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Abstract: Artificial intelligence (Al) is a branch of computer science that allows machines to work
efficiently, can analyze complex data. The research focused on Al has increased tremendously, and its
role in healthcare service and research is emerging at a greater pace. This review elaborates on the
opportunities and challenges of Al in healthcare and pharmaceutical research. The literature was
collected from domains such as PubMed, Science Direct and Google scholar using specific keywords
and phrases such as ‘Artificial intelligence’, ‘Pharmaceutical research’, ‘“drug discovery’, ‘clinical trial’,
‘disease diagnosis’, etc. to select the research and review articles published within the last five years.
The application of Al in disease diagnosis, digital therapy, personalized treatment, drug discovery
and forecasting epidemics or pandemics was extensively reviewed in this article. Deep learning and
neural networks are the most used Al technologies; Bayesian nonparametric models are the potential
technologies for clinical trial design; natural language processing and wearable devices are used in
patient identification and clinical trial monitoring. Deep learning and neural networks were applied
in predicting the outbreak of seasonal influenza, Zika, Ebola, Tuberculosis and COVID-19. With
the advancement of Al technologies, the scientific community may witness rapid and cost-effective
healthcare and pharmaceutical research as well as provide improved service to the general public.

Keywords: artificial intelligence; clinical trial; disease diagnosis; drug discovery; epidemic; personalized
medicine; prediction

1. Introduction

Artificial intelligence (Al) is a combination of various intelligent processes and behav-
ior, developed by computational models, algorithms or a set of rules which supports the
machine to mimic the cognitive functions of humans such as learning, problem-solving,
etc. [1,2]. Alis expeditiously penetrating the field of the healthcare sector and has a huge
impact on clinical decision making, disease diagnosis, and automation [3]. There are op-
portunities for Al to explore further in the field of pharmaceutical and healthcare research
because of its ability to investigate enormous data from various modalities [4]. Some of the
current studies elaborate on the utilization of Al in healthcare and other sectors. The Al
technologies in the healthcare industry include machine learning (ML), natural language
processing (NLP), physical robots, robotic process automation, etc. [5]. In ML, neural
network models and deep learning with various features are being applied in imaging data
to identify clinically significant elements at the early stages, especially in cancer-related
diagnoses [6,7]. NLP uses computational techniques to comprehend human speech and
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derive its meaning. Lately, ML techniques are being widely incorporated in NLP for ex-
ploring unstructured data in the database and records in the form of doctors’ notes, lab
reports, etc. by mapping the essential information from various imagery and textual data
which helps in decision making in diagnosis and treatment options [8]. The ongoing disrup-
tive innovation creates a pathway for the patients to receive a precise and rapid diagnosis
and customized treatment interventions [9]. Al-based solutions have been identified which
include platforms that can make use of a variety of data types viz. symptoms reported by
the patients, biometrics, imaging, biomarkers, etc. With the advancements in Al, the ability
to detect potential illness well ahead is made possible, leading to a greater probability
to prevent as an outcome of detection at a very early stage. Physical robots are being
used in various healthcare segments including nursing, telemedicine, cleaning, radiology,
surgical, rehabilitation, etc. [10,11]. The robotic process automation uses technology, which
is inexpensive, easy to program and can perform structured digital tasks for administrative
purposes and act like a semi-intelligent user of the systems. This can also be used in
combination with image recognition. In the healthcare system, tasks such as preceding
authorization, updating patient records and billing, which are repetitive, can utilize this
technology [12].

When focusing on the pharmaceutical sector, the role of Al cannot be ignored due
to its wider applications across various stages. The influence of Al across all stages of
pharmaceutical products from drug discovery to product management is very evident. In
drug discovery, Al technologies are used in both the drug screening and drug design; the
algorithm includes, to name a few, ML, deep learning, Al-based quantitative structure—
activity relationship (QSRL) technologies, QSLRML, virtual screening (VS), support vector
machines (SVMs), deep virtual screening, deep neural networks (DNNs), recurrent neural
networks (RNNs), etc. Neural networks in Al are inspired by biological neural networks
where there is an input and output response after processing the information received.
Artificial neural networks (ANN) have several connected units for processing the informa-
tion. DNNSs are similar to ANN wherein there are several layers of data processing units.
RNNSs process the data in a sequence whereby the output data of the previous analysis is
processed as input data for the next phase of analysis. SVMs are used for classification
and regression of input data. In pharmaceutical product development, Al is being used
to choose the appropriate excipients, selecting the development process, and ensuring the
specifications are achieved as per the compliance during the process. The model expert
system (MES), ANNS, etc. are used in pharmaceutical product development. In manufac-
turing, Al is used in automated and personalized manufacturing, matching manufacturing
errors to set limits. Al technologies such as meta classifier and tablet classifier are used
to achieve the desired quality in the final product [13]. The incorporation of Al in clinical
trials helps in selecting subjects and monitoring the trial, the dropouts are reduced because
of close monitoring. ML is being used in clinical trials [14]. Al technologies such as ML
and NLP tools are used in market analysis, product positioning and product costing [13].
Some of the articles related to Al have been published recently have discussed the Al
application in medicinal chemistry, healthcare, pharmaceutical and biomedical studies, es-
pecially in target protein identification, computer aided drug design, virtual screening and
in silico pharmacokinetic evaluation, disease diagnosis focused on cancer diagnosis and
treatment [15,16]. Al has extensively invaded the sectors mentioned above and has led to
improvement of the outcome. Owing to the widespread applications of Al in the healthcare
and pharmaceutical industries, this review included the articles related to the application of
Al in disease diagnosis, drug discovery, clinical trial, personalized treatment, and epidemi-
ological research in the prediction of epidemics or pandemic. The studies related to the
application of Al in pharmaceutical manufacturing, education, market analysis, customer
service, commercialization, and anything not related to healthcare /pharmaceutical research
are excluded in this review. All the studies are searched using domains such as PubMed,
Science Direct and Google scholar using specific keywords.

