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Abstract: Preeclampsia is one of the illnesses associated with placental dysfunction and pregnancy-
induced hypertension, which appears after the first 20 weeks of pregnancy and is marked by pro-
teinuria and hypertension. It can affect pregnant women and limit fetal growth, resulting in low
birth weights, a risk factor for neonatal mortality. Approximately 10% of pregnancies worldwide are
affected by hypertensive disorders during pregnancy. In this review, we discuss the machine learning
and deep learning methods for preeclampsia prediction that were published between 2018 and 2022.
Many models have been created using a variety of data types, including demographic and clinical
data. We determined the techniques that successfully predicted preeclampsia. The methods that were
used the most are random forest, support vector machine, and artificial neural network (ANN). In
addition, the prospects and challenges in preeclampsia prediction are discussed to boost the research
on artificial intelligence systems, allowing academics and practitioners to improve their methods and
advance automated prediction.

Keywords: artificial intelligence; machine learning; deep learning; preeclampsia

1. Introduction

Placental dysfunction-related disorders (PDDs), such as preeclampsia and intrauter-
ine growth restriction, require that a referral choice be made quickly. Preeclampsia is
the world’s most common cause of maternal death and morbidity [1]. It is a hazardous
medical condition that can develop about halfway through gestation (after 20 weeks)
and is associated with substantial mortality and morbidity for the mother, the fetus, and
the newborn [2]. It is a pregnancy complication that affects from 3% to 7% of all pregnant
women, whether in their first or subsequent pregnancies, and is identified by new-onset
proteinuria and gestational hypertension, usually by the last trimester of pregnancy [3].
The disease impacts mothers and limits fetal growth, resulting in low birth weights, a
risk factor for neonatal mortality [4]. The symptoms of preeclampsia include swelling,
blurred vision, headaches, high blood pressure, protein in the urine [2], and stress on
the mother’s heart and other organs. It also affects the mother’s blood supply to the
placenta, weakens kidney and liver functions, causes fluid build-up in the lungs, and
causes other serious complications [5].

Preeclampsia occurs in approximately 5.37 out of every 10,000 women in Saudi
Arabia [2]. It can result in unfavorable pregnancy outcomes, such as neurological
consequences for the newborn. The pathogenesis and etiology of preeclampsia are still
unknown, and delivery is the only possible treatment for a pregnant woman diagnosed
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with preeclampsia. However, to avoid difficulties and improve outcomes, it is critical to
detect preeclampsia risk before pregnancy [6].

Artificial intelligence (AI) is the study of concepts that can be used to build machines
capable of thinking, judging, and intending in accordance with standard human reactions
to stimulation. Systems that integrate powerful software, hardware, knowledge-based
processing models, and extensive databases to simulate the characteristics of efficient
human decision making are defined as AI. AI is employed in many industries, including
scientific research, medical prognosis, robot control, and law [7].

AI in the medical field may be divided into virtual and physical categories. The
physical category focuses on assisted surgical robots, intelligent prosthetics for the
disabled, and geriatric care. The virtual component includes tools such as a neural
network-based treatment decision support and electronic health record systems. It also
includes machine learning (ML), which relies on mathematical algorithms that enhance
learning via experience [8].

ML is crucial for helping the model learn and adjust based on the input data without
being explicitly programmed. It is the concept of providing machines with the capability
to learn and understand data, recognize patterns, and make predictions or decisions [9].
Therefore, ML can be trained to identify patterns in the same way that doctors do. It can
help diagnose or predict diseases, recognize patient risk factors, and promote the research
and development of new drugs. It is beneficial in situations in which the diagnostic data
a doctor looks at has already been digitized. Such situations include using computerized
tomography scans to detect lung cancer or strokes, analyzing cardiac magnetic resonance
images and electrocardiograms to determine the likelihood of sudden cardiac death or other
heart conditions, examining eye images for signs of diabetic retinopathy, and classifying
skin lesions on the basis of skin imaging data. An example of success in these fields is a
study by Bhatia et al. [10], which proposed a method for detecting lung cancer using deep
residual networks for feature extraction, achieving an accuracy of 84%.

Data are the basis for ML models, and, when high-quality data are abundant, algo-
rithms can diagnose on par with professionals. The key differences are the algorithms’
ability to make conclusions in a split second and their ability to be readily replicated any-
where around the globe. The aim is that all people, wherever they are, can access affordable
and top-quality diagnostic services.

Deep learning (DL) is a form of AI that can tackle complex problems that may be
challenging or even impossible for traditional AI techniques to solve. One of the key
benefits of DL is its ability to utilize both labeled and unlabeled data during training,
which enables it to effectively handle diverse information and learn from it. Additionally,
DL is well suited for working with large datasets; therefore, its applications are likely
to expand in the future. Many recent studies have demonstrated the capabilities of DL
technologies, including the ability to learn from complex data, perform image recogni-
tion, and categorize text [11]. In a study by Tahir et al. [12], the researchers aimed to use
a neural network (NN) [13] to estimate the probability of preeclampsia and compared its
performance to other algorithms such as naïve Bayes (NB) and linear regression. They
also tested the NN with one hidden layer and found that using 17 neurons resulted in
the lowest error rate. The model was then validated using three different methods and
was found to have the best performance, with an accuracy of 96.66%, when validated
using the leave-one-out (LOO) cross-validation method.

This paper provides an in-depth review of the most recent studies on several preeclamp-
sia prediction methods that use clinical data and employ DL and ML. Twenty-five articles
released since 2018 are tabulated, grouped, and analyzed from many angles, including ML
and DL models, dataset size, and performance. Key search terms such as “preeclampsia”,
“artificial intelligence”, “machine learning”, and “deep learning” were used to identify
relevant studies for inclusion in this review. The primary aim of this review is to pro-
vide a comprehensive overview of the current state of research in the realm of automated
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preeclampsia prediction. Furthermore, this review aims to delve into the challenges and
opportunities in the field of preeclampsia research.

The remainder of this work is organized as follows: Section 2 presents the studies that
used statistical, ML, and DL methods to predict preeclampsia. Section 3 discusses the most
widely used algorithms and data types. Section 4 presents the challenges and opportunities
in preeclampsia prediction. Lastly, Section 5 provides the conclusion.

2. Related Study
2.1. Predicting Preeclampsia Using General Approaches

Some studies were performed using general statistical techniques to predict preeclampsia.
A study conducted by Rokotyanskaya et al. [6] in Russia in 2020 aimed to create tools for the
prediction of the onset of preeclampsia using molecular–genetic and biomedical indicators
and individual risk assessments using 12 features from a sample of 457 pregnancies between
22 and 36 weeks of gestation. The LR method and Open Epi system were used to determine
risk characteristics after retrospectively analyzing the gestation course and labor outcomes.
The study developed a system to predict the preeclampsia that have an area under the receiver
operating characteristic curve (AUC) of 0.733.

