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Abstract: Because of technological advancements and their use in the medical area, many new
methods and strategies have been developed to address complex real-life challenges. Breast cancer,
a particular kind of tumor that arises in breast cells, is one of the most prevalent types of cancer in
women and is. Early breast cancer detection and classification are crucial. Early detection considerably
increases the likelihood of survival, which motivates us to contribute to different detection techniques
from a technical standpoint. Additionally, manual detection requires a lot of time and effort and
carries the risk of pathologist error and inaccurate classification. To address these problems, in this
study, a hybrid deep learning model that enables decision making based on data from multiple
data sources is proposed and used with two different classifiers. By incorporating multi-omics
data (clinical data, gene expression data, and copy number alteration data) from the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, the accuracy of patient
survival predictions is expected to be improved relative to prediction utilizing only one modality
of data. A convolutional neural network (CNN) architecture is used for feature extraction. LSTM
and GRU are used as classifiers. The accuracy achieved by LSTM is 97.0%, and that achieved by
GRU is 97.5, while using decision fusion (LSTM and GRU) achieves the best accuracy of 98.0%. The
prediction performance assessed using various performance indicators demonstrates that our model
outperforms currently used methodologies.

Keywords: breast cancer; multimodal data; deep learning; LSTM; GRU; decision-level fusion;
voting classifier

1. Introduction

The medical field faces a fundamental problem in offering reliable and easily accessible
diagnoses [1]. Because some physicians lack the necessary experience, diagnostic mistakes
can happen, such as a patient’s diagnosis being completely missed, improperly delayed,
or incorrect. As a result, researchers have attempted to build computer-aided methods
to assist physicians in making decisions. Among the different cancers that affect women,
breast cancer has a higher incidence rate than lung cancer [2]. Medical decision-making
systems are used to diagnose patients using data from laboratory examinations in the form
of text, numbers, and images. The greatest threat to women’s health is breast cancer, the
most prevalent type of cancer among women in the world [3]. Accurate diagnostic results
are critical in this context for precision medicine. Accurate survival prediction is critical for
patients with breast cancer because it allows physicians to make informed decisions and
further direct appropriate therapies [4].

Due to the implications of gene modification, researchers are now interested in copy
number variation, gene expression, and clinical information when studying breast cancer.
Even medical specialists with decades of expertise have trouble predicting and treating
breast cancer because it takes a lot of cognitive effort for a human to understand the
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pertinent information from various sources [5]. Two categories of cancer patient life
expectancies are long-term survival (survival of over five years) and short-term survival
(fewer than five years of survival). Once sufferers are anticipated to survive for a short term,
clinicians can utilize predictive models to help them suggest targeted cancer treatments,
sparing them from needless adjuvant therapy and the pain brought on by its harmful side
effects [6]. Combining clinical and genetic data may improve prognosis and diagnosis
prediction models.

Machine learning and deep learning are frequently employed in the prediction of
breast cancer. However, the majority of researchers use just one deep learning model, for
example, CNN, RNN, LSTM, or GRU. As a result, it was determined that the performance
of these models was inadequate. Hybrid DL models can be used to effectively enhance
classification performance [7–11]. Deep learning and hybrid deep learning algorithms have
made significant progress in recent years in a variety of areas, including computer vision
and natural language processing. Curating appropriate training datasets and selecting
an appropriate evaluation measure are the two most important phases in developing an
effective deep learning approach [12].

The accuracy of breast cancer classification using only one modality still fails to meet
therapeutic needs. Because natural factors are so complicated, it is difficult for a single
modality to provide complete knowledge for analysis. Therefore, multimodal data provide
more advantages for complex analyses [13]. Multimodal data fusion is a core method of
multimodal data mining that attempts to combine data from various distributions, sources,
and types into a global space that can uniformly represent both intermodality and cross
modality [14]. Using multimodal medical data fusion algorithms has led to improvements
in clinical accuracy. There are three different types of fusion techniques: data-level, feature-
level, and decision-level fusion [15]. In order to improve survival classification accuracy,
we propose a hybrid deep learning model based on multimodal data to predict the survival
of breast cancer patients in order to assist algorithms in responding to changes. In this
research, we investigate a model that predicts the survival of patients with breast cancer by
integrating clinical information and genetic traits. The main contributions of this paper are
summarized as follows:

• In this study, we present a novel hybrid DL (CNN-LSTM+ CNN-GRU) model that
automatically extracts features from the METABRIC dataset and classifies patients as
long-term survivors and short-term survivors to minimize pathologist errors;

• It is suggested that the hybrid DL model (CNN-LSTM + CNN-GRU) be used to
effectively classify breast cancer survival prediction in medical research;

• An ensemble model is presented that provides highly accurate breast cancer prediction.
The final prediction is made via a voting mechanism;

• The suggested CNN-LSTM, CNN-GRU, and hard voting (LSTM-GRU) models were
evaluated, and their major performance measures were compared to current predic-
tion models using the same dataset (METABRIC). In comparison to other models, we
found that the suggested hybrid deep learning model achieves outstanding classifica-
tion results;

The remainder of this study is organized as follows: In Section 2, we briefly present
some related work that motivated our research. In Section 3, we describe our proposed
method; in Section 4, we evaluate the results; in Section 5, experimental results are pre-
sented; in Section 6, we present a discussion; and finally, we conclude this paper by
mentioning our intentions for our future work.

2. Related Work

In this section, we briefly review and discuss the state-of-the-art algorithms for breast
cancer prediction and related fields. Pathologists can benefit from deep learning algo-
rithms, as they can improve diagnostic accuracy while reducing computing time. Several
algorithms have been utilized for machine learning and deep learning.
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In recent decades, several approaches have been adopted for computer-aided diag-
nostics using only source data for breast cancer prediction, such as pathological images.
EMR. R. Sanyal et al. [16] proposed a novel attention method for breast histology image
classification. CNN was used for feature extraction, and BLSTM was used as an encoder
network. The MLP decoder predicts the image class, achieving an accuracy of 85.50% for
patch classification and 96.25% for image classification; this illustrates the effectiveness of
the suggested attention technique. Owing to a lack of training data and because of using
single-modality datasets, classification accuracy is still limited, D. M. Vo et al. [17] used
deep learning models with convolutional layers for breast cancer classification. They used
an ensemble of DCNNs for feature extraction and gradient-boosting trees for classification.
The combination of DCNNs and a gradient-boosting tree classifier produced better classifi-
cation performance, with an accuracy of 96.4% for four classes and 99.5% for two classes.
We need to resolve the issues of limited training samples and imbalanced data.

Some authors have used multimodal data fusion. Although the use of deep learning
has substantially enhanced the performance of breast cancer classification, the classifica-
tion accuracy obtained using only single-source data still falls short of therapeutic needs.
Consequently, a combination of features from multimodal data can result in more effective
and improved outcomes. Arya, Nikhilanand, et al. [6]. Proposed deep-learning-based
prediction techniques in a stacked ensemble architecture to enhance breast cancer survival
prediction using a multimodal dataset. They first selected important features using the
mRMR method; then, features were extracted from different modalities using the CNN
architecture, which were fed into the stacked layer. In step two, the RF classifier was
used for prediction. This model outperforms previous multimodality and unimodality
prediction algorithms, achieving an accuracy of 90.2% and an AUC value of 0.93. This study
required the use of a large dataset and multimodality datasets (image modality and miRNA
expression values). In another study, the same authors [18] combined gated attentive DL
models with random forest classifiers to increase the accuracy of BC predictions using
multimodal data. They created the “SiGaAttCNN” architecture for feature extraction from
several modalities in which the extracted features are passed to the stacked layer. RF
classifiers with adaptive boosting were used for prediction in stage two. A comparison
of the suggested approach with other current approaches shows 5.1% greater sensitivity
values, which is a considerable improvement. The suggested model’s performance may be
improved by the addition of other modalities, which could result in a model that is more
powerful and effective.

While also using decision-level fusion, a combination of techniques can result in more
effective and improved outcomes. Yadav, Rohit, et al. [19] proposed a feature and decision
fusion method for breast cancer detection. They first used the CLAHE enhancement method
for low-contrast mammography images. Then they used a CNN for feature extraction.
ML algorithms (SVM, DT, and RF) were used as classifiers. Finally, they used a voting
classifier, which generated the final prediction. Three algorithms achieved accuracies of
92.3%, 94.3%, and 95%, respectively. The results show that RF is better than SVM and
DT for BC prediction. Using the voting classifiers (SVM, DT, and RF), accuracy improved
by 96.18%. Tewary, Suman, et al. [20] presented a computerized HER2 quantification
model using transfer learning and statistical voting. They used five pretrained architectures
for classification: VGG16, VGG19, ResNet50, MobileNetV2, and NASNetMobile. The
transfer learning models demonstrated appreciable accuracy, with VGG19 displaying the
best accuracy of 93% for the test images, which increased to 98% for image-based scoring
employing a statistical voting system. The results demonstrate the strength of the proposed
quantification process for creating automated HER2.

