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Abstract: Link prediction finds the future or the missing links in a social–biological complex network
such as a friendship network, citation network, or protein network. Current methods to link
prediction follow the network properties, such as the node’s centrality, the number of edges, or
the weights of the edges, among many others. As the properties of the networks vary, the link
prediction methods also vary. These methods are inaccurate since they exploit limited information.
This work presents a link prediction method based on the stochastic block model. The novelty of our
approach is the three-step process to find the most-influential nodes using the m-PageRank metric,
forming blocks using the global clustering coefficient and, finally, predicting the most-optimized
links using maximum likelihood estimation. Through the experimental analysis of social, ecological,
and biological datasets, we proved that the proposed model outperforms the existing state-of-the-art
approaches to link prediction.

Keywords: complex networks; clustering coefficient; directed multilayer network; link prediction;
maximum likelihood estimation; m-PageRank; stochastic block model

1. Introduction

Complex networks are used to model real-world systems such as social networks,
biological entities, ecological systems, or communication networks. Citation networks,
friendship networks, airline networks, mobile communication networks, and protein–
protein interactions networks are a few examples of complex networks [1,2]. These systems
have certain distinct characteristics. Firstly, they are very large, comprising thousands
to even millions of entities. Secondly, the entities tend to interact with each other and
evolve over time in ways that are difficult to predict. Thirdly, entities exhibit multiple
behaviors. Lastly, entities share multiple relationships among themselves. The evolution of
complex networks has been a topic of great importance since it is fundamental to correct
the characterization of real-world systems. In other words, a complex network serves as a
good model only to the extent that its evolution reflects the evolution of real-world systems,
thereby allowing the use of the model to predict the real-world. Since the entities and their
interconnections turn out to be complex in these networks, predicting the evolution of
complex networks remains a challenging task. At a more fundamental level, evolution can
be viewed as a series of changes within the network, wherein new entities appear, existing
entities disappear, and two non-interacting existing entities start an interaction. The pace
at which these changes happen also contributes to the complexity [3,4].

Graphs are fundamental data structures to represent any network. Mathematically,
a graph, G = (V, E), where the vertex set is denoted by V, where V = {v1, v2, . . . , vn},
and the edges are denoted by E, where E = {(vi × vj); {v1, v2, . . . , vn} ∈ V, i 6= j}.
The vertices represent the entities, and the edges represent the relationship between the
entities. Complex networks comprise multiple subsystems, and hence, a simple graph
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representation is not sufficient. Consider a citation network with different kinds of entities
papers, authors, citations, keywords, publication year, and several other characteristics.
Figure 1 provides three different representations of citation networks of such a network
arranged hierarchically in the form of layers. For simplicity, the representations consider
only a couple of characteristics. In the first representation given in Figure 1 (left), every layer
consists of the same set of nodes, i.e., papers. The intra-layer links depict the relationship
based on a specific aspect such as the author or publication year. For example, the link
between two publications at the author layer could indicate that they share a common
author. The inter-layer links depict the common aspects between the entities. It should be
noted that we associate meaning with the intra- and inter-links. In the second representation
given in Figure 1 (middle), each layer consists of different sets of nodes. The lower layer is
the authors, and the higher layer is the publication year. Again, the meaning of intra- and
inter-layer links is associated by us. Both are multilayered representations.

Figure 1. Three different representations of heterogeneous citation networks. The left and middle
ones are undirected multilayer networks, and the right one is directed multilayer networks.

There needs to be more than the monoplex network representation of the objects and
the relations, for instance hosting objects and relations of different scales, called multilayer
networks. A multilayer network is defined as a set of nodes, edges, and layers, where the
layers’ interpretation depends on the model’s implementation. Kivelä et al. [5] defined
a multilayer network as a quadruple, GM = (VM, EM, V, L), in which the network is a
collection of elementary layers L = L1 ∪ L2 . . . Ln stacked together. A layer is associated
with a layer number and an aspect d. VM represents the set of vertices in each layer. Let α
be a layer; the set of vertices of layer α is denoted as Vα = {vα

1 , vα
2 , . . . , vα

n}. The set of all
vertices in the network is represented as V. Mathematically, VM ⊆ V × L1× . . .×Ln. The
interconnection of vertices is represented as EM.

It turns out that working with directed multilayer networks requires certain additional
considerations as opposed to undirected networks [6]. To appreciate this, consider the
network given in Figure 1 (right). It is a directed multilayer network with two layers
with the aspects being the authors and papers. The entities in the author layer denote the
authors, and the entities in the paper layer denote the published paper. The links among
the authors depict the author–author collaboration. A directed edge from the author layer
to the paper layer depicts the paper published by the authors. The interrelationship among
the papers elaborates the details of the citations. For instance, an edge from P2 to P1 means
that paper P2 cites P1. The multilayer networks can represent:

• The relationship among the different nodes in the same layer;
• The relationships among the nodes that (possibly) belong to different layers;
• Each layer exhibiting a common aspect.