Additionally, in prospective observational research in 2020, Soongsatitanon et al. [14]
assessed the predictive value of uterine artery (UA) Doppler, pulsatility index (PI), and
serum placental protein 13 (PP13) levels in the first trimester for preeclampsia. Fifteen
characteristics were gathered for the study from a sample of 353 pregnant women at the
Faculty of Medicine’s Obstetrics and Gynecology division at Chulalongkorn University
in Bangkok, Thailand. The data from the UA Doppler and PP13 tests were statistically
analyzed using the SPSS software program to determine their predictive values. According
to the study’s findings, UA, PI, and serum PP13 levels together had the best accuracy
in predicting preeclampsia, resulting in a negative predictive value (NPV) of 94.4%, a
specificity of 62.9%, a sensitivity of 58.6%, and a positive predictive value (PPV) of 12.4%.

Furthermore, Serra et al. [15] developed a multivariate Gaussian distribution model
for the first trimester incorporating biophysical/biochemical data and maternal char-
acteristics to examine the efficacy of screening for early-onset preeclampsia (eoPE) in a
routine care low-risk scenario in 2020. The dataset included 13 features from 6893 general
population singleton deliveries at the Vall d’Hebron and Dexeus University Hospital
in Spain. Three steps were taken to construct the screening model for preeclampsia:
multiple of median calculation, prior risk definition, and posterior risk definition. The
researchers found that the best detection rate was demonstrated by combining the bio-
physical parameters, maternal traits, and placental growth factor (PlGF), as this attained
a detection rate of 94% for a 10% false-positive rate (FPR) and a detection rate of 59%
for a 5% FPR (AUC 0.96, 95% confidence interval (CI): 0.94–0.98). The detection rate
increased from 59% to 94% upon including PlGF in the biophysical indicators.

Moreover, Byonanuwe et al. [16] conducted prospective cohort research in the Cuban
teaching hospital Carlos Manuel de Cèspedes in a group of 178 women with preeclampsia
while monitoring their chronic hypertension at 12 weeks after delivery. After birth, the
women’s placentas were examined for any abnormalities, including villositary infarcts,
endarteritis, Tenney–Parker changes, intervillositary thrombus, meconium, chorioamnioni-
tis, decidual necrosis, and hypermaturity. The study’s aim was to use the placentas of
patients who had just given birth to determine the histological factors associated with this
chronic hypertension. Women with chronic renal illness or those who had preeclampsia or
could not follow up were excluded from the study. Therefore, from the original sample
of 178 cases, data analysis was accomplished for 162 cases. Following the delivery of the
baby, participants had their blood pressure checked again. If it was still high, they were
deemed to have chronic hypertension. Cox’s multivariate model analysis detected placental
histopathological findings that were associated with chronic hypertension: villositary in-
farcts, chorioamnionitis, endarteritis, and intervillositary thrombus. For villositary infarcts,
the hazard ratio (HR) was 1.657 (95% CI: 1.264–2.848), with a p-value of 0.048. Meanwhile,
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chorioamnionitis had an HR of 1.697 (95% CI: 1.443–3.416), with a p-value of 0.038, while
endarteritis had an HR of 1.242 (95% CI: 1.115–1.804), with a p-value of 0.025. Lastly, the
intervillositary thrombus had an HR of 1.529 (95% CI: 1.231–3.197), with a p-value of 0.020.

In addition, Modak et al. [17] conducted a study in the obstetrics and gynecology
departments at the RG Kar Medical College, Kolkata, and Burdwan Medical College,
Burdwan, West Bengal, India. The study was conducted in a population of 116 expectant
women who were chosen according to various inclusion and exclusion criteria; hence, the
outliers in the data were excluded. The study goal was to estimate the efficacy of using
UA doppler and urine protein creatinine ratio (UPCR) measured at the beginning of
pregnancy in predicting the development of preeclampsia and to compare the precision
of the two techniques. At the time of enrollment, patients underwent screening for
a spot UA Doppler and UPCR. They were also monitored up to delivery by blood
pressure monitoring and clinical examination to look for preeclampsia. Spot midstream
urine samples were obtained and analyzed in an ERBA semiautomatic biochemistry
analyzer using the immunoturbidimetric micro albumin method to estimate protein
and a modified Jaffe’s method to measure creatinine. Individuals with a UPCR ratio
of 35.5 mg/mmol or greater were deemed to have tested positive. All the data were
statistically analyzed, and the effectiveness of the screening test was assessed using the
ROC curve, sensitivity, specificity, PPV, and NPV. Women with preeclampsia had a high
median UPCR (44.8 mg/mmol) compared to unaffected women (26.6 mg/mmol). A
cutoff of 35.5 mg/mmol was selected as the optimal spot UPCR cutoff value to detect
preeclampsia, and, using this cutoff, the test had a specificity of 94.06%, a sensitivity
of 80%, an NPV of 96.94%, and a PPV of 66.76%. The AUC for spot UPCR was 0.949
(95% CI: 0.891–1.000). When using a mean UA resistance index of more than 0.7 to
identify preeclampsia, the specificity was 97.03%, the sensitivity was 60%, the NPV was
94.23%, and the PPV was 75%. The AUC was 0.856 (95% CI 0.742–0.971). Preeclampsia
could be predicted with 92.24% accuracy using a combination of spot UPCR and UA
Doppler. Table 1 shows a summary about all related studies using general approaches.

2.2. General Approaches for Predicting Preeclampsia
Machine Learning Based Model for Predicting Preeclampsia

Numerous studies have used ML techniques to predict preeclampsia. Marić et al. [18]
constructed an ML model for the early prognosis of preeclampsia that automatically
chooses the most relevant features out of all the variables. In addition, statistical learning
methods were used to analyze routine prenatal visit data to generate a prediction tool
that could be made available to all pregnant women and could be used to identify high-
risk patients from an initial screening. The dataset was collected from 16,370 deliveries
between April 2014 and January 2018 at Lucile Packard Children’s Hospital in California.
The prediction model was built using two statistical learning algorithms: gradient boost-
ing and elastic net. The models took into account 67 factors, including medicine intake,
routine, medical records, and prenatal laboratory outcome. The AUC, true positive rate
(TPR), and FPR were assessed using cross-validation. The prediction model was created
by combining a selection of the most useful features from all variables. The elastic net
algorithm attained the optimal results: the AUC was 0.79 (95% CI 0.75–0.83), the FPR
was 8.1%, and the sensitivity was 45.2%. The sample also included 98 cases of eoPE
(1.9%). The performance metrics for the elastic net prediction model for eoPE were an
AUC of 0.89 (95% CI 0.84–0.95), a TPR of 72.3%, and an FPR of 8.8%.