Several studies have been published in the literature in which attempts were made
to use hybrid deep learning models to improve prediction accuracy. Yan, Rui, et al. [21]
developed a new approach combining a hybrid convolutional and recurrent deep neural
network for the classification of breast cancer pathology images. This method combines
the advantages of CNN and RNN networks. They used a CNN to extract features and an
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RNN to combine patch features for final image classification. The experimental results
demonstrate that, with an average accuracy of 91.3% for the four-class classification test,
this approach surpasses the state-of-the-art method. A sufficiently broad and diverse
dataset is essential to increase classification accuracy. Wang, X. et al. [22] proposed a hybrid
deep learning model (CNN-GRU) for the automatic detection of BC-IDC (+). The proposed
model automatically implements several CNN layers and GRU to predict breast IDC (+)
cancer. The approach produced an average classification of ACC of 86.21%, a PR of 8.590%,
an SN of 85.71%, an F1 of (88%), and an AUC of 0.89. A comparison of the proposed
model’s output with those of CNN-BiLSTM and other existing ML/DL models showed
that CNN-GRU has 4–5% higher accuracy and a less time-intensive processing time.

According to previous studies, the CNN methodology has proven to be the most
effective feature extraction technique, and the accuracy of the models is improved by using
multimodal data and the ensemble methodology. MLP is a method that has not been
utilized frequently in the diagnosis of breast cancer, as shown in Table 1. The use of deep
learning and hybrid deep learning algorithms based on multimodal datasets significantly
improves classification accuracy.

Table 1. Fusion-level models for breast cancer classification reported in the literature.

Fusion-Level Type Algorithm Dataset Advantages Disadvantages

Data-Level Fusion [23]

� Data
augmentation

� Convolutional
network
(DenseNet)

Mini-DDSM BUSI
(mammography images
and ultrasound images)

• Earlier fusion and
later fusion

• The fusion of two image
modalities
(mammography and
ultrasound)

• A limited number of medical
images is available, requiring
more preprocessing

Data-Level Fusion [24]

� CNN architecture
(VGG, ResNet,
and DenseNet)

� Ensemble method

SNUH and BUSI datasets
(ultrasound images)

• Uses a method for image
fusion and various
representations of the
image content

• Uses an ensemble of
various CNN
architectures

• The ROI region and tumor
contour are traditionally
cropped by expert-defined
criteria in the B-mode US
image, resulting effects of
human interventions

Feature-Level Fusion [6]

� CNN for feature
extraction

� Random forest
stack-based
ensemble model
for classification

METABRIC
(clinical, gene expression,

and CNA data)

• Uses a
multimodal dataset

• Uses a stacked ensemble
• Manual omission to

determine the
scoring-level fusing
coefficients

• Small, imbalanced dataset
• Some data modalities are not

available, such as image
modality and miRNA
expression values

Feature-Level Fusion [18]

� SiGaAtCNN’ for
feature extraction

� Random forest
stack-based
ensemble model
for classification

METABRIC
(clinical, gene expression,

and CNA data)

• A new CNN architecture
• Improved classification

results
• Includes the idea of

sigmoid-gated attention
and creates more
informative features for
classifications

• Small, imbalanced dataset
• Some data modalities are not

available, such as image
modality and miRNA
expression values

Decision-Level Fusion [20]

� Transfer learning
� VGG16, VGG19,

ResNet50,
MobileNetV2, and
NASNetMobile
for classification

� Statistical voting

Warwick University
dataset

• Using the suggested
method of decision-level
fusion, statistical voting
increased the accuracy for
the VGG19 pretrained
model from 93 to 98%

• The is acquired from hospital
records, and according to
standard procedure, at least
two specialists score the
records. The results may be
improved if the scores could
be made available to different
pathologists and the regions
were marked according to all
photos in the dataset rather
than just an overall score

Decision-Level Fusion [19]

� CLAHE approach
� CNN model for

feature extraction
� RF, SVM, and

DT classifiers
� Voting classifier

MIAS
(mammogram images)