This review discussed the role of artificial intelligence (Al) in the following areas.
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Disease diagnosis;
Digital therapy/personalized treatment:

Radiotherapy;

Retina;

Cancer;

Other chronic disorders.

O O O O

e  Drug discovery:

° Prediction of bioactivity and toxicity;
Clinical trials:

. Clinical trial design, patient identification, recruitment and enrolment;
. Monitoring trial, patient adherence and endpoint detection.

e  Forecasting of an epidemic/pandemic.

2. Al in Disease Diagnosis

Disease analysis becomes pivotal in designing a considerate treatment and safeguard-
ing the wellness of patients. The inaccuracy generated by humans creates a hindrance for
accurate diagnosis, as well as the misinterpretation of the generated information creating
a dense and demanding task. Al can have varied applications by bringing about proper
assurance in accuracy and efficiency. After a vivid literature survey, the applications of
various technologies and methodologies for the purpose of disease diagnosis have been
reported. With the evolution of the human population, there is always an ever-increasing
demand for the healthcare system, according to varied environmental manifestations [17].

A substantial amount of evidence has revealed that though vulnerable, contradictory,
non-analyzing incongruities exist, the development of new methods can define the appli-
cability by portraying the current existing scenario that has not been covered [18-20]. It
is important to categorize the patients based upon whether he/she is severely affected
by the diseases, and the Al can gain importance in diagnosis [21]. Diagnosis refers to the
state where, upon certain pre-existing problems, one’s condition is designated [22]. It is
always advised to maintain every patient’s health report forms, so as to collect the majority
of reviews that are obtained via performing examinations and testing. Upon gathering
information, the appropriate outcomes are mainly concerning the health care needs for a
timely diagnosis. The analysis is the sole discretion of the state of the clinicians and may
fluctuate [23]. There is availability of multiple diagnostic strategies which are leading to
trust issues and thus, one needs to focus on Al for identification and determination of the
early predictive stage of the disease more than the treatment or diagnostic phase. Such
diagnosis can help to initiate the early treatment, and initial treatment can bring noticeable
changes in the patients as well as improved efficiency in AI modules [24,25]. Nowadays,
identification, extraction and catering all the collated data would lead to ample technology
usage based on deep learning, neural networking and algorithms [26-30]. Cancer and
dementia are the two major diseases where Al has gained importance [31,32]. Algorithms
can never be biased if they are not self-generated or have never been associated with any
existing data. For statistical supervision, a relevant and specific dataset is required [33-35].
The acceptance lies not on the input from the user but the salience of the identified clus-
ters [36]. Hepatitis can be diagnosed through unsupervised learning [37]. However, deep
learning correlations can be obtained through various evolutionary changes and adjusting
predictions [38,39]. Usually, larger data sets and varied entries can serve the suitability of
AI [38,40], but the outcome is incomprehensible [41,42]. Among many examples of deep
learning in diagnostic, one is the classification of dermatological diseases [43] and atrial
fibrillation detection [44]. The usage of cross-validation can be used for random splitting
into multiple sets for algorithms estimation [45]. Accuracy, sensitivity, and specificity are
three important aspects where the common measurements of Al focus [46,47].

On the basis of the literature analysis, the clinical aspects which can supervise the deep
learning network and neural pathways using support vector machine, nearest neighbor,



Big Data Cogn. Comput. 2023, 7, 10

4 0f 20

random forest, decision tree, logistic regression, naive Bayes, discriminate analysis and
convolution neural network can generate the results in a more holistic approach. Algorithm-
based performance-driven analysis can be performed via origin, sample size, number of
features of the training and testing samples. In the diagnosis of liver diseases, decision
trees and reasoning were integrated [48]. Many studies were performed for the predic-
tive modeling, which was noticeable for predicting early Parkinson’s disease [49]. Rib
segmentation algorithm was developed using the chest X-ray images for diagnosis of lung
diseases [50]. Traditional methods are not useful in rib-wise segmentation of X-ray images
due to various limitations. In this research, they have developed an algorithm via unpaired
sample augmentation of chest X-ray images of pneumonia patients; later, a multi-scale
network learns the features of images. The study reports that such algorithm achieves
good performance with better rib segmentation which could be useful in diagnosing lung
cancers and other lung diseases [50]. Recently, algorithm and machine leaning was used
by the researchers in identification and classification of cardiac arrhythmia by processing
the electrocardiograms signals. [51]. In another study, tuberculosis was classified and
diagnosed by using the optimization genetic algorithm (GA) and support vector machine
(SVM) classifier [52].

