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Abstract: In this paper we investigate the effect of two preprocessing techniques, data imputation
and smoothing, in the prediction of blood glucose level in type 1 diabetes patients, using a novel deep
learning model called Transformer. We train three models: XGBoost, a one-dimensional convolutional
neural network (1D-CNN), and the Transformer model to predict future blood glucose levels for
a 30-min horizon using a 60-min time series history in the OhioT1DM dataset. We also compare
four methods of handling missing time series data during the model training: hourly mean, linear
interpolation, cubic interpolation, and spline interpolation; and two smoothing techniques: Kalman
smoothing and smoothing splines. Our experiments show that the Transformer performs better than
XGBoost and 1D-CNN when only continuous glucose monitoring (CGM) is used as a predictor, and
that it is very competitive against XGBoost when CGM and carbohydrate intake from the meal are
used to predict blood glucose level. Overall, our results are more accurate than those appearing in
the literature.

Keywords: diabetes; Transformer; 1D-CNN; XGBoosting; glucose prediction; imputation; Kalman
smoothing; smoothing splines

1. Introduction

Type 1 diabetes is a chronic disease in which the pancreas fails to produce insulin
to regulate blood glucose (BG) levels [1,2]. This disorder can lead to both hypoglycemia
(BG concentration < 70 mg/dL) and hyperglycemia (BG concentration > 180 mg/dL) and
requires patients to self-regulate carbohydrate consumption and need to take insulin supple-
ments. Furthermore, hyperglycemia increases the risk of heart disease and stroke and can
lead to medical complications such as blindness, kidney failure, and amputations. Mean-
while, hypoglycemia can cause acute symptoms such as loss of consciousness, seizures, and
even death [3]. To avoid such diabetic complications, patients continually monitor their
BG levels and adjust insulin doses accordingly. An increasing number of type 1 diabetes
patients are adopting continuous glucose monitoring (CGM) devices and insulin pump
therapy, where a wearable device releases insulin subcutaneously to mimic pancreatic re-
sponse. The insulin dose needed to regulate the BG level has to be controlled manually.
Effective prediction of BG levels is necessary to give patients time to intervene and prevent
complications. The ultimate goal is to improve the quality of life of diabetes patients.

In type 2 diabetes, the metabolic system can generate insulin, but the immune system
creates resistance to it, resulting in a similar outcome as in type 1 diabetes. Subjects with
type 2 diabetes do not always need to supply themselves with daily insulin doses. Usually,
it is enough if they have a healthy routine and diet. This type of diabetes appears over a
lifetime and can be prevented or delayed with a healthy lifestyle.

Big Data Cogn. Comput. 2023, 7, 41. https://doi.org/10.3390/bdcc7010041 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7010041
https://doi.org/10.3390/bdcc7010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-3422-7225
https://orcid.org/0000-0002-4254-2305
https://doi.org/10.3390/bdcc7010041
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7010041?type=check_update&version=1


Big Data Cogn. Comput. 2023, 7, 41 2 of 18

Blood glucose levels have a complex dynamic that depends on many different vari-
ables, such as carbohydrate intake, recent insulin injections, physical activity, stress levels,
the presence of an infection in the body, sleeping patterns, hormonal patterns, etc. (Bremer
and Gough [4]; Cryer et al. [5]). This complexity makes predicting short-term blood glucose
changes a challenging task, and developing machine learning (ML) becomes an obvious
approach to improving patient care.

Low-cost sensors continuously measuring blood glucose levels in intervals of a few
minutes, combined with machine learning solutions, enable personalized precision health
and diabetes management. In this study, we present a novel deep learning algorithm called
Transformer [6] for predicting blood glucose levels up to one half-hour into the future for
diabetic patients. The model outputs the prediction along with an estimate of its certainty,
helping users to interpret the predicted levels. Furthermore, we compare the performance
of Transformers with two other algorithms, XGBoosting [7] from the Machine Learning
ecosystem, and 1D-CNN [8], a particular version of the CNN specifically for sequential
data. Additionally, in our study, we evaluate the effect on the performance of the prediction
algorithms of two pre-processing tasks: imputation and smoothing.

The paper is organized as follows. In Section 2, we present a comprehensive summary
of previous research on blood glucose prediction. In Section 3 we describe in detail the
two data preprocessing techniques and the three prediction algorithms used in our study.
In Section 4, the results of our experiments are presented along with a discussion of them.
Finally, Section 5 summarizes the conclusions and findings of this work. Additionally,
future work regarding this study is mentioned.

2. Related Work

The dataset used in this paper is known as the OhioT1DM Dataset (see Marling
and Burnescu [9]). It contains approximately eight weeks of data for 12 subjects (7 male
and 5 female) with type 1 diabetes. The experiments were performed in two cohorts of
six subjects each.

Martinsson et al. [10] applied a long short-term memory model (LSTM) using only
CGM as a predictor to the six subjects of the first cohort from the OhioT1DM Dataset. The
average RMSE obtained for the model was 20.1 +/− 2.5. They used only 30 min of history
with a prediction horizon of 30 min, but they did not handle missing values.

Since a decade ago, people have been considering other factors, such as insulin
and meals, to predict glucose levels. Zecchin et al. [11] used data consisting of CGM
monitoring for three consecutive real-life days of 15 diabetes type 1 patients in an open-
loop setup. CGM was measured by the Dexcom Seven Plus CGM sensor (Dexcom Inc,
San Diego, CA, USA), which has a sampling period of 5 min. The patients manually
recorded information on the dose of insulin injections and the carbohydrate content of
meals. The authors concluded that meal carbohydrate information improves prediction
significantly compared to insulin information. In Zecchin et al. [12] a jump neural network
is used to predict glucose considering other factors. They used the mean absolute error
(MAE) as a metric of accuracy instead of the root mean squared error (RMSE). The authors
used data containing information from only 3 days.

Li et al. [3] proposed a deep learning algorithm for glucose prediction using a multi-
layer convolutional recurrent neural network (CRNN) architecture. Clinical data used by
the authors were obtained from a clinical study at Imperial College Healthcare NHS Trust
St. Mary’s Hospital, London (UK), consisting of multiple phases evaluating the benefits of
an advanced insulin bolus calculator for T1D subjects. The dataset in consideration was
collected from a 6-month period involving ten adult subjects with T1D. The information
included in the dataset comprises glucose, meal, insulin, and associated time stamps. In
building the dataset, the authors mainly consider CGM and self-reported data such as
insulin boluses and meals. Before that, they excluded participants whose data exhibited
significant gaps (corresponding to weeks of missing data), insufficient reports of exercise
over the 6-month period, and extensive errors in sensor readings. The model is primar-
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ily trained on CGM, carbohydrate, and insulin data. After preprocessing (filtering and
alignment), the time-aligned multi-dimensional time series data of BG, carbohydrate, and
insulin values are fed to CRNN for training. The architecture of the CRNN is composed
of three parts: three convolutional layers that extract the data features using convolution
and pooling, followed by a recurrent neural network (RNN) layer with LSTM cells and
two fully connected layers [13]. The RMSE for the prediction model in the 10-subject real
data collected during six months was 21.07 +/− 2.35.