Furthermore, Jhee et al. [19] used data from hospital electronic medical records
for the prediction of late-onset preeclampsia. The dataset was collected from Yonsei
University Hospital and included 11,006 pregnant women. Early-second-trimester to
34 week maternal data were gathered from electronic medical records. The prediction
models’ parameters were selected using cluster analysis and pattern recognition. The
prediction models were developed with LR, the decision tree (DT) model, the random
forest (RF) algorithm, stochastic gradient boosting (SGB), support vector machine (SVM),
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and the NB classification method. To evaluate the models’ performance, C-statistics were
used. The C-statistics for the RF algorithm, LR, the DT model, SVM, NB classification,
and the SGB method were 0.894, 0.806, 0.857, 0.573, 0.776, and 0.924, respectively. The
best performance was achieved by the SGB model, which had an FPR and accuracy
of 0.009 and 0.973, respectively.

Table 1. Summary of related studies using general approaches.

Ref Year Domain Method Dataset Result

[6] 2020 General approaches LR method with
Open Epi system

12 features and 457 samples
taken between

22 and 36 weeks
of gestation

AUC of 0.733

[14] 2020 General approaches

The predictive values
of serum PP13 and UA

Doppler tests were
calculated using SPSS

software package

15 features and a sample of
353 from the Faculty of

Medicine at
Chulalongkorn University

Serum PP13 levels and UA
PI together resulted in

PPV of 12.4%, NPV of 94.4%,
specificity of 62.9%, and

sensitivity of 58.6%

[15] 2020 General approaches
Multivariate Gaussian
distribution model for
preeclampsia screening

13 features from
6893 general population

singleton deliveries at the
university hospitals of

Vall d’Hebron and
Dexeus in Spain

94% for 10% FPR and 59%
for a 5% FPR with AUC of
0.96 (95% CI: 0.94 to 0.98).
The detection ratio raised

from 59% to 94% by
including the placental

growth factor in
biophysical indicators

[16] 2020 General approaches

After delivery, the
placenta was

histologically examined
and analyzed

178 samples of placenta
tissues and ultrasound scans,
and 10 features in total at the

Cuban teaching hospital
Carlos Manuel de Cespedes

Villositary infarcts
(0.048 p, 1.657 HR, and
95% CI of 1.264–2.848),

chorioamnionitis (0.038 p,
1.697 HR, and 95% CI of
1.443–3.416), endarteritis
(0.025 p, 1.242 HR, and
95% CI of 1.115–1.804),

intervillositay thrombus
(0.020 p, 1.529 HR, and
95% CI of 1.231–3.197)

[17] 2019 General approaches

Midstream urine
sample, modified

Jaffe’s method, and
immunoturbidimetric
micro albumin method

116 pregnant women, with
7 features, in two tertiary

teaching hospitals in
eastern India

In ROC curve, the AUC
for the spot UPCR was

0.949 (95% CI: 0.891–1.000)

Additionally, Marin et al. [20] aimed to use ML algorithms to help predict preeclampsia
using information about the pregnant woman, such as blood pressure, age, and weight
medical data. The researchers used the Viterbi ML algorithm, with which significant links
between nodes in several datasets can be discovered; it would be challenging to do so
otherwise. In addition, with the medical information given, the algorithm uses a built-in
computer program to estimate the probability of developing an illness. Participants in
the study wore a smart bracelet containing a sensor, as well as electronic and wireless
communication modules (the i-bracelet system). When the user pairs the bracelet with
a mobile, the blood pressure readings are sent to the mobile via Bluetooth. The Viterbi
algorithm was used to determine whether the pregnant women who wore the bracelets
had preeclampsia. The most likely path was chosen using a set of hidden states in a hidden
Markov model. A total of 105 individuals participated, and the overall accuracy was 80%,
with a specificity of 72% and sensitivity of 92.5%.
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Moreover, Liu et al. [21] constructed prediction models for preeclampsia by analyzing all
clinical and laboratory information obtained during early pregnancy prenatal screening using
ML approaches. The dataset they used contained medical records for 11,152 pregnant women
collected from Hospital of Jinan University between December 2015 and September 2019.
Among them, 143 had preeclampsia, 95 had gestational hypertension (GH), and 10,914 had
neither preeclampsia nor GH. The study used five ML approaches to predict preeclampsia:
LR, SVM, deep neural network (DNN), DT, and RF. In addition, 18 variables were contained
in the model, including prenatal laboratory results, parental characteristics, ultrasound results,
and medical history. Cross-validation was used to evaluate calibration, discrimination, and
AUC. The highest accuracy was displayed by the RF model, which had an accuracy of
0.74 (95% CI: 0.74–0.75) and a recall rate of 0.42 (95% CI: 0.41–0.44). The AUC of the RF model
was 0.86 (95% CI: 0.80–0.92), the precision was 0.82 (95% CI: 0.79–0.84), and the Brier score
was 0.17 (95% CI: 0.17–0.17).

In addition, Li et al. [22] developed a prediction model using five ML algorithms: RF,
extreme gradient boosting (XGBoost), LR, and SVM. The features that contributed most
to the prediction model were identified with XGBoost. The performance of the ML model
to anticipate pregnancies at risk of preeclampsia was evaluated on the basis of accuracy,
F1 score, recall, precision, false negative score, AUC, and Brier score. The study included
3759 pregnant women who received prenatal care at Xinhua Hospital in July 2016 and
December 2019. The best prediction performance achieved by the XGBoost model had an AUC
of 0.955, an f1_score of 0.571, a recall of 0.789, a precision of 0.447, and an accuracy of 0.920.

Carreno et al. [23] used a comparative strategy to assess the utility of time-series
summary methods and feature size reduction methods in preeclampsia prognosis. A public
dataset was used in this research, and it was segmented into two cohorts, the Stanford
dataset and the Detroit dataset. The data consisted of a large set of features, which made
it challenging for ML algorithms. Thus, two algorithms were used to reduce feature size:
the imperialist competitive algorithm was used for feature selection, and feature clustering
was implemented through the sample progression discovery (SPD) algorithm. Further
obstacles faced involved patients being sampled at various nonuniform timepoints. This
presented difficulties in cross-patient comparison. However, this issue was solved using
two methods, a simple time average summary and a three-point time series. Since the
Detroit set was four times larger than the Stanford set, the training procedure employed
tenfold cross-validation. Meanwhile, the Stanford set employed fivefold cross-validation.
The study used two classifiers mentioned above, RF and SVM. The performances of the
four approaches were measured with AUC, which ranged from 85% to 93%. However,
the SVM algorithm paired with SPD for feature clustering obtained the highest accuracy,
peaking at 93%. A limitation of this research was the sparse dataset, as it was lacking data
from at least one trimester for over half of the patients. However, the researchers overcame
this with summarizing methods.