3. Al in Digital Therapy/Personalized Treatment

Al has the potential to derive a meaningful relationship within the raw datasheets
that can be further used in the diagnosis, treatment, and mitigation of the disease. A
variety of newer techniques which are used for computational understanding in this
emerging field have the potential to be applied in almost every field of medical science.
The complex clinical problems need to be solved with the challenge of acquiring, analyzing,
and applying vast knowledge (Figure 1). The development of medical Al has helped
clinicians to solve complex clinical problems. The systems such as ANNs, evolutionary
computational, fuzzy expert systems and hybrid intelligent systems can assist the healthcare
workers to manipulate the data [53]. The ANN is a system that is based upon the principle
of the biological nervous system [54]. There is a network of interconnected computer
processors called neurons that can perform parallel computations for data processing. The
first artificial neuron was developed using a binary threshold function [41]. The multilayer
feed-forward perceptron was the most popular model having different layers, such as
input layer, middle layer, and output layer. Each neuron is connected through links having
numerical weight [55].
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Figure 1. Al in acquiring and analyzing data of a patient in personalizing the treatment.
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Paul Werbos introduced a new technique called “Backpropagation learning” in 1974,
which has a suitable learning algorithm [56]. The ANN has been used in diagnosis image
analysis, data interpretation and waveform analysis. Fuzzy logic is a science of reasoning,
thinking and inference that can recognize and use real-world phenomena. It mainly uses a
continuous set of membership from 0 to 1, i.e., 0 for false and 1 for true. Fuzzy controller has
also been used for administering vasodilators and anesthetics in the operating room [57].
This evolutionary computation technique is based on the natural evolution process that is
focused upon the natural evolution process and survival of the fittest [58]. The most popular
algorithm is the genetic algorithm. It finds out many random solutions for one problem
and ultimately, one best solution is chosen, while the inferior ones are eliminated [59].

3.1. Al in Radiotherapy

Automated treatment planning is a recent technology, which is highly beneficial in
radiotherapy treatment planning. Automated treatment planning is efficiently improving
the plan quality, consistency, and error rate. The treatment workflow can be organized
into three categories, i.e., automated rule implementation, reasoning modeling of prior
knowledge in clinical practice and multi-criteria optimization [60]. A simple automated
computer program with structures can implement the clinical guidelines. The treatment
planning system can analyze the anatomy and physiology of the patient and can also mimic
the reasoning process, which is generally followed in manual treatment planning. Three-
dimensional dose distribution and dose models for spatial dose have shown promising
accuracy [61]. Radiomics can give in-depth information about tumors with the help of
several imaging biomarkers. Radiomics can be implemented for the prediction of outcomes
and toxicity for individual patients’ radiation therapy [62].

3.2. Al in Retina

The high-resolution imaging of the retina has given the scope to assess human health
remarkably. From a single photograph of the retina, one can extract highly personal-
ized data; with high-definition medicines, the ophthalmologist/retinologist can define a
personal therapy and establish a continuously improving learning healthcare system [63].

3.3. Al in Cancer

With the huge applicability of Al it has gained importance in the fields of diagnosing
and treating various cancers. The lymphoma subtypes of non-Hodgkin lymphoma were
predicted by using gene expression data in a multilayer perceptron neural network. The
neural network has 20,863 genes as the input layer and lymphoma subtypes as the output
layer. Lymphoma subtypes includes mantle cell lymphoma (MCL), follicular lymphoma,
diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma and Burkitt. An Al
neural network has predicted the lymphoma subtypes with high accuracy [64]. An artificial
neural network was used to identify the new prognostic markers of MCL using the gene
expression data and reported that 58 genes predicted the survival with high accuracy,
and 10 genes were associated with poor survival and 5 genes with favorable survival [65].
The Multilayer perceptron (MLP) with multivariate analysis of gene expressions reported
that four genes correlate with favorable survival and three genes with poor survival for
DLBCL [66]. MLP and radial basis function (RBF) neural networks were used for prediction
of overall survival and prognosis of Follicular lymphoma (FL) patients. After analyzing
22,215 genes, it was reported that 43 genes are associated with the prediction of the overall
survival, whereas 18 genes were associated with poor prognosis [67]. Cell-of-origin (COO)
classification of DLBCL was carried out by an Al deep learning technique using the ge-
netic and transcriptional data obtained by RNA-Seq in next-generation sequencing (NGS)
platform. AI provided reproducible, efficient, and affordable assays for classification and
further clinical application [68]. Al is used in cancer diagnosis by minimizing the time with
high accuracy. Al-based PET imaging of lymphoma is used in tumor burden evaluation
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which was later applied in characterization of tumor, quantification of heterogeneity, as
well as prediction of treatment response [69].

In gastrointestinal cancer, colorectal cancer (CRC) screening technology is used to
analyze the malignancy in patients [70] and prediction of the Helicobacter pylori infection
by visual nocturne play a crucial role in predicting the gastric cancer progression [71].
Early diagnosis through proper blood tests, endoscopic imaging and Al can influence the
progression of the cancer [70]. However, Allacks the proper randomization and blindfolded
controlled studies, and hence, only retrospective data can be gathered [72]. Further, there
have been studies where the prediction models could not justify the prognosis of cancers.
Later on, various models such as Multi-task logistic regression algorithm, Cox survival
regression algorithm and random survival forest algorithm have gained multiple facets
and probable predictive outcomes [73]. With these advancements, automation in diagnosis
of malignancy has been achieved via gastroenterology, not only for classification but also
for detection and magnification using endocytoscopy, which has not been used in real
practice [74].