• Uses CLAHE and
RMSHE for contrast
enhancement

• Uses decision fusion

• Multiple imaging modalities
are not used, such as
ultrasound, X-ray, and
magnetic images
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3. Proposed Method
3.1. Feature Selection

Dimensionality reduction is an important prediction and classification procedure.
It helps in the improvement of classification performance by decreasing the number of
attributes and removing unnecessary and unrelated attributes [25]. The METABRIC dataset
used in our proposed contains approximately 24,000 genes in the gene expression profile
data, approximately 26,000 genes in the CNA profile data, and 27 features in the clinical
profile data. Deep learning techniques do not perform effectively due to the dataset’s high
dimensionality and limited data. To reduce the dimensionality of our dataset, Sun et al.
employed the well-known mRMR feature selection technique. The performance of the
features was then assessed using the area under the curve (AUC) value. Sun et al. searched
for the best N features between 100 and 500 using a step size of 100. The final features
included in our MDNNMD model are 200 genes from CNA profile data, 400 genes from
gene expression profile data, and 25 clinical features from clinical profile data [18]. A full
description of all features of the multidimensional data used in this research is provided in
Table 2.

Table 2. Dataset properties.

Data Type Complete Features Chosen Features

Clinical information 27 25

Genetic expression
information 24,368 400

Copy number 26,298 200

3.2. Feature Extraction and Feature Fusion

In this work, a convolutional neural network (CNN) is used for feature extraction.
Convolutional neural networks (CNNs) achieve impressive performance in cancer detection
and diagnosis [26]. A CNN receives inputs from various data modalities, and each input
dataset is passed through convolution layers containing a specific number of kernels or
filters, generating a feature map as an output of the convolution process. This feature map
is created by summing the corresponding values from the input matrix and the filter matrix
after performing a straightforward element-by-element multiplication. The Glorot normal
initializer [27] is used to initialize the filter matrix values, choosing random numbers with

a mean equal to zero and a standard deviation in the range of [−
√

2
ni+no ,

√
2

ni+no ]. The
number of input and output units is represented here by ni and no, respectively, for the
chosen layer. The biases used by the convolution layer are initialized with a constant value
of 0.1. To conduct convolution across the full input matrix in this layer, we utilized a
stride value of 2 to shift the filter with the specific number. The flexibility to use padding
to regulate the feature map’s size is another characteristic of the convolution layer. This
CNN maintains the size of the feature map at the same level as the input data shape using
padding. Furthermore, the flattening layer flattens the output of the convolution layer
before being passed through a fully connected dense layer with 150 hidden units. After the
dense layer, an output layer with a sigmoid activation function generates the predicted class
of breast cancer prognosis. The activation functions for the dense layer and convolution
layer are rectified linear (ReLU) and hyperbolic tangent (TANH), respectively.

In the CNN architecture, we employed binary cross entropy as a loss function, since
predicting the prognosis of breast cancer is a binary classification task. To prevent the model
from overfitting, L2 regularization is used with the loss function. The L2 regularization
technique is a popular regularization method in deep learning [28]. In this method, 10-fold
cross validation is used to solve the variance issue posed by the small size of the dataset.
Additionally, the training set is split into a training set (80%) and a validation set (20%).
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The CNN model contains a single input layer, a single convolution layer, a single
flattened layer, a single fully connected dense layer, and a single output layer. Because a
complex CNN based on a small dataset can overfit, the CNN design is not overly complex.
Our CNN employs an additional dropout layer of 50% dropout for gene expression and
CNA profiles [29]. The model’s AUC value was assessed at several mini batch sizes, ranging
from 8 to 128, and an optimal size of 8 was chosen because it produced the highest AUC
value. Our model’s learning rate is 10−3. Table 3 provides information on the detailed
parameter configurations of CNN.

Table 3. Model configuration for the CNN with detailed parameters.