Similarly, Martínez-Velasco et al. [24] used common ML algorithms to estimate the
occurrence of preeclampsia. These included RF, SVM, Bayesian networks, NN, NB,
C4.5-like trees, logistic model trees, C5.0, boosted logistic regression, and multivariate
adaptive regression spline. The dataset used in this study included 25 parameters. Missing
data were handled by replacing the missing values with the average. Eventually, RF along
with the LOO cross-validation method was found to have the highest accuracy, specificity,
and sensitivity, which were 0.8530, 0.8614, and 0.6846, respectively. The researchers also
aimed to optimize interpretability using RF by extracting the significance of a factor using
the MDGI metric and visualizing the most relevant factors through a DT.

Likewise, Bosschieter et al. [25] focused on explainable boosting machines (EBMs)
in their study, comparing this method to other black-box ML methods such as RF and
XGBoost for different maternal diseases. The OBCOAP of the Foundation for Healthcare
Quality provided the dataset, and 2.05% of the patients were diagnosed with preterm
preeclampsia. EBMs were used to add interpretability and demonstrate the highest
risk contributors, which were body mass index, number of previous stillbirths, and
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pre-pregnancy hypertension. The training process utilized fivefold cross-validation, and,
among all methods, the outcomes showed that EBMs were the most accurate method,
with an AUC of 0.770 ± 0.006 for preeclampsia.

Similarly, Schmidt et al. [26] researched developing and training ML models for
predicting unfavorable outcomes in patients suspected of having preeclampsia. The
dataset included 2472 pregnancies of women treated at the Obstetrics Department at
Charité—Universitätsmedizin in Germany between July 2010 and March 2019. The
use of novel biomarkers such as soluble Fms-like tyrosine kinase-1 (sFlt1) and other
parameters resulted in 114 features. The ML algorithms used were an RF classifier and a
gradient-boosted tree (GBTree), and the researchers investigated various techniques to
compare the ML model’s outcome with a clinical methodology defined by sFlt1-to-PlGF
ratio-derived metrics and standard of care metrics. A 10 × 10-fold cross-validation
was used to evaluate the approach’s result. The GBTree had an NPV of 89% ± 3%, a
specificity of 97% ± 2%, a PPV of 88% ± 6%, a sensitivity of 66% ± 5%, and an overall
accuracy of 89% ± 3%. The RF classifier had the same PPV as the GBTree (88% ± 6%)
and a specificity of 97% ± 1%, while it performed marginally worse on the other criteria.

In addition, Sufriyana et al. [27] aimed to develop an ML model of PDD using a
sample of 95 women and considering 13 features from a public dataset in the Mendeley
Data repository from a study conducted at Ljubljana University Medical Center. The
best model was selected either automatically or manually. Weka 3.8.3 was used to de-
velop the automatic selection models. Additionally, the researchers manually picked the
top 23 white-box models. From the automatic selection, the optimum model was the RF
model, with an accuracy of 92.6%. The white-box models were the models that were manu-
ally selected: classification via regression (CVR), NB, simple logistic, logistic model tree,
multi-class classifier, and LR. With the RF model automatically selected as the black-box
model, the researchers manually selected CVR as the optimum white-box model, which
had an accuracy of 90.6%. Furthermore, the validation of the models was repeated us-
ing tenfold cross-validation. In conclusion, the model that performed predictably well
when categorizing women with PDDs compared to a control group was the CVR model.
Moreover, it distinguished women with PDDs from a control group without additional
pregnancy-related hypertension subtypes.

Another study [28] developed a model using AI to predict preeclampsia using a dataset
from a health insurance company called BPJS Kesehatan in Indonesia. Including all women
with one pregnancy, using a nested case–control approach, the BPJS Kesehatan dataset
consisting of 95 features was preprocessed to separate 3318 cases of preeclampsia/eclampsia
and 19,883 cases of normotensive pregnant women. Six algorithms were tested: SVM,
ensemble, ANN, ML-optimized LR, DT, and RF. The AUC was used to compare the
algorithms, and the results indicated that the best model had 17 predictors from the RF
algorithm. The best AUC was achieved using data from the 9 to 12 months leading up to
the event using either temporal split for external validation (0.86, 95% CI: 0.85–0.86) or
geographical split for external validation (0.88, 95% CI: 0.88–0.89).

Likewise, in 2022, a study was conducted by Zhang et al. [29] to investigate the
relationship between patient blood data features and severe preeclampsia. The sample
comprised medical records from 248 patients from Sichuan Second University Hospital
in West China, each of which consisted of 10 features. Two bivariate tests were carried
out during exploratory data analysis: the Student’s t-test for normal distributions and the
Mann–Whitney U test for non-normal distributions. Fisher’s exact test was then applied
whenever necessary. For multiple comparisons, the significance level was adjusted using
the Bonferroni correction. Three methods for predictive modeling were constructed: RF,
light gradient boosting machines (LightGBM), and DT. By combining maternal features
and metrics from standard blood tests in a predictive model, the research produced a new
technique for early screening of severe preeclampsia. Lastly, the LightGBM model, which
relies on activated partial thromboplastin time ratio, aspartate aminotransferase, and direct
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bilirubin, had a sensitivity of 88.37%, an AUC of 89.74%, a specificity of 77.27%, and a PPV
of 65.96% for predicting severe preeclampsia.

Lin et al. [30] gathered data from eight clinical sites throughout the United States to
perform an observational cohort study in which ML was implemented. It aimed to develop
bias-free ML classifiers that can aid in early pregnancy screening by combining most of
the previously recognized risk variables and indications of preeclampsia with eclampsia
(E) and preeclampsia with severe features (sPE). The assessment involved a plethora of
information gathered for nulliparous individuals throughout four visits, including a birth
visit and three visits that generally corresponded to the first through third trimesters (Vi4
and Vi1–Vi3, respectively). Maternal serum was collected at Vi1 and Vi2 to fully explore the
association between a range of adverse pregnancy outcomes and placental analytes. The
methods utilized to obtain results were RF, LR, XGBoost, and SVM. The best performance
for early sPE compared to late sPE + E RF models yielded an AUC of 0.63 ± 0.11 for Vi1,
0.79 ± 0.11 for Vi2, 0.83 ± 0.08 for Vi3, and 0.84 ± 0.09 for Vi4.