Al is a versatile clinical aid for lung cancer detection in early stages and screening
purposes. Deep learning and machine learning Al techniques give a supportive measure in
lung cancer screening due to their ability to maintain a vast amount of data and characterize
pulmonary nodules with precision [75,76]. Currently, Al eases the tasks of pathologists
and accommodates remote institutes suffering from a shortage of pathologists. Several Al
applications are found to be helpful in the field of lung cancer such as the segmentation of
carcinoma foci, detection of lymph node metastasis, counting of tumor cells, and prediction
of gene mutations [77-80]. Al has the potential to interpret low-dose computer tomography
(LDCT) images of lung cancer screening and thus improved diagnostic accuracy and
decreased the false-positive rate [81,82]. Al can also quantify tumor- and non-tumor-related
morphological changes, which is important for prognostication on serial imaging. The
convolutional neural network (CNN), recurrent neural network (RNN), and combined dual
effect of the two algorithms can be utilized to differentiate the classification of benign and
malignant nodules [83]. To overcome the limitation of Al in translational research, the tools
which are user friendly and do not require computational science background for operation
are vital in the progression of this technology in healthcare and pharmaceutical research.

In the last decade, Al has been very promising in the diagnosis of breast cancer. Al-
assisted techniques are the combination of both quantitative and qualitative MRI features,
which is applicable to predict treatment response in breast cancer patients, even before the
start of neoadjuvant chemotherapy (NAC). Al has potential in identification, segmentation
and classification of lesions; breast density assessment; and breast cancer risk assessment.
Al-based software is able to provide clinical benefit to radiologists in distinguishing be-
tween malignant and benign breast lesions and reduce the chances of interpretation of
false-negative mammograms [84-87]. The developments in this direction are preliminary
and have many limitations such as absence of large public datasets, requirement of high
quality images, ROI annotation dependence, problems in binary classification, inability in
handling multiple tasks at the same time. Thus, the developments of Al tools including
DL-based CAD are still at a preliminary stage due to the lack of enough public data sets for
training the deep convolutional neural networks (DCNNs) [88].

3.4. Al in Other Chronic Diseases

Different computerized therapies are available based on computer programming tech-
niques. The therapies are focused upon the behavioral and cognitive approach, which
involves multiple-choice questions or joysticks [89]. Recently, a new computer interac-
tion has been developed, i.e., intelligent computer-assisted instruction, which has the
potential to use other Al technologies such as natural language understanding and expert
systems [90], and with the use of Al, one can develop a combination therapy based upon
the patient’s own biopsy and can adopt n-of-1-medication recommendations. Chronic
disease requires monitoring on regular basis, and with the use of Al, this monitoring can
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be performed using virtual medical assistants. Many companies have installed such assis-
tance, which generally provides virtual coaching through text messages with the use of the
mobile applications, and with the use of Al, nutrition recommendations can also be given
specifically based upon the gut microbiome. Arterial fibrillation can be predicted with the
use of an integrated system based upon deep learning [91], single-lead ECG sensor and
physical activity via accelerometer data along with a smart watch. Case-based reasoning,
which is designed using Al technique, is being extensively used in the management of
diabetes [92]. The automated system can detect problems and memorizes the best effective
solution for the individual patient. It is already in use for the optimization of insulin
therapy. Other techniques such as the vector regression technique are also in fashion for
diabetes care. Machine learning-based different technologies such as clinical decision
support can also predict short and long-term HbA1lc response after insulin initiation in
patients with type 2 diabetes mellitus. Al techniques can also be used to assess the risk
of a particular disease. Advanced Al techniques that can work upon the molecular level
such as molecular phenotyping, genomics, epigenetic alterations, and the development of
digital biomarkers can also be used in the management of different diseased conditions.
With the use of newer techniques, patients can manage their diabetes through web-based
programs mobile phones and smart phones.

4. Al in Drug Discovery

The possibility of the development of a large number of drug molecules from a
chemical space becomes lengthy due to lack of appropriate technologies, which can
be improvised by using Al in the drug development process [93,94]. The quantitative
structure-activity relationship affects the various parameters’ forecasting activities such
as log P or log D, which can foresee the predictions and generation through computa-
tions and can justify the biological safety, efficacy and adverse effects, including the
pharmacokinetics of the significant molecule [95,96]. The enormous space requires a
delocalization of molecules by the three-dimensional distribution of molecules and their
properties. It is advisable to collect all prior information regarding the selectivity and
the positioning of the molecules for showing the bioactivity using numerous domains
including PubChem, ChemBank, DrugBank and ChemDB. Various in silico methods are
utilized for virtual screening that generally provides an improved analysis, quicker elimi-
nation, and assortment [93]. Drug design algorithms reconsider the physical, chemical,
and toxicological profiles while selecting a lead compound to bind with and generate
activities [97]. Different physicochemical properties can increase the effectiveness and
biological activity [98]. QSAR is geared for the potential application of the drug candidate
through Al-based QSAR approaches [99-101]. If the traditional approaches are followed
for obtaining the statistical differences, the biological activity discovered and developed
can take a decade to control [102]. The solubility, partition coefficient, degree of ionization
and intrinsic permeability of the drug affect target receptor binding when designing a
new drug [103]. Algorithms include molecular descriptors, such as Simplified Molecular
Input Line Entry System (SMILES), to forecast the binding properties [104]. A quantitative
structure—property relationship (QSPR) is generally used for the determination of the
six physicochemical properties, known as the Estimation Program Interface Suite [105].
Deep learning and neural networks based on the ADMET predictor and ALGOPS pro-
gram have been utilized for the prediction of the lipophilicity and solubility of various
compounds [106]. Many undirected graphs are utilized for predicting solubility [107].
The surface area, mass, hydrogen count, refractivity, volume, log P, surface area, sum of
the indices, solubility index and rotatable bonds are considered for the prediction of a
new chemical entity [108].