Zhu et al. [14] applied a dilated CNN model to the first cohort from the OhioT1DM
Dataset. They used CGM, meal, and bolus as glucose level predictors. Additionally, they
applied several data preprocessing techniques. They obtained an RMSE 21.726 +/− 2.523.
Chen et al. [15] also use three predictors and a dilated RNN model. After preprocessing the
data, they obtained an average RMSE of 19.042 in the first cohort.

Midroni et al. [7] concluded that XGBoosting performs better than LSTM and Random
Forest in predicting glucose level. Only the first cohort of the OhioT1DM dataset was used.
Additionally, they conclude that many of the provided features do not improve glucose
prediction. Furthermore, at least for XGBoosting, the only feature that matters for glucose
prediction is CGM.

Rabby et al. [16] used CGM along with other factors: bolus, meal, and steps to predict
glucose level. They proposed a stacked LSTM model followed by two layers of dense CNN
after performing initially Kalman smoothing on the CGM data from the first cohort. They
achieved an average RMSE of 6.45 mg/dL for 30 min of prediction horizon.

Deng et al. [17] used time series generative networks (TimeGAN). They applied
their model using the twelve training datasets of both cohorts of the OhioT1DM and the
six testing datasets of the first cohort as the training dataset. Additionally, each of the
second cohort’s six testing datasets was considered a test set. They only used CGM as the
predictor feature. An average RMSE of 19.08 on the testing datasets was obtained. In this
study, a non-personalized blood glucose level prediction was considered. This approach is
risky as the glucose level of the patients in the OhioT1DM dataset does not seem to have
the same behavior.

Bevan and Coenen [18] applied an LSTM with a 24-h attention mechanism model using
training and test datasets as described above. Furthermore, they considered two approaches
to handling missing data: discarding any training sequences with one or more missing
datapoints and replacing missing values with zeros following standardization. They showed
that the second approach may help the system learn to be robust to missing data. An average
RMSE of 18.23 on the testing datasets was obtained.

Joedicke et al. [19] used a genetic programming model for both cohorts of the OhioT1DM
dataset under the same setup as above. They compared their model with several other models
among the ARIMA, Random Forest, and multivariate Linear Regression to predict future
values of glucose after 30 min, as a function of basal value (bv), bolus dose (bd), basis GSR
value (gsr), basis skin temperature (sk), bolus type (bt), and CGM. An average RMSE of 20.13
was obtained using the algorithm on the testing datasets.

3. Materials and Methods
3.1. Data Acquisition

The dataset used in this paper was provided by researchers from Ohio University
(see Marling and Burnescu [9]), and it is known as the OhioT1DM Dataset. It contains
approximately eight weeks of data for each of the 12 subjects (7 male and 5 female) having
type 1 diabetes. All subjects were on insulin pump therapy with continuous glucose
monitoring (CGM).

They wore Medtronic 530 G or 630 G insulin pumps and used Medtronic Enlite CGM
sensors throughout the 8-week data collection period. The sensors reported life-event
data via a custom smartphone app and provided physiological data from a fitness band.
The data from the first six weeks constitute the training set and the remaining two weeks
constitute the test set.
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The first cohort of six individuals (2 male and 4 female) wore Basis Peak fitness bands.
Data for this cohort were released in 2018. The second cohort of six individuals (5 male and
1 female) wore the Empatica Embrace. Data for this cohort are included in the 2020 release.
For each subject, there is a training dataset as well as a testing dataset. Therefore, the whole
dataset contains 24 data files, all in an xml format. Each data file contains information
about the features in a column-wise manner.

From the xml files, the values of each feature need to be extracted before the analysis.
Using a Python script, the data for each subject are extracted in several csv files, one
for each feature. The first feature is the glucose level measured by the sensor every
five minutes (CGM), along with the time when it was recorded. There are many missing
values in this feature (see Table 1). In some subjects, there are even more than one-day gaps
in the CGM’s recording. In the data files below, the CGM’s records show glucose levels
measured manually and several other features. In this study, we have considered only one
additional feature: meals. Unfortunately, some important features were not measured in the
second cohort.

Table 1. Percentage of missing values in the CGM feature for each subject. In parentheses is the
number of gap intervals exceeding six hours.

Subject
Percentage of

Missing Values in
Training Dataset

Largest Gap
in Training

Dataset

Percentage of
Missing Values in

Testing Dataset

Largest Gap
in Testing

Dataset

559 10.62 13 h 03 m (4) 12.61 09 h 01 m (2)
563 7.43 24 h 06 m (4) 4.53 09 h 52 m (1)
570 5.41 12 h 07 m (1) 4.68 03 h 15 m (0)
575 9.44 11 h 24 m (7) 4.74 04 h 19 m (0)
588 3.55 12 h 37 m (2) 3.12 04 h 01 m (0)
591 14.96 80 h 38 m (5) 3.05 03 h 51 m (0)
540 8.86 19 h 40 m (5) 5.54 09 h 38 m (1)
544 16.17 61 h 35 m (5) 13.42 28 h 54 m (1)
552 18.17 43 h 27 m (6) 40.15 117 h 59 m (2)
567 19.77 26 h 22 m (9) 16.78 16 h 02 m (2)
584 8.28 14 h 47 m (4) 11.04 16 h 56 m (1)
596 20.2 49 h 25 m (9) 8.65 10 h 44 m (1)

It is well-known that handling many missing values, say above 20 percent, can lead
to bias in the prediction task. Based on data in Table 1, subject 552 was excluded from
our study because they have a high percentage of missing values in the testing set (see
Table 1). On the other hand, subject 596 was excluded because they have a high rate
of missing values on the training set. Subject 544 was excluded because they have a
high percentage of missing values in the training and testing datasets. For the same
reasons, subject 567 was excluded from our study. Furthermore, for this last subject, the
probability distribution of its test data seems to be somehow different from the training
set. For instance, on Tuesdays there are few collected data, and the glucose levels are
deficient in the test set.

Therefore, in our work, we will use only eight subjects from the OhioT1DM dataset:
all six from the first cohort and two from the second cohort. From Table 1, subjects 588 and
570 have the lowest missing values among all the subjects of both cohorts.

3.2. Data Analysis

In this section, we explore the data by computing some statistical measures and vi-
sualizing the training sets of the selected subjects to be used in this paper. We aim to
see if significant differences exist between the subjects chosen for our study. In Table 2,
we compare the percentage of time when the subjects are in either hypoglycemic or
hyperglycemic status.
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Table 2. Time in range of diabetes patients under study.

Subject
Training Testing

Hypoglycemic Hyperglycemic Hypoglycemic Hyperglycemic

559 4.16% 39.23% 3.00% 37.11%
563 2.57% 23.29% 0.7% 38.83%
570 1.97% 54.92% 0.4% 69.63%
575 8.76% 22.28% 5.37% 31.12%
588 1.05% 35.20% 0.14% 45.39%
591 3.94% 32.00% 5.18% 27.54%
540 7.07% 20.43% 4.97% 32.52%
584 0.93% 50.36% 1.02% 36.67%

From Table 2, subject 575 is the most hypoglycemic, whereas subject 588 is the
least hypoglycemic. On the other hand, subject 570 is the most hyperglycemic, whereas
subject 540 is the least hyperglycemic.