Villalaín et al. [31] aimed to create a model utilizing ML techniques to predict
whether a delivery would occur within 7 days of diagnosis (model B) or abruptio pla-
centae (model SA) or the risk of developing hemolysis, elevated liver enzymes, and low
platelets (HELLP) syndrome. To develop models B and SA, a mono-objective genetic
algorithm was implemented. However, during eoPE diagnosis, maternal characteristics
and data were gathered, including platelets, creatinine, transaminases, ultrasound data,
and angiogenesis biomarkers such as PlGF. Basal models that included patient demo-
graphics (B1, SA1), and enhanced models that added data available at eoPE diagnosis
(B2, SA2) were created. Several methods were used, including a genetic algorithm,
mono-objective, missForest imputation, the K-nearest neighbor (KNN) algorithm, DT,
Gaussian naïve Bayes, and SVM. By applying 13 variables, KNN performed the best
at predicting the B1 basal model, with a precision of 0.68 ± 0.09, a specificity of 71.4%,
a sensitivity of 63.6%, an NPV of 65.2%, and a PPV of 70%, while, for SA1, the preci-
sion was 0.77 ± 0.09, the specificity was 80%, the sensitivity was 60.4%, the NPV was
87.9%, and the PPV was 50%. In addition, SVMs with 18 variables were better able to
develop models at diagnosis, with B2 having a precision of 0.79 ± 0.05, 80.1% specificity,
77.3% sensitivity, 76.2% NPV, and 81.5% PPV, and SA2 having a precision of 0.79 ± 0.08,
82.8% specificity, 66.7% sensitivity, 90.3% NPV, and 51.6% PPV. Table 2 shows a summary
of all related studies using machine learning.

2.3. Deep Learning Based Model for Predicting Preeclampsia

Tahir et al. [32] aimed to implement NN to estimate the probability of preeclampsia
on par with other algorithms such as NB and linear regression. The dataset was retrieved
from Surabaya Haji General Hospital and consisted of 239 samples, taking 17 risk factors
into account. To optimize the results, the researchers tested the neuron model with one
hidden layer to determine the number of neurons with the smallest error rate, which was
17 neurons. Lastly, the model was validated and compared using three validation methods.
NN had the best performance, with 96.66% accuracy, after being validated using the LOO
cross-validation method.

Similarly, Sakinah et al. [33] adopted a variant of recurrent NN, which is long short-
term memory (LSTM). The optimum combination of several parameters must be found to
obtain an accurate prognosis using this method. Time series patterns count of neurons in
the hidden layers, maximum epochs, and the combination of training and testing data were
among these parameters. Thus, adaptive moment estimation (ADAM) optimization was
utilized in the LSTM network during the process of learning, where it finds the optimum
weight values to gain the minimum system error rate. The validation methods used in this
study were LOO cross-validation and tenfold cross-validation. The dataset was retrieved
from Haji General Hospital in Surabaya. The best accuracy rates were obtained for the
training data (96.62%) and the testing data (90.22%). These percentages were attained using
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a combination of the LOO cross-validation approach, 30 hidden neurons, a maximum
number of epochs of 100, and a single parameter series pattern.

Table 2. Summary of related studies using machine learning.

Ref Year Domain Method Dataset Specificity Sensitivity Accuracy AUC

[18] 2020 Machine
learning-based

The elastic net, the gradient
boosting algorithm

16,370 deliveries collected
from April 2014 to January

2018 at Lucile Packard
Children’s Hospital at

Stanford, CA

- 45.2% - 0.79

[19] 2019 Machine
learning-based

RF algorithm, SVM, LR,
DT model, SGB, and naïve
Bayes classification method

11,006 records
collected from Yonsei
University Hospital

0.991 0.603 0.973 -

[20] 2019 Machine
learning-based

The Viterbi algorithm of
the i-bracelet system 105 pregnant women 72% 92.5% 80% -

[21] 2022 Machine
learning-based LR, SVM, DNN, DT, and RF

11,152 records
collected from Hospital of
Jinan University between

December 2015 and
September 2019; among

them, 143 had preeclampsia,
95 had GH, and there were
10,914 normal pregnancies

- 0.42 0.74 0.86

[22] 2021 Machine
learning-based RF, XGBoost, LR, and SVM.

3759 pregnant women who
received prenatal care at

Xinhua hospital during July
2016 and December 2019

- 0.789 0.92 0.955

[23] 2020 Machine
learning-based RF, SVM, SPD, and ICA Public dataset containing

202 patient records - - - 0.93

[24] 2018 Machine
learning-based

RF, SVM, C4.5-like Trees,
C5.0, logistic model trees,

Bayesian networks, NN, NB,
multivariate adaptive
regression spline, and

boosted logistic regression

Collected from a public
study; the dataset included

1634 records
0.8614 0.6846 0.8530 -

[25] 2022 Machine
learning-based RF and XGBoost

The OBCOAP of the
Foundation for Healthcare

Quality provided the dataset
- - - 0.770 ± 0.006

[26] 2022 Machine
learning-based RF classifier and GBTree

During July 2010 until
March 2019, 114 features
from pregnancies at the

Charité Universitätsmedizin
in Germany were used

97% ± 2% 66% ± 5% 89% ± 3% -

[27] 2020 Machine
learning-based RF, NB, LR

A sample of 95 women and
considering 13 features from
a public dataset from a study

conducted at Ljubljana
University Medical Center

- - 90.6%. -

[28] 2020 Machine
learning-based

SVM, ensemble, ANN,
ML-optimized LR,

DT, and RF

The BPJS Kesehatan dataset
consisting of 95 features was

preprocessed to
separate 3318 cases of

preeclampsia/eclampsia and
19,883 cases of normotensive

pregnant women

- - - 95%

[29] 2022 Machine
learning-based RF, LightGBM, and DT

248 records, with 10 features
from West China Second

University Hospital,
Sichuan University

77.27% 88.37% - 89.74%

[30] 2022 Machine
learning-based LR, RF, SVM, and XGBoost

At eight clinical sites
dispersed throughout

the US, information was
acquired from four visits.

The dataset used was created
using only 37 training cases

- - - 0.84 ± 0.09

[31] 2022 Machine
learning-based

Mono-objective, genetic
algorithm, MissForest, SVM,

KNN, GNB, and DT

215 samples of the National
Institute for Health and
Care Excellence (NICE),

with 15 features

80.1% 77.3% - -
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Additionally, Tahir et al. [12] aimed to determine how well DL and NN algorithms pre-
dicted the risk of preeclampsia in expectant mothers. From December 2017 to February 2018,
17 parameters were gathered from 1077 patient records at two hospitals in Makassar, as
well as the Haji General Hospital in Surabaya. The experiment used two data types: the
original data using 17 features and the data using the feature selection algorithm Particle
swarm optimization (PSO), which uses seven features. The methods used in the study were
rule induction, DL, SVM, DT, NN, NB, and KNN. After comparison, DL showed higher
accuracy than the other methods for both data types. DL using the original data resulted in
95.12% accuracy, but with PSO data, its accuracy was 95.68%. Therefore, the accuracy of
DL with PSO data was better than that of DL with the original data.