4.1. Al in Prediction of Bioactivity and Toxicity

The efficacy depends on the affinity for the target protein or receptor. In similarity-
based interaction, the drug and target are deemed, and it is thought that they will interact



Big Data Cogn. Comput. 2023, 7, 10

8 of 20

with the same target [109]. Chem Mapper and the similarity ensemble approach predict the
drug-target interactions [110]. The substructure, connectivity or a combination can also be
considered [109]. Deep learning approaches have shown improved performance as deep
learning is independent of the 3D protein structure [110]. Deep Affinity, protein, and drug
molecules interaction prediction are the approaches [111].

The prediction is necessary to sidestep toxic effects. The in vitro assays are frequent
preliminary studies, followed by the preclinical studies where one can distinguish the
deadliness, and there is further scope of improvement. Several Web-based technologies are
accessible to lower the cost [105]. The Tox21 Data Challenge, organized by the National
Institutes of Health, Environmental Protection Agency and US Food and Drug Administra-
tion, appraises computational techniques for estimation of the toxicity of the drugs [105].
An algorithm named Deep Tox outstripped all procedures by recognizing static and dy-
namic features within the chemical descriptors, whereas the eToxPred was applied for
estimating the toxicity of small molecules. TargeTox, a biological target-based drug toxicity
prediction uses the guilt-by-association principle [112]. A scoring function helps to predict
the properties of the novel molecules. PrOCTOR could easily forecast whether a drug
would fail in clinical trials owing to its toxicity. It also recognized adverse drug events [113].
Al can feed back by considering computation, geometry and assessment in collaboration
with the structure-based drug discovery by predicting the protein structure [114]. The likeli-
hood is necessary to understand its efficacy and effectiveness [114]. Various computational
technologies can solve problems encountered with QSPR [115]. Decision-support tools use
rule-based choosing systems, depending upon the nature and control of the quantity of
the added ingredients for obtaining a positive feedback process [116]. With the increasing
complications of better product efficiency and quality, manufacturing systems are trying to
grant human knowledge to machines [117]. The amalgamation of technologies in manufac-
turing can prove to be a boost for the pharmaceutical industry. Chemical Assembly utilizes
the novel platform for bringing about automation [97].

4.2. Al in Clinical Trials

In drug discovery, clinical trials are the longest and require a huge amount of investment.
Despite the time and capital invested in clinical trials, the success rate is only marginal for
those that obtain approval from the Food Drug Administration (FDA) [118-120]. There
are several bottlenecks in clinical trials, and those can lead to failure of the trial. Those
bottlenecks include the insufficient number of participants, drop-outs during the trial,
side effects of the test drug, or inconsistent data. If such failure occurs in late phases of
clinical trials, such as in phase-III and phase-IV, the sponsor has to absorb an extremely
high economic burden [121]. The clinical trials which are associated with high costs also
have subsequent effects on therapeutic costs for patients. Due to this reason, biopharma
companies tie R&D costs of failed trials into the pricing of approved drugs to hold out
the profit [122]. The process of execution and conducting of clinical trials includes clinical
trial design, patient recruitment/selection, site selection, monitoring, data collection and
analysis. Out of these processes, patient recruitment and selection is the cumbersome
process where 80% of the trials overshoot the enrolment timeline, and 30% of phase-III trials
are prematurely terminated due to patient enrolment challenges. Trial monitoring in a multi-
centered global trial is a very expensive and time-consuming process. Other challenges
in clinical trials are the duration from the “last subject last visit” to data submission to
regulatory agencies, which are huge data collection and analysis procedures. With the help
of Al and digitization, these challenges in the clinical trial have been transforming [123].

4.2.1. Clinical Trial Design, Patient Identification, Recruitment and Enrolment

As per the FDA, Al models are useful in improving the quality of trial design, patient
selection by reducing population heterogeneity, prognostic enrichment, and predictive
enrichment [124]. Bayesian nonparametric models (BNMs) have emerged as a powerful
tool in clinical trial design with many other applications. This model is flexible and uses
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a nonparametric approach. This model allows us to use infinite-dimensional parameter
sets with a finite subset of limited parameters. This approach minimizes the clustering
and trial designing duration. Some of the commonly used BNMs are Dirichlet process
mixture models and Markov Chain Monte Carlo (MCMC) techniques. There are many
applications of such BNMs in clinical trial design, for example, the dose selection in clinical
trials involving cancer patients, immuno-oncology and cell therapy trials. Dose selection is
complicated due to the heterogeneity of the patients, which may lead to inaccurate dose
selection and selection of future target populations. BNMs are an efficient and effective tool
for dose selection in such patients because it considers all the variable and heterogeneity of
the study subjects [123]. Bayesian nonparametric design is used for adaptive dose selection
in multiple populations. This facilitates the borrowing of information across multiple
populations while considering the heterogeneity of the populations. Such models help
in accurate optimal dose selection, which minimizes the inaccuracy [125]. Other designs
such as modified toxicity probability interval (mTPI) designs use the Dirichlet process.
This design learns from the emerging data and selects the dose by prior approximation
and automatically groups patients into similar clusters [126]. Selection of participants for
the trial is the most important step where patients/participants” health record provides
vital information for matching the inclusion or exclusion criteria. Collecting the patients’
data/history or fresh testing would be time-consuming and costly. Al provides an oppor-
tunity to combine patient data with the electronic medical record (EMR) including omics
data and other patient data, scattered among different locations, owners, and formats. Such
analysis using computer vision algorithms such as optical character recognition (OCR) and
Natural language processing (NLP) can provide an efficient process in patient identification
and characterization [124].

