P R mAP@0.5

Yolov7x 100 All 1205 2487 0.532 0.46 0.459
Yolov7x 200 All 1205 2487 0.844 0.8 0.863
Yolov7 100 All 1205 2487 0.597 0.521 0.55
Yolov7 200 All 1205 2487 0.732 0.672 0.736

We used sample sets of images from each category to evaluate Yolov7 and Yolov7x.
According to the findings of our experiment, Yolov7 and Yolov7x obtain the best perfor-
mance when they are trained with a total of 200 epochs. Yolov7x exhibits 84.4% precision,
80% recall, and 86.3% mAP, followed by Yolov7 with the precision value of 73.2%, recall
of 67.2%, and mAP of 73.6%. A collection of parameters called hyperparameters are de-
termined before formal training begins in deep learning, which is still the case, even if
the validation loss grew proportionally larger as the model’s complexity increased, even



Big Data Cogn. Comput. 2023, 7, 53 12 of 16

though the model’s ability to spot outliers improved only somewhat. Two indicators of
model complexity are the hefty size of its weight and the quantity of its parameters. These
indices rise as the model complexity rises, and as a result, more memory (RAM) is needed
by the GPU to hold the model while it is being trained.

Figure 7 shows the recognition result of the Oxford Hand Dataset with Yolov7x. The
Yolov7x can detect all hands in Figure 7 very well with various accuracies such as 85%,
77%, 32%, 54%, 91%, 93%, 92%, and 77%.
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An overview of the Yolov7 models with the Oxford Hand Dataset is shown in
Table 3. Yolov7x contains 14.1 inference, 1.2 NMS, total (inference + NMS) 15.30, 65.359 FPS,
326 layers, 70,782,444 parameters, and 188 GFLOPS while training with 200 epochs. On
the other hand, Yolov7 contains of 314 layers, 36,481,772 parameters, 6,194,944 gradients,
and 103.2 GFLOPS. Yolov7 is the foundational model, and it is designed to be as efficient as
possible for general GPU processing.
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Table 3. An overview of Yolov7 models with Oxford Hand Dataset.

Model Epoch Inference NMS Total FPS Layers Parameters Gradient GFLOPS

Yolov7x 100 8.8 1.3 10.10 99.010 362 70,782,444 0 188
Yolov7x 200 14.1 1.2 15.30 65.359 362 70,782,444 0 188
Yolov7 100 8.9 1.2 10.10 99.010 314 36,481,772 6,194,944 103.2
Yolov7 200 8.8 1.3 10.10 99.010 314 36,481,772 6,194,944 103.2

The advantages of Yolov7 are numerous, and some of them are listed below: First,
the improved network architecture in Yolov7 allows for a more efficient label assignment
and model training, as well as an improved accuracy in object identification and a more
robust loss function. Second, Yolov7 is faster than other object detectors that are state-
of-the-art, and it is almost 120 times faster than Yolov5. Next, it demonstrates superior
average precision on the COCO dataset compared to that of other object detectors. The
design and loss function have been optimized. Instance segmentation, categorization,
object identification, and posture estimation are all supported by the Yolov7 repository.
Finally, we offer several distinct variations of the Yolov7 model to cater to customers with
varying needs in terms of speed and accuracy. Table 4 provides an explanation of the
comparison of the earlier study.

Table 4. Previous research comparison on the Oxford Hand Dataset.

Author mAP (%) Method

Mittal et al. [23] 48.2 Two-stage hypothesize-and-classify framework
Deng et al. [43] 57.7 Joint model

Le et al. [44] 75.1 Multiple-scale region-based fully convolutional networks (MS RFCN)
Li Yang et al. [45] 83.2 CNN, MobileNet

Our method 86.3 Yolov7x

The Yolov7x technique that we have proposed performs better than previous models
in terms of mAP, with an accuracy of 86.3% when using the Oxford Hand Dataset. In a
recent research study on hand detections, we were able to improve upon the study’s overall
performance. Le et al. [44] proposed the multiple-scale region-based fully convolutional
networks (MS RFCN) which exhibit only 75.1% mAP. Another researcher [45] implements
a CNN and MobileNet and achieves 83.2% mAP.

5. Conclusions

The goal of this research manuscript is to provide a thorough overview of CNN-based
object identification algorithms. More specifically, the Yolov7 and Yolov7x algorithm with
100 and 200 epochs will serve as the key foci of examination in this study. Throughout our
exploratory studies, we test and study a wide range of modern object detectors. Among
the detectors we investigate are, for example, those that are designed to identify the Oxford
Hand Dataset.

After putting all of the information from our investigation together, we have come
to the following summary conclusion: First, while training with 200 epochs, Yolov7x has
14.1 inference, 1.2 NMS, a total of 15.30 (inference plus NMS), 65.359 FPS, 326 layers,
70,782,444 parameters, and 188 GFLOPS. On the other hand, Yolov7 has a total of
103.2 GFLOPS, 314 layers, 36,481,772 parameters, and 6,194,944 gradients. Next, according
to the findings of the experiment, the model with 200 iterations had the best performance
of all the models tested, and the number of iterations influenced the training result. The
larger the epoch, the greater the performance; nevertheless, this will increase the amount of
time it takes to process. We plan to combine hand detection with federated learning in our
future research. Federated learning is just a type of machine learning that is not centralized.
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