Furthermore, in 2021, to identify patients with preeclampsia syndrome and its
associated risk factors, Manoochehri et al. [34] proposed developing a data mining-based
model as a screening tool. The sample was medical records of 1452 pregnant women,
each with nine features, in Hamadan City, Iran, from April 2005 to March 2015. The
research involved six data mining techniques: RF, LR, discriminant analysis, KNN, SVM,
and C5.0 DT. The results indicated that the most significant risk variables for detecting
preeclampsia were the number of pregnancies, age, and the pregnancy season; among
the six data mining methods, the highest prediction accuracy was 0.791, which was
achieved by the SVM model.

In addition, Han et al. [35] studied medical data from 568 women who received hospi-
tal care in the Obstetrics Department at Fujian Maternal and Child Health Hospital. The
sample included pregnancies with preeclampsia, normal-term pregnancies, and pregnan-
cies with GH from September 2014 to September 2018. In this sample, 216 women were
diagnosed with preeclampsia, 136 women were diagnosed with GH, and 216 women had
neither preeclampsia nor GH. The aim was to determine the most reliable indicators of
preeclampsia using a backpropagation (BP) NN. The researchers used TensorFlow software
to build a three-layer BP NN with 25 features that were considered the input of the network
nodes. For the output, there were three sample types to examine the relevant aspects
affecting preeclampsia. The weight values (W1) that were related to the input layer neuron
nodes were produced after the NN model had been trained, and the correlation of the
influencing factors was established in accordance with the magnitude of the weights. In
conclusion, the BP NN identified albumin, mean platelet volume, blood urea nitrogen,
lactate dehydrogenase, and triglyceride as the strongest preeclampsia predictors. Moreover,
the NN showed 78.8% accuracy.

Bennett et al. [36] used huge data resources from the Public Use Data Files (PUDF)
for Texas, the Magee Obstetric Medical and Infant (MOMI) database, and the Oklahoma
PUDF. This study aimed to achieve early prediction of preeclampsia using ML and the
cost-sensitive deep neural network (CSDNN) [13] method. To investigate the efficiency
of multiple network architecture, Hyperband, Bayesian optimization, and random search
hyperparameter optimization algorithms were used. To estimate CSDNN performance,
it was compared with SVM with linear kernel (SVM-Lin), LR, and SVM with radial basis
function (SVM-RBF), in addition to cost-sensitive versions of each algorithm. The CSDNN
with focal loss (CSDNN-FL) was the best-performing model for the Oklahoma and Texas
datasets, with AUCs of 64% and 66%, respectively. For the MOMI dataset, CSDNN-FL
and CSDNN with the loss function weighted cross-entropy (CSDNN-WCE) performed
better than other approaches, producing an AUC of 76%. Although WSVM-RBF, CSDNNs,
and WLR resulted in the highest G-mean values, the AUC for Native Americans in Texas
was 57.1% and the AUC for African Americans in Texas was 66.7%. The best results
for Oklahoma Native Americans were obtained using DNN and balanced batch, with
an AUC of 58%, while the best results for Oklahoma African Americans were achieved
using CSDNN-WCE (AUC 62.3%) and the best results for the MOMI African American
dataset were obtained using either CSDNN-FL utilizing a balanced batch approach or
CSDNN-WCE. Table 3 shows a summary of all related studies using deep learning.
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Table 3. Summary of related studies using deep learning.

Ref Year Domain Method Dataset Specificity Sensitivity Accuracy AUC

[32] 2018 Deep
learning-based ANN

239 sample of 2016–2017
medical records from

Surabaya Hajj Hospital
- - 96.66% -

[33] 2019 Deep
learning-based

LSTM NN with
ADAM optimization

Samples taken from
General Hospital of

Surabaya Hajj
with 16 features

- - 90.22% -

[12] 2018 Deep
learning-based

PSO approach for feature
selection. NB, K-NN, DT,

NN, SVM, RI, and DL
used for classification

9 features and 1077 patient
records collected between

12 December 2017 and
12 February 2018, at two

hospitals in Makassar and
the Haji General Hospital

in Surabaya

- 90.51% 95.68% -

[34] 2021 Deep
learning-based

RF, LR, discriminant
analysis, KNN, SVM,

and C5.0 DT

Medical records of 1452
with nine features were
submitted to Fatemieh

Hospital in Hamadan City,
located in Iran from April

2005 until March 2015

0.780 0.800 0.791 -

[35] 2020 Deep
learning-based

Three-layer BP NN:
input layer, hidden layer,

output layer

25 features from
568 pregnant women

(216 with preeclampsia,
216 with normal

pregnancies, and 36 with
GH) from the Fujian
Maternal and Child
Health Hospital for

4 years starting from
September 2014

- - 79.8% -

[36] 2022 Deep
learning-based CSDNN

20 features from the
Oklahoma and Texas

PUDF, and MOMI
databases to represent

several different minority
populations in the US

0.739 0.591 0.722 0.724

3. Discussion

This review assessed the latest research on general methods, ML, and DL for preeclamp-
sia prediction. Our goal was to define the data types and techniques that were employed in
preeclampsia prediction, as well as the methods that delivered meaningful outcomes. In
this section, the data used for the prediction of preeclampsia, the algorithms used, and the
limitations of the reviewed studies are discussed.

Examination of the studies revealed that preeclampsia was predicted using a variety
of data sources, including clinical data, questionnaires, and laboratory test data. Most of the
studies that predicted preeclampsia with high accuracy used clinical information, such as
maternal and gestational age, blood pressure, height, weight, and history of preeclampsia
and hypertension. However, the best studies used mean arterial pressure, proteinuria,
creatinine, and PI. Jhee et al. [19] used the combination of maternal factors and common
antenatal laboratory data from the early second and third trimesters, which helped in
effectively predicting late-onset preeclampsia. Modak et al. [17] combined UPCR and a UA
Doppler screening test to predict preeclampsia and produced results with high accuracy.
Serra et al. [15] combined the maternal characteristics, biophysical parameters, and PlGF
for the screening of eoPE. Similarly, Schmidt et al. [26] predicted preeclampsia with high
accuracy using the ratio of sFlt1 to PlGF.

Nevertheless, it should be emphasized that the studies in this review that had an
accuracy above 90% suffer from several limitations. For example, Jhee et al. [19] devel-
oped an SGB model for late-onset preeclampsia prediction that achieved an accuracy
of 0.973. A model for first-trimester data could not be obtained because most of the
pregnant women were only involved in the antenatal evaluation program in the early
second trimester. Despite this lack of data in the first trimester, the developed model
predictive power was sufficient. Furthermore, the number of preeclampsia incidents was
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small, as only 474 out of 10,532 cases had preeclampsia, which is a common limitation
from which published models suffer.