4.2.2. Monitoring Trial, Patient Adherence and Endpoint Detection

Monitoring the trial participants is another challenge in the clinical trial and can be
performed by Al-enabled wearable devices. Such monitoring is real-time, individualized
and power efficient [124]. Risk-based monitoring (RBM) has recently emerged as the Al-
enabled efficient and cost-effective technique alternative to traditional monitoring. An
advanced version of RBM may be able to reduce the cost and increase the efficiency
and quality of data monitoring in the trial site. Al-assisted “smart monitoring” can use
predictive analysis and data visualization in improving the data quality check and trial site
performance. Patients” compliance to adherence criteria of the trial is important to obtain
the reliable data and success of the trial. Video monitoring and wearable sensors capture
the patient data automatically and continuously making the trial efficient in monitoring
patient adherence [124]. Medical image-based endpoint and disease detection become
much easier through Al-enabled compared to manual reading, and it is cost effective and
fast [124]. Current developments suggest that Al is capable of transforming the traditional
way of clinical trial to a cost-effective, safer and faster clinical trial.

5. Al in Forecasting of an Epidemic/Pandemic

Pandemic is boundless and capable of causing morbidity and mortality. Globally,
there have been several pandemic outbreaks, to name a few, Black Death, Spanish flu,
Cholera, Influenzas, AIDS, COVID-19, and they are capable of causing social and eco-
nomic interruption [127]. There is intense interdependence between the early detection
and successful management of the disease, which reduces the stress on individuals” health,
economic, social, and political systems. To achieve early detection, surveillance plays a
major role [128]. Active surveillance demands huge resources, manpower and time. In
practice, predicting the epidemic and pandemic is a challenge. However, with the current
advancements studying the propagation of dreadful diseases is made possible. Al is the
best option to achieve surveillance with the efficient utilization of resources. ML and
deep learning are being incorporated in various healthcare segments and are found to be
more effective when compared to human resources [129]. Developing epidemiological
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models is still challenging due to their complexity. Recently, ML has been incorporated to
develop outbreak prediction models [130-132]. Al is being used in detection, prevention,
response, and recovery in pandemics and epidemics. In prevention, it is beginning to
be extensively used in prediction, surveillance, and information, especially in the recent
COVID-19 outbreak [133]. The prediction of influenza epidemics is always a great chal-
lenge due to its shift in epidemic peak, periodic peaking, etc. With the incorporation of
the SAAIM (self-adaptive Al model), an accurate forecast is possible even in areas with
irregular seasonal influenza [134]. For example, in Taiwan, machine learning and ensemble
approaches have been used to predict seasonal influenza, and it is accurate in the pre-
diction forecast [135]. Using machine learning feed-forward propagation neural network
model (MSDII-FENN), the forecasting output precision is 90% for influenza [136]. Machine
learning anonymized mobility map (AMM) has been incorporated in predicting influenza
in Australia and USA. AMM groups the data from the smart phone and can forecast the
epidemics using human mobility even across the state boundaries [137]. In Africa, Ebola
is still challenging. To predict Ebola, various techniques have been employed including a
hybrid neural network developed by Umang Soni et al. which shows 100% precision when
random forest is employed as a classification technique [138]. The use of experimental
models involving artificial societies and the integration of machine learning has led to
reliable results in predicting the propagation. For example, the spread of Ebola has been
studied in a simulated model of Beijing, and the outcome has been predicted [139]. It
was very challenging to allocate the surveillance resource during the Zika epidemic in
2015, due to the non-availability of reliable prediction. Later, a dynamic neural network
model was used to forecast the spread. This flexible predictive model framework was
reliable and added value at the initial phase of the epidemic [140]. Mobile application was
used in the Zika project to monitor the mosquito population, and the early detection was
performed by incorporating Al neural networks [141]. Vaccine-derived poliovirus (VDPV)
observation has gained attention because of its outcomes. Hybrid machine learning is
incorporated with the combination of random vector functional link (RVFL) networks with
the whale optimization algorithm (WOA), which can predict a VDPV outbreak [142]. In
HIV /AIDS prevention measures, ML has the potential to distinguish possible candidates
for pre-exposure prophylaxis [143]. Dengue is prevalent in tropical and sub-tropical zones.
The ML algorithm support vector regression (SVR) is capable of predicting with negligible
error and tracking dengue outbreaks in China [144]. In Malaysia, the ML Support vec-
tor model (SVM) using linear kernel performed the best predictor for dengue [145], and
Bayesian network ML techniques were employed in dengue outbreak prediction [146]. The
ANN is incorporated for rapid diagnosis using TB suspect data, and the overall efficacy
is more than 94%. This will help to detect the overall spread of the disease, and swift
implantation of some control measure [147]. Using deep learning and machine learning,
a CNN model named tuberculosis Al (TB-Al) identified TB bacillus and showed 97.94%
sensitivity [148]. Multilayer Perceptron Neural Network Classifier (MPNN) was suggested
for the diagnosis of yellow fever, taking seven psychological symptoms of yellow fever, and
achieved the prediction precision of 88% [149]. The COVID-19 outbreak shook the entire
world [150]. Al-inspired modified stacked auto-encoder modelling was used to predict the
COVID-19 [151]. Deep learning Composite Monte Carlo (CMC) in combination with the
fuzzy rule was helpful in decision making and predicting the COVID-19 pandemic [152]. A
polynomial neural network with corrective feedback (PNN + CF) is used to forecast with
negligible error [153]. CNN, a deep neural network used in China, has a precise prediction
efficacy [154]. In Switzerland, the Al model (Enerpol) combined with Big Data is used in the
prediction of COVID-19 [155]. To investigate the dynamical pattern of COVID-19, statistical
and deep learning systems such as autoregressive integrated moving average (ARIMA),
multilayer perception (MLP), feed-forward neural network (FNN) and long short-term
memory (LSTM) were incorporated. The data produced might be a useful reference for the
COVID-19 prediction [156].
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6. Discussion and Conclusions