In Figure 1, boxplots of the CGM by day of the week for subject 584′s training dataset
show a cyclic pattern during the week with a peak on two days: Wednesday and Saturday.
This pattern shows the seasonality of the CGM time series according to the day of the week.
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In Figure 3, boxplots of the CGM by hour of the day for subject 570′s training dataset
show a cyclic pattern. This implies non-stationarity of the time series. Dataset 588 has a
similar behavior, whereas datasets 584 and 591 also show some signs of non-stationarity.
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In Figure 4, boxplots of the CGM by the hour of the day for subject 540′s training
dataset do not show a cyclic pattern. This pattern indicates stationarity of the time series.
Subjects 559, 563, and 575 have similar behavior.
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3.3. Handling the Gaps

It was expected that the sensor would report the CGM data every 5 min; however, due
to several reasons, the sequential data are not equally spaced. Therefore, the first step is to
create equally spaced data, including NA values, when the data were not reported. After
that, several actions can be taken before applying any model. In the following sections, we
will describe these actions.

3.3.1. Removing Missing Values

In order to perform prediction with a time series, it is necessary to convert the time
series data into supervised data. We used a Python script to perform such a task. Besides
the equally spaced data, we consider the lookback time steps and the horizon timesteps as
inputs for the script. By default, the script removes instances with missing data.

The missing values in CGM time series are imputed using four methods: hourly mean,
linear interpolation, spline interpolation, and polynomial interpolation. Furthermore, Kalman
smoothing, which involves imputing missing values and smoothing the time series, is also
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considered. Finally, to compete with this last method, we used spline smoothing, but first we
imputed the missing values with the hourly mean since spline smoothing can be applied only
over complete data. Each of these methods are explained in detail the next section.

3.3.2. Imputation Methods

There are plenty of imputation methods for time series, but we have chosen only four
that have given good results in previous studies [20].

(i) Hourly mean.

A missing value of CGM at a given timestamp is replaced by the mean of the whole
CGM time series in the hour that includes the timestamp corresponding to the missing
value. Figure 5 shows the observed and imputed values by hourly mean for subject 588 in
the week starting on 31 August and ending on 7 September. It appears that the imputation
preserves the trend of the time series.
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(ii) Linear Interpolation.

A gap of missing values is filled out for a straight line joining the extremes of the gap.
Thus, the missing value in a given timestamp is taken from this straight line. Figure 6
shows the observed and imputed values by linear interpolation for subject 588 in the week
starting on 31 August and ending on 7 September. As in Figure 6, the imputed values
through linear interpolation follow the time series trend.
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(iii) Spline Interpolation:

In this case, instead of simultaneously fitting a single, high-degree polynomial to all
the values, spline interpolation fits low-degree polynomials to small subsets of the values.
For instance, it fits five cubic polynomials between each pair of six points instead of fitting
a single sixth-degree polynomial to all of them.

Cubic spline interpolation is the process of constructing a spline f : [x1, xn+1] → R
that consists of n polynomials of degree three, referred to as f1 to fn. A spline is a function
defined by piecewise polynomials. Unlike regression, the interpolation function traverses
all n+ 1 pre-defined points of a dataset D. The resulting function has the following structure:

f (x) =


a1x3 + b1x2 + c1x + d1 i f x ∈ [x1, x2]
a2x3 + b2x2 + c2x + d2 i f x ∈ [x2, x3]

. . .
anx3 + bnx2 + cnx + dn i f x ∈ [xn, xn+1]

(1)

Note that all polynomials are valid within an interval; they compose the interpolation
function. Spline interpolation works only within the data boundaries [x1, xn+1]. With
adequately chosen coefficients ai, bi, ci and di for the polynomials, the resulting function tra-
verses the points smoothly. Several equations are formulated to determine the coefficients,
which all together compose a uniquely solvable system of equations. Figure 7 shows the
observed and imputed values by spline interpolation for subject 588 in the week starting
on 31 August and ending on 7 September. Figure 7 shows that imputed values by spline
interpolation follow the trend less when we compare them with the two previous methods.

(iv) Polynomial Interpolation.

A gap of missing values is filled out by a polynomial of the lowest possible degree. In
our study, we have used cubic polynomials.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 19 
 

 
Figure 7. Comparing the true CGM time series with the imputed CGM using spline interpolation, 
in one-week period for patient 588. 

3.3.3. Smoothing Methods 
(i) Kalman Smoothing 

The Kalman smoothing (KS) method outputs an interpolated time series of glucose 
estimates with mean and variance. It can automatically correct errors in the CGM readings 
where the estimated variance can be utilized for determining at which times the data are 
reliable. In our study, KS has been used as a pre-processing technique for sensor fault 
correction in the CGM reading. We use a modified implementation of KS for the 
OhioT1DM dataset, from the work [21,22]. The Kalman filter is a technique for estimating 
the current state of a dynamical system from previous observations [23,24]. In Kalman 
filtering, records of data are used for the calculation of the estimates. Thus, the Kalman 
filter is appropriate for real-time data processing. It is a forward algorithm where each 
step is computed analytically. The model and observation can be written as follows: 

State system:ݔ௧ାଵ ൌ ௧ݔܣ ൅ ݐ ௧~ܰሺ0,ܳሻ forݓ ௧, whereݓ ൌ 1,…ܶ − 1, 

Output measurements: ݕ௧ ൌ ௧ݔܪ ൅ ݐ ௧~ܰሺ0,ܴሻ forݒ ௧, whereݒ ൌ 1,…ܶ. (2)

We assume that the process state; ݔ௧, the process noise; ݓ௧, the sensor measurement; ݕ௧, and the sensor noise; ݒ௧ are independent. Note that all random variables above are 
either Gaussians or linear transformations of Gaussians and are, therefore, all Gaussian. 
The symmetric positive definite matrices Q and R are the covariance matrices of the pro-
cess and the sensor noise, respectively. A is the transition matrix and H is the measurement 
matrix. 

The goal of smoothing is to reconstruct or approximate the missing measurements 
given the known ones. Since the outputs and states are jointly Gaussian, the maximum 
likelihood and conditional mean estimates of the missing output values are the same. 
They can be found as the solution to the constrained least squares problem. 

Minimize ∑ ||ܳିభమሺݔො௧ାଵ − ሻ||ଶଶ	ො௧ݔܣ ൅ ∑ ||ܴିభమሺݕො௧ − ሻ||ଶଶ௜்ୀଵ்ିଵ௜ୀଵ	ො௧ݔܪ  

subject to ሺݕො௧ሻ௜ ൌ ሺݕ௧ሻ௜, ሺݐ, ݅ሻ ∈  ܭ
(3)

where ܭ is the set of available outputs. For ሺݐ, ݅ሻ ∉ ௧ሻ௜ݕwe take ሺ ,ܭ ൌ  We refer to .ܣܰ
entries of ݕ௧ that are real as known measurements and entries of ݕ௧ that have the value 
NA as missing measurements. Figure 8 shows the observed and smoothed values by Kal-
man smoothing for subject 588 in the week starting on 31 August and ending on 7 Sep-
tember. The Figure 8 suggests that the smoothing has generated some bias. 