Tahir et al. [32] implemented NN to estimate the probability of preeclampsia with
96.66% accuracy after being validated using the LOO cross-validation method. The study
used a sample of records from 239 women and considered 17 features. The dataset size
is considered small; consequently, further research in a large cohort is essential to prove
the reliability of the model result and minimize the features needed. In addition, there is
no indication of whether the model is used for early or late prediction of preeclampsia.
Another study by Tahir et al. [12] implemented a preeclampsia prediction DL model with
an accuracy of 95.68% with a PSO feature selection algorithm to reduce the number of
features from 17. The dataset was gathered from 1077 patient records at two hospitals in
Makassar, as well as Surabaya Haji General Hospital, including records from the same
239 women as were included in the previous study. The PSO feature selection algorithm
reduced the number of features from 17 to nine, which enhanced the dataset’s quality and
improved the learning process; however, as in the previous study, early- and late-onset
preeclampsia were not differentiated.

Furthermore, in Serra et al.’s study [15], despite the high accuracy of the mathematical
model, it also suffers from the low number of eoPE events, which comprised only 17 of
the 6893 pregnancies, causing an imbalanced database. Correspondingly, the prospective
observational study by Modak et al. [17] produced an accuracy of 92.24%, but suffered from
dataset-related problems. The study was conducted in a sample of 116 pregnant mothers,
which is considered small; thus, to validate the reliability of the method, further study in a
large cohort is required.

Carreno et al. [23] used a comparative strategy to assess the utility of time-series
summary methods and feature size reduction methods in preeclampsia prognosis. The
highest accuracy was achieved with an SVM algorithm paired with SPD for feature cluster-
ing, peaking at 93%. However, in this study, preeclampsia referred to both early and late
preeclampsia, which makes it difficult to evaluate the proposed method’s performance in
further investigations because patients could have early, late, or no preeclampsia.

Additionally, Li et al. [22] developed an XGBoost preeclampsia prediction model
with an accuracy of 0.920. However, the performance of the XGBoost model could not be
quantified among pregnancies with eoPE because of the rarity of eoPE. Therefore, additional
research is needed to build more prediction models for the prediction of eoPE. Another
limitation is that the model did not include the features related to pregnancy-associated
plasma protein A or PlGF, which have previously been demonstrated to be related to the
incidence of preeclampsia [37].

Moreover, research conducted by Sufriyana et al. [27] developed a CVR model for
the prediction of intrauterine growth restriction (IUGR) and preeclampsia, including a
sample of 95 women and considering 13 features. The CVR achieved an accuracy of 90.6%;
however, the model has several limitations. The first limitation is that the model does not
differentiate between IUGR and preeclampsia; consequently, the model should only be
used for a referral decision. Second, the CVR model cannot be used to decide whether
to deliver before term, as such a decision must be made based on models that precisely
predict severe incidents of IUGR and preterm or early-onset preeclampsia. Third, the study
used a small dataset of only 95 pregnancies.

Sakinah et al. [33] built an LSTM model for preeclampsia prediction with an accuracy
of 90.22%. However, more information about the study needs to be provided. The first
missing information is the dataset size used in the model. The other information that needs
to be mentioned is whether the prediction is for early- or late-onset preeclampsia. Figure 1
illustrates the ML and DL algorithms that were most widely implemented in the studies,
Figure 2 shows the algorithms that obtained the best results in each study, and Table 4
shows a summary of the previous studies that used clinical data.
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Table 4. Summary of the previous studies that used clinical data.

Ref Demographic Clinical and Laboratory

[18]

Maternal age, age group, height, weight, blood type, race,
ethnicity, gravida, preeclampsia, diabetes, gestational
diabetes, ART, autoimmune conditions, renal disease,

anemia, hypertension, obesity, medical history

SBP, DBP, platelet, WBC, red blood cell, UA,
hemoglobin, hematocrit, creatinine, glucose,

protein, chlamydia, rubella, hepatitis B, varicella

[19] Maternal age, parity number, height and maternal weight,
medical history, hypertension, diabetes, preeclampsia

SBP, DBP, UPCR, hemoglobin, platelet count,
WBC, creatinine, BUN, AST, ALT, potassium,

calcium, magnesium, total bilirubin, TCO2

[20] Maternal age, BMI, hypertension, preeclampsia, diabetes SBP, DBP, platelet, EEG, proteinuria, PLGF test
for PIGF, UtA doppler, calcium

[21]
Age, weight, height, BMI, gestational age, MAP, parity,
parous, nulliparity, smoking, hypertension, diabetes,

preeclampsia, medical history

SBP, DBP, FGR, PAPP-A, β-HCG, UtA-PI, CRL,
proteinuria, creatinine, SLE, APS
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Table 4. Cont.

Ref Demographic Clinical and Laboratory

[23] Age, BMI, race, gravidity, parity TLR4, BCL6 protein, IL-2, IL-24, adiponectin,
SHBG, CA4, TK1, AFM, PLXNB2

[24]

Age, birth order, birth weight, gestational age, Hispanic
origin, race, country of birth, marital status, education,

one and five-minute APGAR scores, number of prenatal
visits, month of pregnancy when prenatal care began,
weight gained during pregnancy, obstetric procedures

performed, medical risk, delivery complications,
congenital anomalies, parity, gravidity, diabetes, asthma,

hypertension, depression, anxiety

-

[26]

Age, BMI, height, weight, race, gestational age,
antiphospholipid syndrome, diabetes, elevated liver

enzymes, epigastric pain, parity, hypertension, headache,
preeclampsia, visual disturbances, renal disease

Creatinine, proteinuria, SBP, DBP, PIGF, sFlt,
prothrombin time, sodium, thrombocyte count,
urea, APTT, LDH, Kalium level, hemoglobin,
HCT, ALT, AST, umbilical uterine, UA, PI for

middle cerebral artery

[29] Maternal age, parity, BMI, number of fetuses,
thyroid disease, diabetes

WBC, RBC, hemoglobin, hematocrit, globulin,
GGT, LDH, urea, creatinine, FPG, fibrinogen, TT,
PT, INR, APTT, ALT, AST, total bilirubin, protein,

albumin, platelet count

[30] Weight, BMI, diet intake, diabetes, hypertension,
waist circumference, MAP

Blood pressure, UA, serum biomarkers, PIGF,
sFlt-1, PAPP-A, inhibin A, ADAM12, VEGF,

sFlt-1 to PIGF ratio, placental analytes,
cholesterol, endoglin

[31]

Gestational age, height, pre-pregnancy weight,
pre-pregnancy BMI, smoking status, race, Risk factors for

preeclampsia, previous preeclampsia, chronic
hypertension, pre-pregnancy diabetes, nulliparity, family

history of preeclampsia, method of conception

Platelets, blood pressure, creatinine,
Transaminases, sFlt-1, PIGF, ultrasound data,
low-dose aspirin intake, heparin prophylaxis,

chronic kidney disease, thrombophilia, systemic
lupus erythematosus

[32] Age, MAP, BMI, first pregnancy, childbirth process,
medical risk, preeclampsia, hypertension, diabetes Glucose, proteinuria, SBP, DBP