Researchers are fascinated by the recent developments in Al, especially its application
in healthcare and pharmaceutical research and service. Smart hospitals and healthcare
facilities enabled with AI, ML and Big Data will be shaping the future healthcare sector.
Pharmaceutical industries are in constant advancement with their technologies and AI will
be an opportunity for minimizing the cost and time for drug development. Various applica-
tions of Al in healthcare and pharmaceutical research as well as the limitations/challenges
of these technologies have been presented in Table 1. The role of Al in disease diagnosis is
well demonstrated by using deep learning, neural networking and unsupervised learning.
These Al tools have the ability to process unstructured data and correlate with the learned
data to predict an accurate outcome, which is useful in predicting a particular disease
diagnosis. Al has been proven a vital technology such as intelligent computer-assisted
instruction (ICAI), Case-based reasoning, vector regression technique, clinical decision
support for monitoring chronic disease progress and optimizing the therapy for those
diseases. Vector regression technique is useful in identifying the connections between
variables; ICAI is useful in computer assisted instruction to patients to obtain an informa-
tive answer from the patients; case-based reasoning helps in solving a problem from its
past similar experience and clinical decision support provides patient-specific information
and knowledge to healthcare team to help in monitoring and treating a disease. These
technologies are useful in developing a personalized treatment, which is always a challenge.
Other techniques such as Radiomics, which is the prediction of the outcomes and toxicity
for individual patients’ radiation therapy, and high-resolution imaging of the retina give
scope to examine human health. Drug discovery and bringing a new drug to the market is
the prime objective of Pharmaceutical R&D, which is a very lengthy and costly affair. Al
has the potential to ease the process, from target selection through to clinical trials of a drug.
Drug discovery starts with the identification of target biological molecules that interfere in
modifying the disease. In the drug discovery process, thousands of synthetic molecules are
generated that could bind to the target and modify its activity for managing a particular
disease. In this process, computer-aided drug design and quantitative structure—activity
relationship (QSAR) or quantitative structure—property relationships (QSPR) are used to
determine the physicochemical and pharmacokinetic properties. Deep learning and neural
networks based on the ADMET predictor and ALGOPS program are used in the prediction
of lipophilicity and solubility of an NCE. Chem Mapper and similarity ensemble approach
are the Al technologies that predict the drug-target interactions. In toxicity testing, Deep
Tox, eToxPred, TargeTox and PrOCTOR are the tools used in predicting the toxicity of a
small molecule. Such predictions can exclude plausible toxic molecules and help industries
to save time and money in preclinical or clinical studies. Clinical trials of a new molecule
consume most of the time and budget of the drug discovery process, and Al has been
used in improving the quality of trial design, patient selection, dose selection, patient
adherence, trial monitoring and endpoint analysis. BNMs have potential application in
clinical trial design and dose selection, whereas OCR and NLP provide an efficient method
in patient identification and characterization. RBM, video monitoring and wearable sensors
are cost-effective techniques in patient monitoring and patient adherence. Al can play a
key role in clinical trials in reducing the total duration and cost of launching a drug to
market. The world often witnesses several epidemic and pandemic outbreaks causing
tremendous human suffering and death. Currently, the world is witnessing the COVID-
19 pandemic, with nearly six million deaths. Historically, there have been many deadly
outbreaks, which include Cholera, Spanish Flu, AIDS, etc. Al is an effective technology in
detection, prevention, response, and recovery in epidemics or pandemics. Deep learning
is found to be more effective in tracking the pandemic or epidemic. Other effective Al
technologies include neural networks, AMM, and the ML algorithm SVR for predicting an
epidemic or pandemic. Besides its applications and advantages over traditional methods,
Al possesses some limitations or challenges. The major challenges are the requirement of
huge amounts of data to feed the system for training, logistical difficulties in implementa-
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tion, expense, and dependence on the hardware or computational facilities. Sometimes, Al
technologies such as QSPR and Chem Mapper are unreliable due to epistemic uncertainty,
errors and lack of flexibility. The progressions in Al technologies are constantly evolving,
and these technologies will be useful when the advantages over the limitations will be
higher. Thus, Al-enabled techniques will be opening up many opportunities in various
sectors of healthcare and pharmaceutical research, and this could be a game-changer in

futuristic research.