Number of convolutional layers 1

Filter size 15

Number of filters 4

Stride size 2

Padding in the convolutional layer Same

Activation function ReLU

Number of hidden layers 1

Number of hidden neurons 150

Mini batch size 8

Training epochs 20

Activation function TANH

Loss function binary cross entropy + L2 regularization

3.3. Deep Learning Classification Models and Decision-Level Fusion

The major goal of the proposed method is to use deep learning models to predict
whether a patient has breast cancer disease or not. For these predictions, the proposed
method uses a framework that is built on GRU and LSTM. Recent research has focused on
how to create an intelligent system with LSTM and GRU that collects a patient’s medical
information and calculates the likelihood of contracting tumors using deep-learning-based
network models. First, the stacked features are used to train individual modality classifiers
(LSTM and GRU) [30,31]. Then, using a voting classifier, these two input classifiers are
combined to make a decision. Long short-term memory (LSTM) and gated recurrent
units (GRU) resolve the gradient-vanishing and exploding problems. The neural network
becomes unstable and unable to learn from training data if the gradients begin to explode.
By using LSTM and GRU together, networks can take advantage of the strengths of both
units, i.e., the ability to learn long-term associations for the LSTM and the ability to learn
from short-term patterns for the GRU. LSTM and GRU exhibited good outcomes for
the majority of performance indicators, making them the most effective algorithms [32].
Figure 1 demonstrates the steps of the proposed model.

Long short-term memory (LSTM) is a subclass of recurrent neural networks (RNNs).
All inputs and outputs in a typical neural network are independent of one another. RNNs
have a kind of memory that they may utilize to access previous data, but this does not
imply that they store data over a long period; rather, they store data from just a few prior
steps. The short-term memory issue with RNNs was addressed with the development
of the LSTM network. The main advantage of LSTM over RNNs is its ability to achieve
long-term dependency learning [33].

Gated Recurrent Unit (GRU): The second deep learning model used for the proposed
method is the gated recurrent unit (GRU). To solve the vanishing gradient problem, re-
current neural networks typically employ GRU models. With three primary gates and an
internal cell state, GRU is more effective than LSTM [34]. Due to parameter reduction, GRU
outperforms LSTM models in some contexts and has a higher convergence rate than LSTM.
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GRU takes less computational time than LSTM. The data are secretly maintained within
the GRU for security purposes. The structure of the GRU is simpler than that of LSTM,
which reduces matrix multiplication, and GRU can save a lot of time without sacrificing
performance. GRUs have been shown to perform better on smaller datasets [35].
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Voting classifier: The accuracy and efficiency of classification results have increased
because of the widespread use of ensemble models. Performance can improve over time
when classifiers are merged compared to utilizing individual models. To achieve superior
results, this method predicts breast cancer using an ensemble learning approach [36]. We
suggest using LSTM and GRU deep learning models in an ensemble voting classifier for
detection of breast cancer. A customized CNN is used to extract standout features from
the multimodal dataset instead of manually creating them. These collected features are
concatenated and used as training data for LSTM and GRU.

The final prediction is made through voting on the results of these models. The
suggested approach uses a hard voting classifier with voting criteria and integrates LSTM
and GRU. This ensemble model, which is trained by the separate models, is in charge of
predicting the output class label by merging the majority of projected class votes acquired
for each class label. This ensemble method is typically appropriate when there are two
or more classifier models that predict in a nearly identical manner. Figure 2 illustrate
Architecture of ensemble hard voting classifier. In majority voting, the class label (y) is
predicted by majority (plurality) voting among the classifiers (C). In this instance, the class
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with the most votes is chosen. Here, we use a majority vote from each classifier to predict
the class label (y).

y = mode {C1(X), C2(X), . . . , Cn(X)}
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Each classifier has a probability ranging from 0 to 1. If two classifiers have a prob-
ability < 0.5, the voting classifier classifies the label as “class 0”. If two classifiers have
probabilities > 0.5, the voting classifier assign the class label “class 1”. If classifier 1 has a
probability > 0.5 and the prediction class label is 1 and if classifier 2 has a probability < 0.5
and the prediction class label is 0, the voting classifier classifies the label as “class 1” based
on the majority class label because classifier 1 has more confidence than classifier 2.

The model that is suggested in this paper is based on GRU-CNN and LSTM-CNN,
with four dense layers, as well as an alternative GRU and LSTM layer order. LSTM and
GRU layers follow dropout layers. Dropout layers are used to prevent overfitting in this
model. The proposed model has four LSTM and GRU layers with 128, 64, 32, and 16 units,
respectively. A layer with a 20% dropout rate follows each of these layers. Sigmoid and
ReLU activation functions are employed in the layers. Finally, the Adam optimizer is used
to compile the layers over 40 epochs, with a batch size of 128. The LSTM network comprises
189,433 parameters, and the GRU network comprises a total of 157,273 parameters, which
are then used to train the models to make predictions. A comprehensive description of the
LSTM and GRU models is provided in Tables 4 and 5, respectively.