Complex networks, such as the WWW, airline transportation networks, and Twitter,
have directed edges. The challenge in such networks is that not all nodes are reachable from
a given node. Such complex networks exhibit that incoming and outgoing edges could
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follow different scaling laws. Studying such large-sized directed networks paves the way
toward other topological structures. Detailed structural analyses of the network are crucial
to obtain the out-degree distribution with a power-law behavior. The multilayer network
deploys tensor algebra for representation. A multi-linear graph represents a product of two
vector spaces, V ⊗ L. It is a linear combination of v⊗ l, where v ∈ V and l ∈ L:

āij =

{
1, if aα

ij = 1 f or some 1 ≤ α ≤ m

0, otherwise
(1)

Link prediction plays a prominent role in suggesting the future or the missing links in a
social–biological complex network. Link prediction also has a wide range of applications in
different industries [7]. Link prediction finds its application in the domains of social
networks for friend recommendation, citation networks for future citations, and the
biological network for protein–protein interaction [8–10]. Figure 2i is a snapshot of a
weighted directed network, and the possible future links among the nodes are identified
and established based on the least path weight, as depicted in Figure 2ii. Link prediction is
an approach to detect such potential relations among individuals in social networks.
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Figure 2a: Initial Network

Figure 2b: Possible links in network
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Figure 2. (i) Snapshot of a weighted directed network; (ii) possible future links.

In real-time, the complex network comprises thousands of nodes. The major challenge
in link prediction is retrieving the proper amount of information to perform the prediction
and the enhanced algorithmic techniques to provide accurate predictions. Limitations in
the availability of the attributes of the nodes redirect the link prediction algorithms to focus
on the underlying network topology, which is based solely on the network structure. Most
research focuses on the structural similarity indices classified as local and global.

In the local structural similarity approach, we considered the node link strengths
to compute the similarity between the nodes so that they might have a link [11,12]. The
local-path-based link prediction considers the structural information and the fixed distance
between the nodes. The information of the nodes that lie on the set of all possible paths
of a smaller length was considered [13,14]. The standard framework of link prediction
methods is the similarity-based algorithm, where each pair of nodes, x and y, is assigned a
score Sxy, defined as the similarity between x and y. We computed the scores between the
non-observed nodes. The higher the score, the higher the likelihood of links in the future is.
The local and global indices use the network properties, such as node centrality, edge count,
or edge weights, among many others. Similarity measures such as the Common Neighbors
(CNs) [15], Jaccard’s Coefficient (JACC), Preferential Attachment (PA) [16], Adamic–Adar
index (AA) [17,18], and Cosine Similarity (CS) [19] use topological information for link
prediction. As the properties of the networks vary, the link prediction methods also vary.
These methods cannot be more accurate since they exploit limited information. The main
drawback of local indices is that local information restricts the set of nodes’ similarity to be
computed at two nodes’ distance.
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Many traditional algorithms that aim to compute pairwise similarities between vertices
of such a big graph need to be more accurate. Random walk utilizes a Markov chain, which
describes the sequence of nodes visited by a random walker. The transition probability
matrix can describe this process. Indices use the entire network’s topological information to
score each link. Global indices such as the Katz index and Random Walk with Restart (RWR)
can provide much more accurate predictions than the local ones. The main disadvantages
of the global indices are that (i) the calculation of a global index is time-consuming, (ii) it
might not be feasible for large-scale networks, and (iii) the global topological information
is not available. The local and global indices are applied to undirected networks.

Extensive research is currently being carried out to overcome the drawbacks of
link prediction using network structure alone. Section 2 discusses this more. New
approaches utilize the statistical and probabilistic approach toward link prediction. These
approaches necessitate the network structure by maximizing the likelihood of the observed
structure. Then, the likelihood of any non-observed link is calculated according to the
newly inferred information.

This article proposes an enhanced link prediction framework. Broadly, we considered
the real-time situations of predicting the future links in the network. A link may originate
in the future between two entities belonging to two different groups or block in an entire
network emerging (inter-community). The term block refers to the group of nodes exhibiting
a common behavior. Our framework was tailored to consider the global network structure
of directed multilayered complex networks and applies a suitable probabilistic approach
to predict the likelihood of the occurrence of a link. This enabled us to acquire deeper
insights into the network’s organization, which cannot be gained from similarity-based
algorithms. Hence, the significant contributions of this article are proposing the stochastic
block modeling approach for link prediction by (i) an improvised algorithm to identify
influential nodes in the directed multilayered complex network using m-PageRank, (ii) the
global clustering of the influential nodes by extending the correlation to inter-layer nodes,
(iii) predicting the probability of occurrence of future links in the network using the
maximum likelihood estimation (MLE), and (iv) empirically proving the improved accuracy
and precision with social, biological, and ecological datasets. This article is organized as
follows: Section 2 surveys the related work in this area. The link prediction using stochastic
block modeling is illustrated in Section 3. The experimentation and implementation of the
model are illustrated in Section 4. Finally, the article is concluded in Section 5.