Figure 7. Comparing the true CGM time series with the imputed CGM using spline interpolation, in
one-week period for patient 588.

3.3.3. Smoothing Methods

(i) Kalman Smoothing

The Kalman smoothing (KS) method outputs an interpolated time series of glucose
estimates with mean and variance. It can automatically correct errors in the CGM readings
where the estimated variance can be utilized for determining at which times the data are
reliable. In our study, KS has been used as a pre-processing technique for sensor fault
correction in the CGM reading. We use a modified implementation of KS for the OhioT1DM
dataset, from the work [21,22]. The Kalman filter is a technique for estimating the current
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state of a dynamical system from previous observations [23,24]. In Kalman filtering, records
of data are used for the calculation of the estimates. Thus, the Kalman filter is appropriate
for real-time data processing. It is a forward algorithm where each step is computed
analytically. The model and observation can be written as follows:

State system : xt+1 = Axt + wt, where wt ∼ N(0, Q) for t = 1, . . . T − 1,
Output measurements : yt = Hxt + vt, where vt ∼ N(0, R) for t = 1, . . . T.

(2)

We assume that the process state; xt, the process noise; wt, the sensor measurement; yt,
and the sensor noise; vt are independent. Note that all random variables above are either
Gaussians or linear transformations of Gaussians and are, therefore, all Gaussian. The
symmetric positive definite matrices Q and R are the covariance matrices of the process and
the sensor noise, respectively. A is the transition matrix and H is the measurement matrix.

The goal of smoothing is to reconstruct or approximate the missing measurements
given the known ones. Since the outputs and states are jointly Gaussian, the maximum
likelihood and conditional mean estimates of the missing output values are the same. They
can be found as the solution to the constrained least squares problem.

Minimize ∑T−1
i=1

∣∣∣∣∣∣Q− 1
2 (x̂t+1 − Ax̂t )

∣∣∣∣∣∣2
2
+ ∑T

i=1

∣∣∣∣∣∣R− 1
2 (ŷt − Hx̂t )

∣∣∣∣∣∣2
2

subject to (ŷt)i = (yt)i, (t, i) ∈ K
(3)

where K is the set of available outputs. For (t, i) /∈ K, we take (yt)i = NA. We refer to
entries of yt that are real as known measurements and entries of yt that have the value NA
as missing measurements. Figure 8 shows the observed and smoothed values by Kalman
smoothing for subject 588 in the week starting on 31 August and ending on 7 September.
The Figure 8 suggests that the smoothing has generated some bias.
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(ii) Smoothing Splines.

Cubic splines are piecewise cubic functions that are continuous and have continuous
first and second derivatives. The continuity in all their lower-order derivatives makes
splines very smooth.

The most natural way to parametrize the set of splines with knots at a given set of
points t1, . . . , tm is to use the truncated power basis, g1, . . . , gm+k+1, defined as g1(x) = 1,
g2(x) = x, . . ., gk+1(x) = xk, gk+1+j(x) =

(
x− tj

)k
+

, j = 1, . . . m. Here, x+ denotes
the positive part of x, i.e., x+ = max{x, 0}. While these basis functions are natural, a
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much better computational choice, both for speed and numerical accuracy, is the B-spline
basis [25].

Regression splines are defined as r̂(x) = ∑m+k
j=1 β jgj(x) when m = 4, cubic splines

are obtained, k denotes the number of knots and g1, . . . gn are the truncated power basis
functions for natural cubic splines with knots at t1, . . . tm. The βj coefficients are obtained
by least squares. That is, by minimizing,

∑n
i=1(yi −∑m

j=1 β jgj(xi))
2 (4)

Smoothing splines are defined as r̂(x) = ∑m
j=1 β jgj(x) where the vector β of coefficients

is obtained by minimizing
∣∣|y− Gβ||22 + λβT´Ωβ , g1, . . . gn are the truncated power basis

functions for natural cubic splines with knots at x1, . . . xn. Here G is the basis matrix and
´Ω is the penalty matrix defined as

Ωij =
∫

g′′i (t)g′′j (t)dt for i, j = 1, 2, . . . , n (5)

The smoothing splines can also be obtained by minimizing:

∑n
i=1(yi − f (xi)

2 + λ
∫

( f ′′ (x)2dx (6)

λ ≥ 0 is a smoothing parameter, when λ→ 0 the smoothing spline converges to
the interpolation spline, when λ→ ∞ the smoothing splines converges to linear least
squares estimate.

In this paper, we have used the smoothing parameter spar, such that λ = r2563spar−1

where r = tr
(
X′WX

)
/tr(Σ ), Σ is the penalty matrix associated with a B-splines basis, X is

given by Xi,j = Bj(xi), W is the diagonal matrix of weights (scaled such that its trace is n, the
original number of observations), and Bk(.), is the k-th B-spline. Figure 9 shows the observed
and the smoothed values by smoothing spline for the subject 588 in the week starting on
31 August and ending 7 September. Clearly, the smoothing spline has generated bias.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 11 of 19 
 

 
Figure 9. Comparing the true CGM time series with the smoothed CGM time series using smoothing 
spline, in one week period for patient 588. 

3.4. Prediction Models 
3.4.1. XGBoosting 

XGBoosting (short for Extreme Gradient Boosting) is an efficient implementation of 
gradient boosting for classification and regression problems. It is both fast and efficient, 
performing well. It is an ensemble of decision tree algorithm where new trees fix errors of 
those trees already part of the model. Trees are added until no further improvements can 
be made to the model [26]. 

XGBoosting can also be used for time series forecasting, although it requires that the 
time series dataset be transformed into a supervised learning problem first. Midroni et al. 
[7] and Allfian et al. [27] applied XGBoosting to predict glucose levels in five patients us-
ing a prediction horizon of 30 and 60 min. XGBoosting does not support multi-target re-
gression, so we separately predict the glucose level for each of the six future timesteps and 
then ensemble them in one prediction matrix. 

3.4.2. One-Dimensional Convolutional Neural Networks (1D-CNN) 
A convolution can be thought of a ‘weighted sum of memories’. Suppose that f(t) 

represents sound at time t and h(τ) is the proportion one heard from τ seconds ago, and 
that one can only hear sound at discrete time steps. Then what you hear at time can be 
represented as: ݄ሺ0ሻ݂ሺݐሻ ൅ ݄ሺ1ሻ݂ሺݐ − 1ሻ ൅ ݄ሺ2ሻ݂ሺݐ − 2ሻ ൅ ⋯൅ ݄ሺݐሻ݂ሺ0ሻ (7)

Note that this is a weighted moving average, where the weights are given by the 
function. Thus, a discrete-time convolution generalizes a moving average so that the 
weights are non-zero and may not sum to 1. Like a moving average, a convolution 
smooths a time series. 