Table 4. Details of the LSTM model.

Layers Number of Units Number of Received Parameters Resultant Shape

LSTM 128 66,560 (None, 452, 128)

Dropout 0.2 0 (None, 452, 128)

LSTM 64 49,408 (None, 452, 64)

Dropout 0.2 0 (None, 452, 64)

LSTM 32 12,416 (None, 452, 32)

Dropout 0.2 0 (None, 452, 32)

LSTM 16 3136 (None, 452, 16)

Dropout 0.2 0 (None, 452, 16)

Flatten 0 0 (None, 7232)

Dense 8 57,864 (None, 8)

Dense 4 36 (None, 4)

Dense 2 10 (None, 2)

Dense 1 3 (None, 1)
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Table 5. Details of the GRU model.

Layers Number of Units Number of Received Parameters Resultant Shape

GRU 128 50,304 (None, 452, 128)

Dropout 0.2 0 (None, 452, 128)

GRU 64 37,248 (None, 452, 64)

Dropout 0.2 0 (None, 452, 64)

GRU 32 9408 (None, 452, 32)

Dropout 0.2 0 (None, 452, 32)

GRU 16 2400 (None, 452, 16)

Dropout 0.2 0 (None, 452, 16)

Flatten 0 0 (None, 7232)

Dense 8 57,864 (None, 8)

Dense 4 36 (None, 4)

Dense 2 10 (None, 2)

Dense 1 3 (None, 1)

4. Results Evaluation

In this section, we first describe the dataset used in this study. Next, the various
results of our experiments are reported for feature extraction and classification. Finally,
a comparison is made between our model’s outcomes and those previously reported in
the literature.

4.1. Dataset Description

To directly evaluate the proposed model we accessed on 1 August 2022 the prepro-
cessed version of the METABRIC dataset, which is available on GitHub (https://github.com/
USTC-HIlab/MDNNMD). Data from 1980 valid breast cancer patients in the METABRIC
trial were used to create the dataset [37]. This covers breast cancer multimodal data such
clinical data profiles, gene expression profiles, and CNA profiles. The patients were divided
into two groups: long-term survivors (those who survived for more than five years), com-
prising 1489 patients, and short-term survivors (those who survived for less than five years),
comprising 491 patients. The average patient survival was 125.1 months, and the average
age at diagnosis was 61 years. general overview of our dataset is included in Table 6.

Table 6. Details about the dataset.

Survival limit (years) 5

# of patients 1980

Long-term survivors 1489

Short-term survivors 491

Average age at diagnosis 61

Average survival (months) 125.1

For this binary classification model, the long-term survivors are assigned the label 0,
and the short-term survivors were assigned the label 1. Table 7 shows the description of
METABRIC dataset A Missing values for gene expression profile data and CNA profile
data were estimated using the weighted nearest-neighbor technique [38]. The min–max
normalization method was used to normalize the features of clinical data into the range
[0,1]. Regarding CNA features, we used the five discrete values of the original data (−2,
−1, 0, 1, and 2). Table 8 shows the description of clinical dataset

https://github.com/USTC-HIlab/MDNNMD
https://github.com/USTC-HIlab/MDNNMD
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Table 7. METABRIC dataset description.

Dataset Data Type Dataset Description

Clinical Numerical/Categorical

Clinical features were classified into four categories:

1. Personal: age at diagnosis
2. Clincalpathology: tumor size, tumor stage,

lymph_nodes_examined_positive,
neoplasm_histologic_grade, histological type,
er_status, HER2_SNP6_state

3. Treatment: type of treatment the patient received
4. Survival: status and time

CNA Categorical

Copy number aberration features describe each region
within a chromosome (number of markers and type of
mutation in the somatic tissues):

- Location information: chrom, loc.start, loc.end,
segment, call

- Number of genes within the segment: num.mark
- Type of mutation: call2; NEUT (neutral), HOMD

(homozygous deletion), HETD (hemizygous
deletion), CNV (copy number variations), GAIN
(gain), AMP (amplification)

Gene Expression Numerical 48,803 EXPRESSED GENE ILLUMINA SEQUENCED
HT 12 array v3

Table 8. CLNICAL dataset description.