2. Background Study

Predicting the likelihood of a link between two unconnected nodes is an interesting
problem. Social network applications such as Facebook, Instagram, and Twitter require
link prediction to suggest friends to a user. Link prediction also predicts missing links in a
network [20–22].

Local indices are most suitable for undirected large-scale networks, as they consider the
local information by comparing the degree of overlap among the nodes. Global indices take
the properties of the whole social network into account. Random walk techniques [23–26]
and PageRank techniques [27,28] are a few prominent metrics among them. On the other
hand, semi-local indices omit information that makes little contribution to improving
the prediction algorithm [29]. The global similarity indices depend on the amount of
reachability between the nodes. Hence, the link prediction occurs only for prominent nodes
and is, therefore, not wholly reliable.

In today’s era of data explosion, many large-scale social networks need to be processed
and analyzed urgently, and predictions are needed based on the similarity of local nodes.
Large-scale networks also demand that the algorithm be highly efficient and time-saving.
The classical clustering algorithms measure local information such as Common Neighbors
(CNs), the Jaccard Coefficient (JACC), and the Adamic–Adar index (AA). These algorithms
mainly consider the degree or number of common neighbor nodes. The local measures such
as the common neighbors, Adamic–Adar index, and resource allocation lack performance
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in a directed network. These algorithms are not suitable for a scale-free network. The
drawbacks of local measures are:

- The local measures based on the common neighborhood will prevent the likelihood
of prediction of link establishment.

- The local measures fail to consider the proximity of direction. Hence, prediction fails
for directed graphs.

Much research has been carried out for link prediction using score-based approaches,
machine learning approaches, and probabilistic approaches. Predicting the links by
analyzing the topological structures of the underlying network adopts a score-based
approach. This approach predicts a link by calculating the similarity score for every
pair of nodes.

The researchers in [30,31] used the local main path degree index to predict the
probability of a link between two nodes. The degree distribution and path strength between
nodes are also used to find similarity information. In [32,33], the authors considered the
entropy information of the shortest path between node pairs and proposed the Path Entropy
(PE) indicator for predicting links.

The link prediction is posed as a binary classification problem. The supervised and
unsupervised machine learning approaches are widely used for link prediction. In the
supervised ML approach, the prediction task is carried by a classifier and uses approaches
such as naïve Bayes, neural networks, decision trees, Support Vector Machine (SVM), k-
nearest neighbors, bagging, boosting, and logistic regression [34,35]. On the other hand,
in unsupervised machine learning, clustering techniques are used to predict the links.
The probabilistic approach uses the Bayesian graphical model by considering the joint
probability among the nodes in a network to predict the link. When the network sizes
increase with the increase of the nodes and edges, the machine learning approach to link
prediction suffers from computational complexities.

Methods such as the edge convolution operation [36], binary classification [37], and
light gradient-boosted machine classification [38] approaches are adopted in deep learning
models for predicting the links. To improve the link prediction performance, these deep
learning models adopt more features such as the node’s interaction with neighbors, the
self-degree, the out-degree, and the in-degree. Such considerations elaborate that the
deep learning models also depend on the local indices. In the articles [39–41], the authors
identified the local influencers to predict the link. The authors in [42] considered vertex
ordering using the network topology information for the link predictions.

3. Stochastic Block Modeling

We propose a Stochastic Block Model (SBM) framework for solving the link prediction
in directed complex networks. A block refers to a smaller group of connected nodes
exhibiting a common property, which could be local or global, such as attributes and
closeness. A block model or generative model refers to the collection of such blocks
exhibiting some property on the data analysis performed. In the SBM, we provide a
stochastic generalization of the blocks using a statistical or probabilistic approach. We
formulated an estimation technique for establishing a relationship within the nodes in
the network. The block model helps the distribution of the relationship between nodes.
Such assumed relationships are dependent on the blocks to which the nodes belong.
The relationship is established using a probabilistic estimation—the maximum likelihood
estimation—to establish the relation, thereby predicting the links. It is a three-stage approach
comprising:

i. Designing an improvised algorithm to identify the influential nodes in the directed
multilayered complex network using m-PageRank.

ii. Performing global clustering of the influential nodes by extending the correlation to
inter-layer nodes.
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iii. Predicting the probability of occurrence of future links in the network using the
maximum likelihood estimation.