The basic architecture of CNN cannot be applied for usual time series data prediction 
since the CNN structures are 2D-CNN, which only take 2D inputs. Therefore, the conven-
tional 2D-CNN architecture is not directly applicable to 1D signal prediction. Some re-
searchers have converted 1D signals into 2D images to use the 2D-CNN architectures di-
rectly. However, in most common cases, it increases computational costs and decreases 
efficiency. The significant advantages of 1D-CNN are that it requires much less computa-
tional complexity and time than 2D-CNN and takes 1D signal directly without 2D con-
version. Due to these advantages, there are many studies and applications of 1D-CNN. 
Using 1D-CNN, correlational properties of multivariate signals can be extracted without 
additional feature engineering. Bhimireddy et al. [8] used a hybrid 1D-CNN and LSTM 

Figure 9. Comparing the true CGM time series with the smoothed CGM time series using smoothing
spline, in one week period for patient 588.

3.4. Prediction Models
3.4.1. XGBoosting

XGBoosting (short for Extreme Gradient Boosting) is an efficient implementation of
gradient boosting for classification and regression problems. It is both fast and efficient,
performing well. It is an ensemble of decision tree algorithm where new trees fix errors of
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those trees already part of the model. Trees are added until no further improvements can
be made to the model [26].

XGBoosting can also be used for time series forecasting, although it requires that the
time series dataset be transformed into a supervised learning problem first. Midroni et al. [7]
and Allfian et al. [27] applied XGBoosting to predict glucose levels in five patients using a
prediction horizon of 30 and 60 min. XGBoosting does not support multi-target regression, so
we separately predict the glucose level for each of the six future timesteps and then ensemble
them in one prediction matrix.

3.4.2. One-Dimensional Convolutional Neural Networks (1D-CNN)

A convolution can be thought of a ‘weighted sum of memories’. Suppose that f (t)
represents sound at time t and h(τ) is the proportion one heard from τ seconds ago, and
that one can only hear sound at discrete time steps. Then what you hear at time can be
represented as:

h(0) f (t) + h(1) f (t− 1) + h(2) f (t− 2) + · · ·+ h(t) f (0) (7)

Note that this is a weighted moving average, where the weights are given by the
function. Thus, a discrete-time convolution generalizes a moving average so that the
weights are non-zero and may not sum to 1. Like a moving average, a convolution smooths
a time series.

The basic architecture of CNN cannot be applied for usual time series data prediction
since the CNN structures are 2D-CNN, which only take 2D inputs. Therefore, the con-
ventional 2D-CNN architecture is not directly applicable to 1D signal prediction. Some
researchers have converted 1D signals into 2D images to use the 2D-CNN architectures
directly. However, in most common cases, it increases computational costs and decreases
efficiency. The significant advantages of 1D-CNN are that it requires much less com-
putational complexity and time than 2D-CNN and takes 1D signal directly without 2D
conversion. Due to these advantages, there are many studies and applications of 1D-CNN.
Using 1D-CNN, correlational properties of multivariate signals can be extracted without
additional feature engineering. Bhimireddy et al. [8] used a hybrid 1D-CNN and LSTM
model to predict glucose levels on the OhioT1DM dataset. A bi-directional LSTM model
outperformed the proposed model. They only got an RMSE of 20.6 and did not consider
data imputation to handle missing values. Figure 10 shows the architecture of the 1D-CNN
model used in this paper.
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3.4.3. Transformers

Vaswani et al. [28] outlined the concept of attention-based networks, originally in the
context of natural language processing. NLP deals with sequences of words ordered by
grammar and syntax. The attention-based network, also known as Transformer, takes an
input text sequence, for example, in English, and generates an output text sequence, for
instance, in Spanish. Time series analysis works with chronologically ordered sequences:
time steps. The Transformer must generate a forecast sequence along the time axis from
a sequence of training observations. Transformers capture long-range dependencies and
interactions, making them attractive for time series modeling. In several applications,
Transformers outperformed RNN and LSTM models [6].
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The attention heads enable the Transformer to learn relationships between a time step
and every other time step in the input sequence. The Transformer updates its attention
weights and downgrades the least relevant time steps. A score matrix expresses how closely
other time steps are associated with the time step in question.

At its core, it contains a stack of Encoder layers and Decoder layers. The Encoder stack
and the Decoder stack each have corresponding Embedding layers for their respective
inputs. Finally, there is an Output layer to generate the final output.

Each Attention Block consist of Self Attention, Layer Normalization, and a Feed-
Forward layer. The input dimensions of each block are equal to its output dimensions.

4. Results and Discussion

We compared three algorithms in three situations: in the first one, only CGM is used
to predict glucose level without carrying out imputation. Thus, instances with at least one
missing value are deleted. This approach is used in most of the studies about blood glucose
prediction. In the second situation, only CGM is used to predict glucose level, and either
imputation or smoothing is used. In the third case, two features: CGM and meals are used
to predict glucose level, and either imputation or smoothing is used.

The metric used to evaluate the performance of our algorithms was the root mean
squared error (RMSE) defined by:

RMSE =

√
∑n

i=1(y− ŷ)2

n
(8)

There are other metrics, such as MAE and the symmetric mean absolute percentage
error (SMAPE), but RMSE is the most used.

4.1. Using Only CGM without Imputation to Predict Glucose Level

After normalizing the data using Max-Min scaling, where the data are mapped to the
interval [0, 1], each of the three algorithms is repeated five times, and the mean and the
standard deviation of the five RMSEs were obtained. In the tables below, we have included
only the RMSE average. All our experiments were implemented in Python 3.8 along with
scikit-learn, keras, and Tensorflow 2.0.

The XGBoosting model was run using up to 5000 iterations. The 1D-CNN algorithm
was run according to the architecture shown in Figure 10, with 100 epochs considering
a batch size of 32 and 20 percent of the validation set. The Adam (adaptive moment
estimation) optimizer was used in the compilation process. The Transformer algorithm
was run with 50 epochs following the architecture shown in Figure 11. The batch size was
64, the number of transformer blocks was 4 with 4 heads, each of them of size 256, and the
Adam optimizer was used to compile the model.
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As shown in Table 3, the Transformer prediction algorithm has the best performance
since it has the lowest RMSE average. Besides that, it offers low variability and fast
computation time. Averaging the RMSE of the three algorithms in each dataset, we found
that subject 570 has the lowest RMSE, whereas subject 575 has the highest RMSE.

Table 3. RMSE for prediction models using only CGM as predictor without carrying out imputation.

Subject XGBoosting 1D-CNN Transformer

559 14.14 15.96 13.57
563 14.10 16.63 13.40
570 11.95 13.19 11.34
575 16.80 19.13 16.78
588 13.53 15.72 12.89
591 15.22 17.87 14.32
540 16.25 17.15 14.02
584 16.16 18.28 15.21

Average 14.77 16.74 13.94

Next, we will compare the performance of the two smoothing methods and the
four imputation methods for each of the three algorithms.