Table 1. A comprehensive detail of Al applications and their limitations/challenges in healthcare

and pharmaceutical research.

Sectors

Al Technologies

Applications

Limitations/Challenges

Disease diagnosis

Deep learning
Neural networking

Cancer, Dementia,
Dermatological diseases,

Complicated, and
development takes a much
longer time.

Requires much more data

[43,44,48,501 Unsupervised learning Arial fibrillation compared to traditional
ML algorithms.
e  Computationally expensive
versus traditional algorithms.
Hard d d .
ANN Image analysis, Uar ware dependence
. . . . nexplained functioning
Evolutionary computational Data interpretation of network
Fuzzy expert systems Administration of vasodilator . ' .
. - . e  Difficult to determine the
Hybrid intelligent system and anesthesia .
appropriate network structure.
Automated treatment e .
. e  Difficulty of showing the
igi planning blem to the network
Digital therapy and Radiotherapy prcl) em to the ne wgr .
i V. tt t int
personalized treatment Radiomics Prediction of outcomes and * aues are not turned out mto
[53,57,62,63,91,92] optimum results.

toxicity of radiation therapy

Virtual medical assistants
Case-based reasoning
Vector regression technique

Monitoring chronic diseases

Clinical decision support
Intelligent
computer-assisted instruction

Management of Diabetes

Drug discovery [105,106,
110,112,113,123,124]

QSPR (Estimation program
interface suite)

Determination of
physicochemical properties of
small molecules

Aleatoric error and
epistemic uncertainty.
Requires a lot of data and
computational resources.

SMILES

Forecast
drug-receptor binding

Deep learning

Neural networks with Lipophilicity and
ADMET predictor and solubility prediction
ALGOPS programme
Chem Mapper e  Lack of flexibility and

Deep learning

Drug-target interaction

generalization of models.

Deep Tox, eTOXPred,
Targe Tox

Drug toxicity prediction
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Table 1. Cont.

Sectors Al Technologies Applications Limitations/Challenges
PrOCTOR Prgl}ct if c'lrug would ffn‘l in
clinical trial due to toxicity
BNMs Logistical difficulties in
Dirichlet process mixture CT design, dose selection implementation. .
model Lack of robust peer-reviewed
mTPI, MCMC clinical evaluation.
Patient identification and Expensive.
OCR, NLP characterization for CT P
Training is more difficult as it
RBM, AI—enab.led CT monitoring is difficult to calculate the
wearable device energy gradient function.
Video monitoring
Wearable sensors Patient adherence
Deep learning It requires a large number of
SAAIM Forecast of seasonal influenza input and target pairs for the
MSDII-FFNN training process.
ML-AMM
HNN Prediction of Ebola
It requires a very large amount
of data in order to perform
DNN Prediction of Zika better than other techniques.
Expensive.
No standard theory to guide in
selecting deep learning tools.
RVFL networks with WOA Prediction of VDPV outbreak
SVR Prediction and tracking of
BNM dengue outbreak
ANN, CNN Rapid (;lliir:éisls of TB
TB-Al Identify TB bacillus
Forecasting - -
epidemic/pandemic MPNN Diagnosis of yellow fever

[135-137,140,153-156] Deep learning
CMC in combination with
Fuzzy rule
PNN + CF
CNN
Deep neural networks

Enterpol combined

COVID-19 prediction

with bigdata
Difficult to predict
turning points.
Computationally expensive.
. . Poor performance for long
ARIMA Investigate the dynamic term forecasts.

pattern of COVID-19

Cannot be used for seasonal
time series.

Less explainable than
exponential smoothing.
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Table 1. Cont.

Sectors Al Technologies Applications Limitations/Challenges

Unpredictable.
Computations are difficult and

Investigate the dynamic time consuming.

MLP attern of COVID-19 e  Proper functioning of
P the model.
e  Depends on the quality of
the training.
e  Requires multiple hidden
layers.
Investigate the dynamic e  Makes lfearnm.g more difficult
FNN pattern of COVID-19 as the dimension of the search
space is increased.
e  Problem is further
compounded for color images.
LSTM Investigate the dynamic

pattern of COVID-19

Al artificial intelligence; ANN: artificial neural networks; BNMs: Bayesian nonparametric models (BNMs);
CT: clinical trial; mTPI: modified toxicity probability interval; MCMC: Markov Chain Monte Carlo; OCR: optical
character recognition; NLP: natural language processing; RBM: risk-based monitoring; MSDII-FFNN: machine
learning feed-forward propagation neural network model; ML-AMM: machine learning anonymized mobility
map; SAAIM: self-adaptive AI model; HNN: hybrid neural network; DNN: dynamic neural network; RVFL: ran-
dom vector functional link; WOA: whale optimization algorithm; SVR: support vector regression; CNN: convolu-
tional neural network; TB-AlI: tuberculosis-AI; MPNN: multilayer perceptron neural network classifiers; CMC:
composite Monte Carlo; PNN + CF: polynomial neural network with corrective feedback; ARIMA: autoRegres-
sive integrated moving average; MLP: multilayer perceptron; FNN: feed-forward neural network; LSTM: long
short-term memory networks.
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