We refer to this stochastic block modeling approach as mPCoM, where mP refers
to m-PageRank, Co refers to the clustering Coefficient, and M refers to the Maximum
likelihood estimation. We validated the mPCoM using three different datasets from the
social, biological, and ecological domains.

3.1. Identifying Influencers Using m-PageRank

An influencer in a network is a central node with more incoming edges. Influencers in
the complex network help shape the network’s dynamics [43,44]. In a social network that
exhibits a follower–followee relationship, the nodes may establish a relationship with a highly
influential node. In a social network, the node with more incoming edges represents an
influencer, since it refers to an entity (person, product, or web page) with more followers.
Identifying influencers helps in various real-world tasks, such as viral marketing, epidemic
outbreaks, and cascading failure. Centrality measures such as the degree, k-core, closeness,
betweenness, eigenvector, and PageRank are used to identify potential influencers in
complex networks.

A network or a sub-network may have one or more influencers. The nodes in a network
tend to establish a link to the influencers more often than to other nodes. There needs to be
more than this definition of an influencer in a multilayer network. In a multilayer network,
the incoming edges of a node v can come from either the same or different layers. In the
former case, v is an influencer in that layer (local influencer). In the latter case, v is an
influencer globally. We focused on identifying global influencers. Furthermore, there can
exist more than one influencer in a layer.

To identify the global influencer, more weight is given to an incoming edge if it comes
from another layer. Furthermore, the weight of the layers differs. Since we considered a
directed multilayer network, a PageRank algorithm for a multilayer network will enable us
to identify the influencers. We selected the m-PageRank algorithm for this purpose [45,46].
The nodes with higher PageRank values will be the influencers. In a multilayer network, we
associated a weight for the layers for computing the PageRank. The layer weight increases
with an increase in active nodes. Usually, the layer weights are assumed from the ground
truth of the dataset, or we assumed that, initially, all layers have equal weights.

The computation of the PageRank of a vertex Vi in a multilayer network is broadly a
two-phase process. (1) The PageRank of all nodes is computed considering the incoming
edges from that layer only. (2) The PageRank of all nodes is re-computed by a two-step
iterative process. (a) The layer weights are initialized to 1, and the PageRank of all the nodes
is computed based on the layer weights and the current PageRank. (b) This PageRank
is used to re-compute the layer weights. This layer weight and PageRank re-computation
process is continued for all layers and nodes, respectively, until the PageRank converges.
The nodes with higher ranks are higher influencers. The top influencers are picked based
on the threshold specified by the user.

Now, we proceed to describe the m-PageRank computation in more detail. Initially,
we establish the definitions of important terms.

Definition 1. Let v be the node such that v ∈ V in a network, and the PageRank of node v, Prv,
is the ratio of incoming edges of v to the total number of edges. For simplicity, we initialized the
PageRank of all nodes to 1

N , where N is the total number of nodes in the network.

Definition 2. Let L represent the stack of layers in the network Gm such that L = L1× . . .×Ld.
The layer weight Ll

v denotes the importance of the layer, computed by the cumulative weight of the
nodes in an individual layer. We initialized the weight of all the layers to 1. The weight of the layer
increases with more active nodes in the layer.
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Definition 3. The PageRank of node v in the lth layer, Prl
v, is computed as the product of the layer

weight Ll
v (weight of the lth layer containing the node v) and the PageRank of v in the lth layer, Prl

v,
i.e., [Ll

vXPrl
v].

Definition 4. We define the damping factor d, which represents the probability with the proportion
of time that the vertex vi will randomly follow a vertex vj. The value of the damping factor affects
the convergence rate of PageRank. A low damping factor means that the relative PageRank will be
determined by the PageRank received from external nodes A high damping factor will result in the
node’s total PageRank growing higher. Ideally, the value of the damping factor is 0.85.

The layers with more active nodes of a high PageRank and high in-strength are given
more weights. Hence, we computed the inter-layer adjacency matrix for all V. This is again
an iterative process. The adjacency matrix is computed as

aL
ij =

V

∑
j=1

L

∑
l=1

a[L]ij (2)

Figure 3. Computing the m-PageRank in a multilayer network with 2 layers.

Hence, the PageRank in a multilayer network χ
[L]
m (v) is computed iteratively considering

the initial PageRank of all the vertices in the network cumulated with the product of the
layer weight to the PageRank of every vertex and normalized by the damping factor. This
is equated as

χ
[L]
m (v) = Pri + (1− d)

N

∑
V=1

M

∑
l=1

a[L]ij [Lli
j × Prl

v] (3)

We illustrate the same with an example. Consider a multilayer network with two
layers and seven nodes, as shown in Figure 3. We computed the m-PageRank for all the
nodes using Equation (3). The ranking after 14 iterations is captured in Table 1. From
the computation, it was observed that Node6 and Node7 have the highest PageRank. The
incoming links from the above layer contributed to this.