According to Table 4 for the XGBoosting, on average, the best of the two smoothing
methods was Kalman smoothing, whereas, among the imputation methods, all the inter-
polation methods gave a similar average of RMSE. On average, the hourly mean gave the
highest RMSE. Taking the average of the four imputation methods, patient 540 has the
highest RMSE value, whereas patient 570 has the lowest RMSE among all the datasets.
Additionally, the hourly mean imputation does not perform well for subject 540. The reason
could be that there is no effect of the hour of the day on the glucose levels for this subject.
In all the imputation methods, except the hourly mean imputation, subject 570 has the
lowest RMSE. When hourly mean imputation is used, subject 588 has the lowest RMSE,
followed by subject 563 and subject 570.

Table 4. RMSE for predicting glucose level using univariate XGBoosting after imputation/smoothing.

Subject
Smoothing Imputation

Interpolation

Kalman Spline Linear Spline Polynomial
Hourly
Mean

559 7.07 11.55 13.16 13.36 13.60 16.44
563 6.48 6.38 13.78 13.71 13.73 14.17
570 6.39 7.59 11.91 11.74 11.51 16.15
575 8.25 8.45 16.23 16.20 16.32 20.38
588 7.00 7.08 13.46 13.53 13.68 13.75
591 7.35 7.46 15.26 15.34 15.43 16.56
540 10.13 16.07 17.87 17.25 17.57 31.30
584 7.47 8.97 15.55 15.46 15.42 20.23

Average 7.51 9.19 14.43 14.57 14.65 18.62

The computation of the RMSE for the XGBoosting model prediction is fast.
The 1D-CNN algorithm was run with 200 epochs considering a batch size of 32 and

20 percent of validation set = 0.2.
Table 5 shows that when CNN-1D is used, the smoothing spline gives the best results

among the two smoothing methods. Among the imputation methods, linear interpolation
has the lowest RMSE average. As in XGboosting, subject 540 has the highest RMSE value
among all the subjects, whereas subject 570 has the lowest RMSE. Similarly to the previous
case, in all the imputation methods, except the hourly mean imputation, patient 570 has
the lowest RMSE. When hourly mean imputation is used, subject 570 has the third lowest
RMSE. Subject 588 has the lowest RMSE, followed by subject 563.
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Table 5. Average RMSE for predicting glucose level using 1D-CNN after imputation/smoothing.

Subject
Smoothing Imputation

Interpolation

Kalman Spline Linear Spline Polynomial
Hourly
Mean

559 7.94 5.51 14.81 16.25 16.40 17.49
563 8.41 5.12 16.36 17.07 18.12 16.15
570 6.66 4.63 13.41 13.61 12.90 17.04
575 9.15 6.53 19.05 19.18 18.27 21.74
588 8.27 5.44 13.58 18.35 18.70 15.48
591 8.98 6.33 17.90 20.22 19.52 18.75
540 8.57 7.24 16.23 20.30 19.73 27.40
584 8.82 8.23 17.53 21.00 21.31 22.07

Average 8.35 6.12 16.10 18.24 18.11 19.51

Table 6 shows that for the Transformer algorithm, Kalman smoothing gives better
results than smoothing spline. Among the imputation methods, linear interpolation gives
the best RMSE. All the other three methods perform almost the same. On average, the
highest RMSE value was obtained for subject 584, whereas the lowest RMSE was obtained
for subject 570.

Table 6. Average RMSE for predicting glucose level using Transformer after imputation/smoothing.

Subject
Smoothing Imputation

Interpolation

Kalman Spline Linear Spline Polynomial
Hourly
Mean

559 6.93 9.30 12.13 15.31 15.34 14.87
563 7.40 9.38 12.95 13.37 13.26 13.38
570 7.27 8.96 11.20 11.87 11.95 14.91
575 8.57 12.13 16.11 17.15 17.09 19.10
588 7.67 10.48 12.52 12.91 13.00 12.91
591 8.78 11.59 14.41 14.11 14.95 15.24
540 8.05 13.08 13.57 15.04 15.18 16.19
584 8.85 14.05 14.51 19.32 19.25 18.83

Average 7.94 11.12 13.42 14.88 15.00 15.67

Since stationarity can affect the performance of Transformers after imputation was
performed [29], we computed the Augmented Dickey–Fuller test to check the stationarity
of each time series, and we obtained test values more significant than the critical values,
concluding that all the eight-time series were stationary.

4.2. Using CGM and Meal to Predict Glucose Level

In the XGBoosting algorithm, we used 24 features as predictors; 12 were from CGM
at the 12 previous timesteps, and the remaining 12 were from the meal feature at the
respective timesteps.

Comparing the results from Tables 4 and 7, we can note that when the meal feature
is included, the RMSE for the XGBoosting algorithm decreases by a small amount only
when imputation by hourly mean is used. It has a small increment when smoothing spline
is used; in all the remaining methods, the RMSE remains almost the same. Similarly,
when only CGM is used, the Kalman smoothing and the linear interpolation give, on
average, the lowest RMSE. Additionally, subject 570 has the lowest RMSE average, whereas
subject 540 has the highest RMSE average when imputation is applied.
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Table 7. Average RMSE for predicting glucose level using XGBoosting after imputation/smoothing.

Subject
Smoothing Imputation

Interpolation

Kalman Spline Linear Spline Polynomial
Hourly
Mean

559 7.20 11.73 13.65 12.99 13.32 16.69
563 6.62 6.62 13.86 13.81 13.81 14.21
570 6.43 7.90 11.70 11.37 11.26 15.89
575 8.49 8.92 16.69 16.58 16.57 20.68
588 7.21 7.58 13.53 13.37 13.56 13.72
591 7.34 7.84 14.98 15.14 15.32 16.31
540 10.41 18.03 16.37 17.77 18.04 31.58
584 7.64 9.08 15.53 15.47 15.49 20.15

Average 7.66 9.71 14.53 14.56 14.67 18.65

A 1D-CNN layer followed by a Max-Pooling layer is applied to each feature. Then,
the result is concatenated, and a dense layer with 100 neurons is applied. After that, the
forecasting for the future 30 min (six timesteps) is carried out.

From Tables 5 and 8, when meal is included, the RMSE for the 1D-CNN decreases
only a small amount when smoothing spline is used. In all the remaining methods, the
RMSE increases and the most significant increment occurs when spline interpolation is
used. Smoothing spline gives lower RMSE than Kalman smoothing. Averaging the four
imputation methods, we obtained the lowest RMSE for dataset 570, whereas subject 584
had the highest RMSE.

Table 8. Average RMSE for predicting glucose level using bivariate (CGM and meal) 1D-CNN after
imputation/smoothing.