S. No. Attribute Value Examples

1 Age at diagnosis 21 to 96 years

2 Histologic grade 1, 2, 3

3 Tumor size 1 to 182 mm

4 Tumor stage

5 Positive examined lymph
nodes 0 to 45

6 Inferred menopausal state Pre, Post

7 ER status Positive, negative

8 PR status Positive, negative

9 Overall survival (months) 0 to 355

10 Histological type Ductal/NST, lobular

11 HER2_SNP6_state NETURAL, LOSS, GAIN

12 Treatment Chemotherapy

13 Patients vital status Overall survival status (0: yes, 1: no)

4.2. Evaluation Criteria

To evaluate performance, we used an ROC curve to display the difference between
false-positive and true-positive rates. Using the ROC curve, we computed the AUC
value as a metric of classification results. Standard measures were used to evaluate the
models: accuracy, sensitivity, precision, and Matthew’s correlation coefficient. TP indicates
true positive, FP indicates false positive, TN indicates true negative, and FN indicates false
negative in a confusion matrix. The following equations define the evaluation metrics:

accuracy =
TP + TN

TP + FP + TN + FN
(1)
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Senstivity =
TP

TP + FN
(2)

Precesion =
TP

TP + FP
(3)

Mcc =
TP ∗ TN − FP ∗ FN√

(TP + FN) ∗ (TP + FP) ∗ (TN + FN) ∗ (TN + FN)
(4)

5. Experimental Results

This section covers the results of applying deep learning models (LSTM and GRU)
to the stacked features extracted from each trained CNN. Additionally, we discuss the
performance of CNN networks on each separate unimodal data category, as well as how
hard voting classifiers affect the decision. The METABRIC dataset was divided into a
training set (80%) and a validation set (20%).

5.1. Performance Metrics of Unimodal CNN

In this step, the hidden features were extracted from each separate unimodal dataset
using a CNN model: clinical modality data, CNA modality data, and gene expression
modality data. Table 9 shows the ACC and AUC of trained CNN models. These extracted
features were combined to create the “stacked features”, which were then fed into the deep
learning models for breast cancer survival prediction. Figure 3 shows ROC curves and
AUC values of CNNs trained on each data modality.

Table 9. Comparison of ACC and AUC between trained CNN models.

Model ACC AUC

CNN_CLINICAL 80.8 85

CNN_CNA 74.3 82

CNN_EXPR 80.2 89
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5.2. Performance Metrics of LSTM, GRU, and Voting Classifier with Stacked Features

The outcomes of using stacked features with deep learning are shown in Table 10.
Figure 4 shows all the classification results. Overall, GRU achieved the highest performance
(AUC = 96.0%, ACC = 97.5%, PR = 98.0%, SN = 99.2%, MCC = 93.0%). Figure 5 shows the
loss and the accuracy curve of GRU_model, while LSTM achieved the lowest performance
(AUC = 95.3%, ACC = 97.0%, PR = 98.0%, SN = 98.6%, MCC = 92.0%). Figure 6 shows the
loss and the accuracy curve of LSTM_model. Figure 7 shows the confusion matrix curve of
the LSTM and GRU models



Big Data Cogn. Comput. 2023, 7, 50 12 of 16

Table 10. The performance of CNN_GRU, CNN_LSTM, and VOTING models with stacked features.

Performance Metric (%) Classification Dataset CNN_GRU CNN_LSTM VOTING Model

AUC (%)

Binary
Classification

METABRIC
Dataset

96.0 95.3 98.2
Accuracy (%) 97.5 97.0 98.0
Precision (%) 98.0 98.0 99.0

Sensitivity (%) 99.2 98.6 99.2
MCC (%) 93.0 92.0 93.6
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5.3. Decision-Level Fusion Using Hard Voting Classifier

The voting ensemble model performs well when compared to the performance of the
individual models. The performance was improved by the combination of LSTM and GRU,
both of which performed well on their own. According to the experimental results, the
proposed voting ensemble model, LSTM + GRU, surpasses all other models and achieved
the greatest accuracy of 98.0%. Figure 8 shows the confusion matrix curve of the hard
voting model (GRU-LSTM).
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5.4. Comparison of Various Classification Techniques

We contrasted five popular methods for predicting the diagnosis of breast cancer with
deep learning models: SiGaAtCNN stacked RF, stacked RF, MDNNMD, SVM, and LR. The
AUC values for deep learning models were determined, including LSTM and GRU. The
AUC values for machine learning models were also determined, including SiGaAtCNN
STACKED RF, stacked RF, MDNNMD, SVM, and LR. When compared to other prediction
techniques, the GRU model achieved the highest AUC value. To compare deep learning
models with different prediction techniques, alternative performance measures, including
accuracy, precision, sensitivity, and MCC, were utilized. The outcomes are displayed in
Table 10. According to the comparative study shown in Table 11, deep learning models
outperformed all other methods in predicting the prognosis of breast cancer.