Table 1. m-PageRank computation for each node given in Figure 3.

Iteration Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

1 0.4333 0.8533 0.15 0.567 0.789 1 0.987
2 0.1925 0.3766 0.15 0.747 0.987 1.0012 0.9899
3 0.1925 0.2768 0.15 0.435 0.989 1.0012 0.991
12 0.1925 0.27431 0.15 0.4123 0.992 1.0123 0.9934
13 0.1925 0.27431 0.15 0.390 1.003 1.1245 1.004
14 0.1955 0.27431 0.15 0.389 1.09 1.1245 1.023

Algorithm 1 elaborates the steps for identifying the influencers in the multilayer
network.
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When the m-PageRank calculations have settled down, the normalized probability distribution,
which is the average m-PageRank for each node, will be 0.0 ≤ m−PageRank ≤ 1.0. The high
PageRank-valued nodes above a threshold were selected as the influencers. A link is more
often established from a node as an influencer.

Algorithm 1 Influencers’ identification using m-PageRank.

Input: G = (VM, EM, V, L), Threshold : Tp
Output: In f luencers : I

1: procedure INFLUENCER-IDEF(G)
2: Initialize Prl

v ← 1, ∀ łi ∈ L, ∀ v ∈ l
3: for each vi ∈ VM do
4: χ

[L]
m (v) = Pri + (1− d)∑N

V=1 ∑M
l=1 a[L]ij [Lli

j XPrl
v]

5: end for
6: for each li ∈ L do
7: I = I ∪ { V l

j ‖∀ Vj ∈ l, Prl
Vj

>= Tp}
8: end for
9: return I

10: end procedure

3.2. Building Blocks Using Correlation

We built the set of blocks around the influencers, I. For that, from the set of influencers,
we calculated the correlation between the influencer and every pair of nodes v ∈ V to
form the blocks. This was performed using the global clustering coefficient. A clustering
coefficient is a measure of the degree to which nodes in a graph tend to cluster together. At
least three nodes are needed to form a cluster or block. The basic idea of forming a block is
as follows.

Consider the complex network with two layers, in which the nodes with the highest
in-degree are an identified influencer I. Figure 4 shows an example of a multilayer
network with Node 3 as the influencer from Layer 1. Among all the neighboring nodes
of I, we determined a node with the highest in-degree, denoted as j. This is because
in-degree(j) = 4 > in-degree(L11). Now, j is added to I’s block. Next, for all neighbors
of j, compute the correlation with I using the global clustering coefficient. To this end,
we picked each neighbor k of node j and computed the correlation with I. The node k is
added to the block if it has a higher correlation. Ideally, the nodes {I, j, k} exhibit a closed
triad structure, as shown in the figure. We continued with all the other influencers and
constructed the blocks.

Figure 4. Multilayer network with 2 layers and the influencer identified.

Hence, to formally define clustering coefficients in a multilayer context, we first define
the triangle structure or triad structure [47].
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Definition 5. We define a triad of nodes lying up to three different layers such that the vertices in
the triangles are connected by inter- or intra-layer arcs, irrespective of their orientation. This way,
we can consider all possible closed triads in the inter- or intra-layer directions.

The global clustering coefficient depends on the relation between the degree of the
node in the layer and the total degree of all nodes in the layer.

Definition 6. Let L represent the stack of layers in the network Gm such that L = L1× . . .×Ld,
Dv be the degree of node v, and Ev represent the nodes directly connected between the neighbor
nodes of node v, then the clustering coefficient, CC(v), is

CCv =
d

∑
L=1

Ev
Dv(Dv−1)

2

(4)

Definition 7. Let Sxy be between node x and y, and let PC(v) be the node centrality of v; α and
β are adjustable parameters such that α + β = 1, γ(v) is the set of neighbor nodes of node v, and
CC(v) is the clustering coefficient of v, then

Sxy = ∑
v∈γ(x)∩γ(y)

(α
CCv

Dv
+ β

PC(x)PC(y)
Dv

) (5)

We start by taking each influencer in its blocks and merging the highly correlated
blocks. We stop the process when the desired number of clusters is formed. If the nodes
in the highest correlated pair belong to different blocks, we merge these two blocks into
a single one using a Merge function; otherwise, we move to the next-highest correlated
pair. This process is elaborated in Algorithm 2. Thus, we obtain different blocks from
the complex network. Now, we predict the links among the nodes belonging to such
different blocks.