Subject
Smoothing Imputation

Interpolation

Kalman Spline Linear Spline Polynomial
Hourly
Mean

559 8.53 5.55 21.12 24.91 21.86 25.08
563 8.23 4.76 20.84 21.19 18.35 18.60
570 7.18 4.56 15.47 15.54 14.72 18.77
575 9.34 6.89 22.57 24.43 21.02 26.16
588 11.03 5.02 21.14 22.50 23.00 21.10
591 9.50 6.16 21.63 23.06 21.47 21.62
540 8.64 7.36 18.26 24.47 21.88 27.40
584 8.87 7.31 18.58 30.55 24.80 24.08

Average 8.91 5.95 19.95 23.33 20.88 22.85

Including meals as a predictor does not improve the prediction model’s performance.
Before using meals with CGM to predict glucose level with the Transformer model,

we removed any non-stationarity effect that the time series for meals could generate. This
effect is achieved by differentiating the meal more than one time. It was necessary to
differentiate the time series for meals two times.

Tables 6 and 9 show that when meals are included, the RMSE for the Transformers
decreases greatly when smoothing spline is used. In all the remaining methods, the
RMSE increases, and the most significant increment occurs when linear interpolation is
used. Smoothing spline gives lower RMSE than Kalman smoothing. Averaging the four
imputation methods in each dataset, we obtained the lowest RMSE average for dataset 563,
whereas subject 575 provided the highest RMSE average.

As in 1D-CNN, the inclusion of meal as a predictor does not improve the performance
of the Transformer algorithm.
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Table 9. Average RMSE for predicting glucose level using bivariate (CGM and meal) Transformer
after imputation smoothing.

Subject
Smoothing Imputation

Interpolation

Kalman Spline Linear Spline Polynomial
Hourly
Mean

559 9.49 5.40 13.99 14.60 14.48 15.33
563 8.97 4.99 13.83 13.65 13.49 14.11
570 10.60 6.98 13.14 13.71 13.41 17.23
575 11.73 6.63 18.52 18.85 18.49 21.87
588 9.98 6.31 14.60 15.30 15.38 15.02
591 10.87 5.52 16.48 17.19 16.96 17.20
540 12.00 6.66 16.45 16.05 16.13 18.11
584 11.30 5.31 16.67 16.57 16.59 20.00

Average 10.61 5.97 15.46 15.74 15.61 17.35

5. Conclusions and Future Work

After running our experiments, we reached the following conclusions:
First, the Transformer algorithm outperforms XGBoosting and 1D-CNN algorithms

when only CGM is used to predict blood glucose level and neither imputation nor smooth-
ing is applied to the data.

Second, when only CGM is used as a predictor, linear interpolation appears to be the
best imputation method. This fact is clearly observed in the deep learning algorithms, yet
it is not as evident in the XGBoost model.

Third, when imputation is applied and only CGM is used as a predictor, the Trans-
former model and the XGBoosting model perform almost the same, whereas the 1D-CNN
model does not perform well.

Fourth, using only CGM as a predictor, Kalman smoothing yields better results than
smoothing splines for the Transformer and XGBoost algorithms, but smoothing splines
perform better for 1D-CNN.

Fifth, applying imputation, including a second feature (meal), increased the RMSE
of the deep learning prediction models. Only the XGBoost algorithm was not affected.
Midroni et al. also noticed this last result [7].

Sixth, when smoothing is applied, including a second feature does not affect the RMSE
of either the smoothing method for XGBoost or 1D-CNN. However, Transformer’s RMSE is
significantly reduced when smoothing splines are applied, while its RMSE increases with
Kalman smoothing.

In general, our results outperform the ones mentioned in the related work section of
this paper. When smoothing is applied to the data, our results using deep learning models
are better than the one mentioned in Rabby et al. [16].

Finally, the generated bias can affect the performance of the models on the considered subjects.
One limitation in our work has been the lack of information on some interesting

features in the second cohort of the OhioT1DM Dataset. Because of that, we did not include
additional features in our study.

In future work, we plan to investigate the effect of bias on these prediction models’
performance. Additionally, we would like to understand the stationarity’s impact on
Transformer further. Lastly, we would like to explore more complex architecture for deep
learning models to predict blood glucose levels.

Author Contributions: Conceptualization, E.A.; methodology, E.A.; software, E.A. and R.A.; valida-
tion, E.A., R.A. and V.P.; investigation, E.A. and R.A.; data curation, E.A. and R.A.; writing—original
draft preparation, E.A.; writing—review and editing, E.A., R.A. and V.P.; visualization, E.A. and R.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Big Data Cogn. Comput. 2023, 7, 41 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data OhioT1DM can be obtained from the University of
Ohio upon request. The preprocessed data used in this paper are available at github.com/eacunafer/
glucose-prediction accessed on accessed on 13 July 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bertachi, A.; Biagi, L.; Contreras, I.; Luo, N.; Vehí, J. Predictions of Blood Glucose Levels and Nocturnal Hypoglycemia Using

Physiological Models and Artificial Neural Networks. In Proceedings of the KDH@ IJCAI, Stockholm, Schweden, 13 July 2018;
pp. 85–90.

2. Atkinson, M.A. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2012, 2, a007641.
[CrossRef] [PubMed]

3. Li, K.; Daniels, J.; Liu, C.; Herrero, P.; Georgiou, P. Convolutional Recurrent Neural Networks for Glucose Prediction.
IEEE J. Biomed. Health Inform. 2020, 24, 603–613. [CrossRef] [PubMed]

4. Bremer, T.; Gough, D.A. Is blood glucose predictable from previous values? A solicitation for data. Diabetes 1999, 48, 445–451.
[CrossRef] [PubMed]

5. Cryer, P.E.; Davis, S.N.; Shamoon, H. Hypoglycemia in diabetes. Diabetes Care 2003, 26, 1902–1912. [CrossRef] [PubMed]
6. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in Time series: A Survey. arXiv 2022, arXiv:2202.07125.
7. Midroni, C.; Leimbigler, P.J.; Baruah, G.; Kolla, M.; Whitehead, A.J.; Fossat, Y. Predicting Glycemia in Type 1 Diabetes Patients:

Experiments with XGBoost. In Proceedings of the KDH@ IJCAI, Stockholm, Schweden, 13 July 2018.
8. Bhimireddy, A.; Sinha, P.; Oluwalade, B.; Gichpya, J.W.; Purkayastha, S. Blood Glucose Level Prediction as Time-Series Modeling

using Sequence-to-Sequence Neural Networks. In Proceedings of CEUR Workshop Proceedings. 2020. Available online: https:
//scholarworks.iupui.edu/bitstream/handle/1805/30224/Bhimireddy2020Blood-NSF-AAM.pdf?sequence=1&isAllowed=y
(accessed on 29 December 2022).

9. Marling, C.; Bunescu, R. The OhioT1DM Dataset for Blood Glucose Level Prediction: Update 2020. In Proceedings of the 5th
International Workshop on Knowledge Discovery in Healthcare Data, Santiago de Compostela, Spain, 30 August 2020.

10. Martinsson, J.; Schliep, A.; Eliasson, B.; Meijner, C.; Persson, S.; Mogren, O. Automatic blood glucose prediction with confidence
using recurrent neural networks. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (KHD@IJCAI),
Stockholm, Sweden, 13–19 July 2018; pp. 64–68.

11. Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. How Much Is Short-Term Glucose Prediction in Type 1 Diabetes Improved
by Adding Insulin Delivery and Meal Content Information to CGM Data? J. Diabetes Sci. Technol. 2016, 10, 5. [CrossRef] [PubMed]

12. Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. Jump Neural Network for Online Short-time Prediction of Blood Glucose
from Continuous Monitoring Sensors and Meal Information. Comput. Methods Programs Biomed. 2014, 113, 144–152. [CrossRef]
[PubMed]

13. Sun, Q.; Jankovic, M.V.; Bally, L.; Mougiakakou, S.G. Predicting blood glucose with an LSTM and Bi-LSTM based deep neural
network. In Proceedings of the 2018 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia,
20–21 November 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [CrossRef]

14. Zhu, T.; Li, K.; Herrero, P.; Chen, J.; Georgiou, P. A Deep Learning Algorithm for Personalized Blood Glucose Prediction.
In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data co-located with the 27th
International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence (KHD@-IJCAI),
Stockholm, Sweden, 13–19 July 2018; pp. 74–78.

15. Chen, J.; Li, K.; Herrero, P.; Zhu, T.; Georgiou, P. Dilated Recurrent Neural Network for Short-time Prediction of Glucose
Concentration. In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data co-located with
the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence
(KHD@-IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 69–73.

16. Rabby, F.; Tu, Y.; Hossen, H.; Lee, I.; Maida, A.S.; He, X. Stacked LSTM based deep recurrent neural network with Kalman
smoothing for blood glucose prediction. BMC Biomed. Inform. Decis. Mak. 2021, 21, 101. [CrossRef] [PubMed]

17. Deng, Y.; Lu, L.; Aponte, L.; Angelidi, A.M.; Novak, V.; Karniadakis, G.E.; Mantzoros, C.S. Deep transfer learning and data
augmentation improve glucose levels prediction in type 2 diabetes patients. NPJ Digit. Med. 2021, 4, 1–13. [CrossRef] [PubMed]

18. Bevan, R.; Coenen, F. Experiments in non-personalized future blood glucose level prediction. CEUR Workshop Proc. 2020, 2675,
100–104.

19. Joedicke, D.; Garnica, O.; Kronberger, G.; Colmenar, J.M.; Winkler, S.; Velasco, J.M.; Contador, S.; Hidalgo, J.I. Analysis of the
performance of Genetic Programming on the Blood Glucose Level Prediction Challenge 2020. In Proceedings of the KDH@ ECAI,
Santiago de Compostela, Spain & Virtually, 29–30 August 2020; pp. 141–145.

20. Jeon, J.; Leimbigler, P.J.; Baruah, G.; Li, M.H.; Fossat, Y.; Whitehead, A.J. Predicting Glycaemia in Type 1 Diabetes Patients:
Experiments in Feature Engineering and Data Imputation. J. Healthc. Inform. Res. 2020, 4, 71–90. [CrossRef] [PubMed]

21. Staal, O.M.; Sælid, S.; Fougner, A.; Stavdahl, Ø. Kalman smoothing for objective and automatic preprocessing of glucose data.
IEEE J. Biomed. Health Inf. 2018, 23, 218–226. [CrossRef] [PubMed]

http://doi.org/10.1101/cshperspect.a007641
http://www.ncbi.nlm.nih.gov/pubmed/23125199
http://doi.org/10.1109/JBHI.2019.2908488
http://www.ncbi.nlm.nih.gov/pubmed/30946685
http://doi.org/10.2337/diabetes.48.3.445
http://www.ncbi.nlm.nih.gov/pubmed/10078542
http://doi.org/10.2337/diacare.26.6.1902
http://www.ncbi.nlm.nih.gov/pubmed/12766131
https://scholarworks.iupui.edu/bitstream/handle/1805/30224/Bhimireddy2020Blood-NSF-AAM.pdf?sequence=1&isAllowed=y
https://scholarworks.iupui.edu/bitstream/handle/1805/30224/Bhimireddy2020Blood-NSF-AAM.pdf?sequence=1&isAllowed=y
http://doi.org/10.1177/1932296816654161
http://www.ncbi.nlm.nih.gov/pubmed/27381030
http://doi.org/10.1016/j.cmpb.2013.09.016
http://www.ncbi.nlm.nih.gov/pubmed/24192453
http://doi.org/10.1109/neurel.2018.8586990
http://doi.org/10.1186/s12911-021-01462-5
http://www.ncbi.nlm.nih.gov/pubmed/33726723
http://doi.org/10.1038/s41746-021-00480-x
http://www.ncbi.nlm.nih.gov/pubmed/34262114
http://doi.org/10.1007/s41666-019-00063-2
http://www.ncbi.nlm.nih.gov/pubmed/35415436
http://doi.org/10.1109/JBHI.2018.2811706
http://www.ncbi.nlm.nih.gov/pubmed/29994742


Big Data Cogn. Comput. 2023, 7, 41 18 of 18

22. Sarkka, S. Bayesian Filterings and Smoothing; Cambridge University Press: Cambridge, UK, 2013.
23. SimdKalman Fast Kalman filters in Python leveraging single-instruction multiple-data vectorization. Available online: https:

//simdkalman.readthedocs.io/en/latest/ (accessed on 29 December 2022).
24. Barratt, S.T.; Boyd, S.P. Fitting a Kalman Smoother to Data. In Proceedings of the 2020 American Control Conference (ACC),

Denver, CO, USA, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 1526–1531. [CrossRef]
25. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer:

New York, NY, USA, 2005.
26. Chen, T.; Guestrin, C. XGBoost: A scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 784–785.
27. Alfian, G.; Syafrudin, M.; Rhee, J.; Anshari, M.; Mustakin, M.; Fahrurozzi, I. Blood Glucose Prediction Model for Type

1 Diabetes based on Extreme Gradient Boosting. In IOP Conference Series: Material Science and Engineering, Chennai, India,
16–17 September 2020; IOP Publishing: Bristol, UK, 2020; Volume 803. [CrossRef]

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

29. Liu, Y.; Wu, H.; Wang, J.; Long, M. Non-stationarity Transformers: Exploring the stationarity in Time Series Forecasting. arXiv
2022, arXiv:2205.14415.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://simdkalman.readthedocs.io/en/latest/
https://simdkalman.readthedocs.io/en/latest/
http://doi.org/10.23919/acc45564.2020.9147485
http://doi.org/10.1088/1757-899X/803/1/012012/

	Introduction 
	Related Work 
	Materials and Methods 
	Data Acquisition 
	Data Analysis 
	Handling the Gaps 
	Removing Missing Values 
	Imputation Methods 
	Smoothing Methods 

	Prediction Models 
	XGBoosting 
	One-Dimensional Convolutional Neural Networks (1D-CNN) 
	Transformers 


	Results and Discussion 
	Using Only CGM without Imputation to Predict Glucose Level 
	Using CGM and Meal to Predict Glucose Level 

	Conclusions and Future Work 
	References