[34]
Age, gravidity, number of children, job, fetus gender,

pregnancy season, kidney and heart diseases, diabetes,
hypertension, blood group

-

[36]

Ethnicity, race, age, border country, insurance, month of
delivery, marital status, weight, previous pregnancies,

number of abortions and deliveries, infant number,
prenatal weight, hypertension, obesity, pre-existing

diabetes mellitus, multiple gestations, gestational diabetes
mellitus, UTI, infections of genitourinary tract in

pregnancy, chronic kidney, Obstructive sleep apnea, and
hypertensive heart disease. Primigravida, anemia NOS,

iron deficiency anemia, asthma, anxiety, pure
hypercholesterolemia, tobacco use disorder, inadequate

prenatal care, history of premature delivery, amphetamine
dependence, unspecified vitamin D deficiency

-

4. Challenges and Opportunities
4.1. Identifying the Disease

Predicting preeclampsia early and precisely is critical because it influences treatment
response and prevents long-term complications in pregnancies. Preeclampsia has a complex
disease presentation due to the lack of clear symptoms visible to the patient, and the signs
are mostly silent. Choosing the right vital signs for early-stage diagnosis is a significant
and challenging step in identifying the disease. Therefore, it is essential to consult doctors
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to select the right features, test the results, and ensure that the diagnosis is accurate, as
inefficient health information systems can contribute to diagnostic errors. For instance,
Tahir et al. [12] collected several references of papers which discussed preeclampsia as an
initial step for choosing the features, but it resulted in having a diverse set of features. The
researchers overcame this challenge by consulting obstetrics and gynecology specialists
who assisted in choosing the right attributes and reasoning their choices.

4.2. Patients’ Data Security and Privacy

Patients’ data privacy may limit data sharing, hindering the development of precise
ML models in medicine and limiting its progress. As a result, a solution to regulate data
sharing in a way that does not impede progress, induce biases against underrepresented
populations, or violate any patient privacy laws or regulations must be utilized [38]. A
common solution is federated learning, which is a method of training AI models without
allowing anyone else to access or touch the data, allowing you to unlock information to
feed new AI applications [39]. Implementing robust security measures and protocols is of
utmost importance to guarantee the confidentiality and dependability of healthcare systems
that gather patient information. Given the sensitive nature of such data, it is imperative to
safeguard it against any breaches that could lead to data exposure in further studies [40].

4.3. Reliability of the Models

In a clinical setting, the reliability of ML models includes performance metrics such as
sensitivity, accuracy, specificity, precision, and AUC. Sensitivity is crucial to medical studies,
since having high sensitivity is necessary to miss as few positive cases as possible [41].
Furthermore, ensuring ethical fairness and relevance for clinical translation is essential to
ensure a reliable model and gain the trust and acceptance of health workers and patients.
Thus, explainable artificial intelligence (XAI) practices can be used to interpret the black-box
models and assist healthcare workers with translation [42].

4.4. Issues Related to the Datasets

Having the proper dataset size is essential to prevent overfitting and underfitting
data [43]. Missing values in the dataset can also negatively impact the ML algorithms’
performance and the models’ accuracy [44]. Moreover, in [45], the study included a low
prevalence of the disease in the population studied, resulting in an imbalanced dataset.
This can cause bias in the results and make it harder for the algorithm to accurately
classify the data. Several studies had a considerable drawback of having limited data
sizes [46–48]. Furthermore, a number of these studies only had access to data from a
single center [29,49], which could have resulted in a biased outcome. To improve the
accuracy and trustworthiness of diagnostic models, it is advisable to utilize larger and
multicenter datasets.

Furthermore, in [31], a small dataset was used in developing the models, which
makes it difficult to interpret the results and questions the reliability of the models. To
prevent such scenarios, the synthetic minority oversampling technique can be used to avoid
an imbalanced dataset [45], and understanding the data’s distribution and handling the
missing data based on the distribution minimizes this problem [44].

4.5. Model Interpretation

The ML models are black-box models, which means that the models are so complicated
that humans cannot easily read them. The study in [22] highlighted the challenge of
implementing ML models in clinical practice due to their complexity, arising from the
potential inclusion of a large number of biomarkers, which can make the model more
difficult to interpret and use in day-to-day medical decision making. In healthcare, where
many decisions are truly life and death, a lack of interpretability in prediction models
might weaken trust in those models [46]. XAI is considered a solution to improve the
comprehension and interpretation of the predictions made by an ML model [47].
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4.6. Human Barriers with AI Adoption in Healthcare

Despite the promising advances in utilizing AI in healthcare, human barriers arise
while ensuring quality assurance and accuracy when adopting these technologies. The
challenge of assigning liability in this situation is further complicated by the fact that AI
technologies are constantly evolving and improving. As such, it is difficult to determine
whether the algorithm or the physician should be held liable for any missed findings.
Enhancing the human–computer interaction may reduce the cost of this problem, as algo-
rithmic interpretability gives a better understanding in AI’s decisions [48].

4.7. Model Bias

This challenge refers to the risk of ML systems reflecting and amplifying societal biases,
leading to unequal accuracy in minority subgroups. This can result in unfair outcomes in
areas such as medicine where hospital mortality prediction algorithms may show varying
accuracy. To address this issue, it is important to ensure that the data used for training the
model are diverse and representative of the target population. Additionally, performance
analysis should be conducted by considering subgroups such as age, ethnicity, and location
to identify any potential biases in the model. As a result, XAI techniques [47] can be used
to make the model’s decision-making process more transparent and explainable, allowing
for further examination and adjustment to prevent any biases from being amplified.

5. Conclusions

This review attempted to offer a thorough analysis of the prior achievements made
by researchers in the field of preeclampsia prediction. The use of ML algorithms and AI
technologies in the medical industry has improved preeclampsia prediction applications.
By identifying many ML, DL, and general techniques for preeclampsia prediction, we
discovered that the most popular methods were RF, SVM, and LR. In the future, using real
datasets, ML and DL algorithms can be utilized to forecast the disease. These datasets
can include demographic, clinical, and laboratory information. Moreover, the ensemble
method is the creation of a strong collaborative overall model by combining multiple
models; this strategy can be utilized to enhance the overall prediction outcomes [49].
Lastly, the evaluation metrics used in the studies to evaluate the model results included
AUC, ROC, confusion matrix, accuracy, specificity, recall (also known as sensitivity), F1
score, and precision, and the results were validated using K-fold cross-validation and
LOO cross-validation.
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