Algorithm 2 Block formation using correlation.

Input: G = (VM, EM, V, L), In f luencers : I
Output: Blocks B;

1: procedure BLOCK FORMATION(G, I)
2: Initialize S = { Sxy ‖ ∀ x, y ∈ I, x! = y}
3: Sort(S)
4: for each (x, y) ∈ S do
5: Merge(x, y)
6: return B
7: break
8: end for
9: end procedure

10: procedure MERGE(x, y)
11: if Bx! = By then
12: B← B ∪ {Bx ∪ By}
13: end if
14: end procedure

3.3. Link Prediction Using Maximum Likelihood Estimation

The identification of influencers followed by determining the blocks around them
ensures both the global and local information form the basis for link prediction. The next
goal is to predict the future links between pairs of blocks. To this end, we picked each
pair of blocks and determined the links between the nodes of one block and the nodes
of the other. Assuming n blocks, we have a total of n*(n − 1) block pairs. Among these
block pairs, we determined the pair that has the highest likelihood using the maximum
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likelihood estimation. Let the network GM be now partitioned into multiple blocks B, such
that B = b1 ∪ b2 ∪ . . . bn. We computed the probability of the existence among two nodes a
and b, such that each node belongs to a different block.

Definition 8. Let lb1,b2 be the number of edges between the nodes in the block b1 and b2. Assume
exy to be the edge between node x and node y, such that x ∈ b1 and y ∈ b2, and ηb1,b2 is the number
of pairs between the nodes of blocks b1, b2. Then, the probability of the existence of a link between x
and y is found as

ρb1,b2 =
lb1,b2

ηb1,b2

(6)

We compute the likelihood of the existence of a link, Υ, among the blocks as:

Υ(G|B) = ∏
b1,b2∈B

ρ
lb1,b2
b1,b2

(1− ρb1,b2)
ηb1,b2

−lb1,b2 (7)

Consider the network given in Figure 5, with two blocks. The computations of l, η, ρ, Υ
are performed as per Equations (6) and (7). Considering all pairs of blocks, (B, B′), the
probability of a link with maximum likelihood Zx,y can be computed as:

Zx,y =
N

∑
B=1

Υ(ex,y ∈ E|B)Υ(G|B)ρ(B)
Υ(G|B′)ρ(B′)

(8)

Figure 5. Calculation of likelihood for the block model.

The higher the likelihood, the higher the probability of link formation between
two nodes is. Algorithm 3 elaborates the link prediction process using the maximum
likelihood estimation.

Algorithm 3 Link prediction using MLE.

Input: Blocks B = {b1 ∪ b2 ∪ . . . bn}; B ∈ GM; nodes: x, y; threshold: Tm;
Output: probability values;

1: procedure LINKPREDICTION(B, x, y, Tm)
2: for all x in bi and y in bj do

3: Zx,y = ∑N
B=1

Υ(ex,y∈E|B)Υ(G|B)ρ(B)
Υ(G|B′)ρ(B′)

4: end for
5: if Zx,y >= Tm then
6: Return values
7: end if
8: end procedure
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4. Empirical Study
4.1. Dataset

We considered the different flavors of complex network datasets from the social,
biological, and ecological real-time datasets. We considered three different datasets to
establish the claimed postulates: CollegeMsg [48], Arabidopsis Genetic Layers [49], and
Arctic Alaskan communities [50]. All these datasets are directed networks that are
represented as multilayer networks.

4.1.1. SNAP CollegeMsg

The CollegeMsg dataset comprises private messages sent on an online social network
at the University of California, Irvine. Users can search the network for others and initiate
a conversation based on profile information. The initial dataset holds the information over
193 days. We constructed a multilayer network by dividing this whole period of data into
ten sections. Table 2 shows the multilayer reconstruction of the SNAP CollegeMsg dataset,
the number of nodes, and the edges present in each layer.

Table 2. SNAP CollegeMsg as a multilayer network.

Layer #Nodes #Edges

0 699 9337
1 1183 24,181
2 1164 14,964
3 554 2279
4 472 2430
5 326 1679
6 373 1763
7 289 1407
8 249 1246
9 234 549

4.1.2. Arabidopsis Multiplex GPI Network

The BIO GRID, or the Biological General Repository for Interaction Datasets, is an
extensive open-source database for various organisms and species’ genetic and protein
interaction data. We used the genetic interactions of Arabidopsis Thaliana. The dataset
consists of seven layers. The layers are constructed from direct interaction, association,
colocalization, and other genetic interactions. There are 8765 nodes and 18,655 edges over
seven different layers. The details are illustrated in the Table 3.

Table 3. Arabidopsis multiplex GPI network.