Table 11. Comparative study of performance measures of GRU, LSTM, and various classifica-
tion techniques.

Model AUC ACC PR SN MCC

Proposed Model 98.2 98.0 99.0 99.2 93.6

GRU 96.0 97.5 98.0 99.2 93.0

LSTM 95.3 97.0 98.0 98.6 92.0

SiGaAtCNN STACKED RF 95.0 91.2 84.1 79.8 76.2

STACKED RF 93.0 90.2 84.1 74.7 73.0

MDNNMD 84.5 82.6 74.9 45.0 48.6

SVM 81.0 80.5 70.8 36.5 40.7

LR 66.3 76.0 54.9 18.3 20.9
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6. Discussion

The fundamental concept underlying this study is a hybrid deep learning model with
ensemble learning using a multimodal dataset to enhance the performance of breast cancer
survival prediction. As shown in Table 10, the performance measures of 98.2% AUC, 98.0%
ACC, 99.0% PR, 99.2% SN, and 93.6% MCC obtained by the hard voting classifier are
better than the performance measures obtained by the individual classifiers. In addition,
it is evident from Figures 7 and 8 that hard voting achieved the highest value of correctly
classified instances and the lowest value of incorrectly classified instances compared to the
other classifiers. After building the proposed model, we analyzed the effectiveness of our
algorithms. Table 11 demonstrates that the hard voting classifier and deep learning models
GRU and LSTM achieved highest values compared to other machine learning methods.

This research has an advantage over previous studies in that it includes the use of
hybrid deep learning models on multimodal datasets. Consequently, the performance
of breast cancer survival prediction was improved. However, this research is subject to
some restrictions. The first restriction relates to the generalizability of findings because our
tests were conducted on a small dataset. As a result, if we consider big dataset tests with
different datasets, the outcome may change. The second restriction has to do with choosing
just one ensemble approach. We reported the results according to the functionality of the
hard voting method. Nevertheless, we only applied two deep learning models.

7. Conclusions and Future Work

The most prevalent disease in the world, breast cancer, significantly contributes to the
rising mortality rate among cancer patients. Breast cancer remains a concern, and additional
study is needed to improve early detection and provide accurate survival predictions.
Therefore, it is essential to create a quick and efficient method for predicting the prognosis
of breast cancer. In this study, a hybrid deep learning model that enables decision making
based on data from multiple data sources was proposed and used with two different
classifiers to predict the life expectancy of breast cancer patients. Gene expression, copy
number alterations, and clinical data are some of the multimodal inputs used in this model.
The hidden features were extracted from each separate unimodal dataset using a CNN
model. The extracted features were concatenated to form stacked features, which were
then fed into deep learning classifiers (GRU and LSTM) to predict breast cancer survival. A
method comprising feature fusion and decision fusion was utilized to improve the results.
By applying a voting classifier, the classification of cancer was improved. The LSTM model
produced an ACC of 97.0%, Prec of 98.0%, Sens of 98.6%, MCC of 92.0%, and AUC of 95.3,
while the GRU model produced an ACC of 97.5%, Prec of 98.0%, Sens of 99.2%, MCC of
93.0%, and AUC 96.0. Using the voting classifier, the proposed model produced an ACC of
98.0%, Prec of 99.0%, Sens of 99.2%, MCC of 93.6%, and AUC of 98.2, which can reduce the
pathologist’s errors and efforts during the clinical process. This model performs better than
other existing prediction techniques. A more powerful and informative model might be
created by incorporating more modalities, which would also enhance the proposed model’s
performance metrics. We may consider incorporating more modalities in the future, such
as data on miRNA expression, gene methylation, and histological images of breast cancer
tissues. More deep learning models that can perform the prognosis prediction task for
patients with all types of cancer can be added to this research, allowing it to be expanded
even further.
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