Layer #Nodes #Edges

0 5493 13,857
1 2859 4411
2 47 64
3 78 86
4 18 14
5 83 74
6 187 149

4.1.3. Alaska Multiplex Networks

Social and ecological structures comprise robust and critical relationships. One such
network is the Arctic Alaskan communities. The network is multilayered and weighted,
and the directed relationships between nodes show subsistence food flow in three sub-
communities: Kaktovi, Venetie, and Wainwright. The Kaktovi multilayer consists of
thirty-seven layers with twenty-thousand nodes and forty-thousand edges. The Venetie
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multilayer consists of forty-three layers with the same nodes and edges as Kaktovi. The
Wainwright multilayer consists of thirty-six layers with thirty-seven thousand nodes and
over seventy-five thousand edges. The information of the first seven layers of all three
communities is shown in Table 4.

Table 4. Multilayer network constructed for the Alaskan multiplex network.

Venetie Wainwright Kaktovi

Layer #Nodes #Edges #Nodes #Edges #Nodes #Edges

0 9 236 43 1588 19 740
1 12 322 121 3900 21 696
2 23 766 117 3270 3 170
3 40 1346 44 1354 52 1606
4 5 216 131 4276 56 1560
5 69 1658 55 2128 23 594
6 5 200 76 1744 50 1658

4.2. Implementation and Results
4.2.1. Multilayer Network Construction

The raw datasets were not multilayered networks. In order to preserve the heterogeneous
nature of the nodes in datasets, we constructed a multilayer network structure. Such
multilayered networks enabled us to model a real-world system, thereby allowing us to
rank the nodes. The summary of the multilayered networks constructed on various datasets
is exhibited in Table 5.

Table 5. Summary of multilayer networks constructed from the datasets.

Dataset #Layers #Nodes #Edges

SNAP College Messages 10 8609 59,835
Arabidopsis Genetic Layers 7 8765 18,655
Alaska-Venetie 43 19,980 39,910
Alaska-Wainwright 36 37,115 75,080
Alaska-Kaktovi 37 20,071 41,258

4.2.2. Influential Nodes’ Identification Using m-PageRank

Our next step demanded finding the influencers in the network. The multilayered network
requires the m-PageRank policy to find the influencers across the layers. These influencers
contribute to meaningful correlations among the nodes in the network. Table 6 shows us the
top five influencers identified using m-PageRank in the multilayer network. Figure 6 represents
a line plot of the m-PageRank of the top five influencers from the multilayered datasets.

Table 6. Top five m-PageRank values identified from the constructed multilayer networks.

Coll-Msg Arabidopsis Venetie Wainwright Kaktovi

57.901003 301.720895 2.36527 6.432528 4.2054
57.835896 52.246835 2.287706 5.601206 3.373879
48.207632 50.270275 2.228333 5.066489 3.298377
41.603781 46.246756 2.160444 4.502255 3.014692
39.662304 42.390381 2.002166 4.274835 2.791716
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Table 7. Top five correlated pairs in SNAP CollegeMsg multilayer network.

Correlation

Node A Layer A Node B Layer B Correlation

249 4 1713 4 0.502846
713 2 781 2 0.500061
298 2 298 1 0.32673
812 2 812 4 0.323473

2 0 2 1 0.320002

The SNAP CollegeMSg and Arabidopsis multilayer networks exhibited a higher
PageRank than the Alaskan networks. The dataset shows us the diverse connections across
layers and nodes. On the other hand, in the Alaskan networks, the networks consist of
robust local structures and are relatively sparse; thus, a lower PageRank was observed.

Figure 6. Top 5 nodes from each dataset.

4.2.3. Formation of Blocks Using Correlation

We need to identify local structures to predict links using the stochastic block model
in multilayer networks. Thus, we employed a hierarchical clustering technique using the
correlation to group the influencers. We calculated the correlation between the influencers
to find out how similar they are and grouped them repeatedly until the desired number
of groups was formed. Table 7 shows the top five correlated influencers in the multilayer
network. For the experimental setup, the adjustable parameters α, β were assigned values of
0.85 and 0.15, respectively. Table 8 shows the five clusters formed in the SNAP CollegeMsg
multilayer network and their respective sizes.

Table 8. Blocks from SNAP CollegeMsg network.

Block Formation

BlockID Size

42I 9
674X 9
393G 8

1282A 8
189C 8

4.2.4. Link Prediction using Maximum Likelihood Estimation

Once the clusters were formed, we predicted the possibility of future links between two
influencers using a maximum likelihood estimate via stochastic block modeling. Table 9
shows the MLE calculated between five pairs of influencers in the SNAP CollegeMsg
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multilayer network. We set a threshold likelihood to predict whether a link is possible.
For the performance analysis of the results, we added a new target label for the pairs. We
removed 10% of the existing links labeled as positive and others as negative. Figure 7 is a
line plot of the accuracy and precision observed for the multilayer networks constructed.

Table 9. MLE calculated between 5 pairs of clusters in SNAP CollegeMsg multilayer network.

Maximum Likelihood Estimation

ClusterID-1 ClusterID-2 MLE

402A 400A 0.66667
402A 372A 0.166667
402A 728A 0.5
494D 429D 0.03571
494D 1189B 0.02381

Figure 7. Accuracy and precision comparison between 5 datasets.

4.3. Results and Observations

The proposed model mPCoM was experimented on the datasets mentioned above. We
used three methods for evaluating the model, namely: (i) accuracy, (ii) precision, and (iii)
AUC-ROC curve. It was observed that mPCoM gave a better performance in predicting
the links. The accuracy and precision obtained for each dataset are plotted in Figure 7.
The proposed method mPCoM was compared with popular methods: Resource Allocation
Index (RAI), Jaccard Coefficient (JACC), and Adamic–Adar index (AA). Tables 10 and 11
show that the proposed method had a higher accuracy and precision when compared
with the existing methods. The AUC-ROC curve, as shown in Figure 8, also exhibits that
mPCoM was efficient in the link prediction problem. These observations showed that the
proposed mPCoM approach outperformed the state-of-the-art link prediction algorithms.
Our experiments proved that the proposed approach is suitable for any directed complex
network structure.

Table 10. Comparison of accuracy of link prediction for the networks under consideration.

Accuracy

Dataset RAI JACC AA mPCoM

SNAP CollegeMSG 0.7495 0.5615 0.7350 0.742840
Alaska-Venetie 0.7245 0.7815 0.7241 0.8433

Alaska-Wainwright 0.8335 0.8166 0.8233 0.858350
Alaska-Kaktovi 0.8135 0.82114 0.80345 0.91355

Arabidopsis Multiplex GPI Network 0.6233 0.7345 0.8345 0.90123
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Table 11. Comparison of precision of link prediction for the networks under consideration.

Precision

Dataset RAI JACC AA mPCoM

SNAP CollegeMSG 0.79495 0.73205 0.85903 0.910710
Alaska-Venetie 0.6245 0.7115 0.69941 0.866087

Alaska-Wainwright 0.73435 0.71566 0.72433 0.8767100
Alaska-Kaktovi 0.72535 0.72714 0.802415 0.88497

Arabidopsis Multiplex GPI Network 0.86733 0.77645 0.93465 0.89123

Figure 8. Area under curve-receiver operating characteristic curve for the three Alaskan networks.

5. Conclusions and Future Work

Future link prediction is an important problem in predicting how complex networks
evolve and is crucial to understanding how the network evolves. This paper proposed a
stochastic block model approach for link prediction, referred to as mPCoM, which unifies
the m-PageRank, correlation, and maximum likelihood estimation. We showed how the
mPCoM model improves the link prediction accuracy by incorporating the global and local
indices into the model. The global influencers across the network were identified based on
the m-PageRank metric, which is an adaptation of the PageRank for multilayer networks.
The next step focused on the formation of blocks, locally around the influencers, using
global clustering, and finding the correlation between the nodes. The final step examined
the block pairs and predicted the probability of a future link among the nodes of different
blocks using maximum likelihood estimation. Our experiments revealed that mPCoM
outperformed the state-of-the-art algorithms and gave better accuracy and precision in
predicting the links. As part of future work, we propose to extend mPCoM to temporal
networks, where the vertices of the complex network appear or disappear at every instance
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of time. This demands detailed analysis of the dynamic process of network evolution and
brings in newer challenges.
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List of Abbreviations

Abbreviations Expansion
GM multilayer network
Vm set of vertices in layer m
Em set of edges in layer m
V set of vertices in the network
E set of edges in the network
L set of layers in the network
aij adjacency matrix of the network
B set of blocks

χ
[li ]
m (i) new PageRank for node i in the Lith layer

Pri current PageRank for node i
d damping factor
Tp threshold for PageRank
I influencers
Ll

v weight of the lth layer containing node v
a[L]ij adjacency matrix of the multilayer network considering the layer weight
P(c) node centrality
Ev nodes directly connected between neighbors of v
CCv clustering coefficient of v
Bx blocks containing node x
Sxy correlation between x, y
Dv in-degree of a node
lb1,b2 number of edges between the nodes in blocks b1 and b2
exy edge between x and y
ρb1,b2 probability of the existence of a link between x and y
ηb1,b2 number of pairs between the nodes of blocks b1, b2
Υ likelihood of the existence of a link between the blocks
Zxy probability of a link with the maximum likelihood
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