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Abstract: This research aims to study and assess state-of-the-art physics-informed neural networks
(PINNs) from different researchers’ perspectives. The PRISMA framework was used for a system-
atic literature review, and 120 research articles from the computational sciences and engineering
domain were specifically classified through a well-defined keyword search in Scopus and Web of
Science databases. Through bibliometric analyses, we have identified journal sources with the most
publications, authors with high citations, and countries with many publications on PINNs. Some
newly improved techniques developed to enhance PINN performance and reduce high training
costs and slowness, among other limitations, have been highlighted. Different approaches have been
introduced to overcome the limitations of PINNs. In this review, we categorized the newly proposed
PINN methods into Extended PINNs, Hybrid PINNs, and Minimized Loss techniques. Various
potential future research directions are outlined based on the limitations of the proposed solutions.

Keywords: physics-informed neural networks (PINNs); partial differential equation (PDE); loss
function; activation function; deep learning

1. Introduction

Physics-informed neural networks (PINNs) [1] are frequently employed to address a
variety of scientific computer problems. Due to their superior approximation and general-
ization capabilities, physics-informed neural networks have gained popularity in solving
high-dimensional partial differential equations (PDEs) [2]. As a deep learning method,
physics-informed neural networks bridge the gap between machine learning and scientific
computing. PINNs have contributed to improvements in many areas of computer science
and engineering due to their simplicity [3,4]. In the engineering and scientific literature,
PINNs are receiving more attention for solving a variety of differential equations with
applications in weather modeling, healthcare, manufacturing, and other fields [5–7]. How-
ever, PINNs are not suitable for several real-time applications because of their high training
costs. Although various proposals have been made to enhance the training effectiveness of
PINNs, only some have considered the effects of initialization [8–10]. Another obstacle to
the application of PINNs to a wide range of real-world problems is their poor scalability [5].

Due to the sheer number of residual points in time-constrained space, an accurate
network, called a physics-informed neural network (PINN), can be trained by minimizing
only the residual loss. Moreover, the prediction of the high-fidelity solution for complex
nonlinear problems in low-dimensional space is more accurate than the solutions of the
reduced-order equations [1,11–13].

The ability of PINNs to learn from sparse input is one of their most well-known
features [12,14,15]. Initial and boundary terms are not systematically given in the context of
PINN structure; therefore, they need to be incorporated in the loss function of the network,
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which must be learned simultaneously with the uncertain functions of the differential
equation (DE) [16,17]. While implementing gradient-based approaches, combining multiple
targets during the network’s training can lead to biased gradients, leading to PINNs failing
to appropriately learn the fundamental DE solution [18–20].

According to Raissi et al. [1], Schiassi et al. [21], and Zhang et al. [22], the key draw-
back of conventional PINNs is that even the DE limitations are still not mathematically
solved, hence they need be learned concurrently with the DE solutions within the do-
main. As a result, we cope with competing goals during PINN training: learning the
concealed DE solutions well in domains while also learning the hidden DE solutions on
the boundary [21,23,24]. This results in imbalanced gradients during network training
using gradient-based approaches, causing PINNs to fail to learn the basic DE solutions
accurately [21,25]. According to Dwivedi et al. [26], despite the numerous benefits that
PINNs provide, they have three major drawbacks. The first is their slowness [26,27] when
applied to real problems; PINNs use up gradient descent optimization and are quite slow
when compared to other numerical approaches. For highly deep networks, PINNs are
vulnerable to vanishing gradient problems [6,26,28]. There is also the possibility that a
solution will become stuck at a minimal point. Finally, the PINN’s learning process is
fine-tuned by hand. We cannot ascertain exactly how much data or even which framework
is sufficient for a particular set of sample instances [1,29–31].

The weighted least-squares collocation approach utilized in PINNs can be interpreted
as a hybrid physics/data loss scheme [32–34]. As a result, PINNs have inherited several
drawbacks common to such approaches, including the necessity to evaluate PDE residuals
correctly against beginning as well as boundary conditions; a severe regularity demand
for solutions remains continuous, as does the inability of natural methods to impose
conservation structures [32,35–37].

Although PINNs have been exceptionally beneficial to the scientific community, Colby
et al. [18] discovered that they are often incapable of appropriately solving a mathematical
model for interfacial problems used for solidification dynamics called “phase field prob-
lems”. As a result, they found that specific elements of phase field model solutions (both
spatially and dynamically) were more difficult to learn than others. These problematic
places may alter as you discover the solution.

The goal of this research is to find physics-informed neural network adaptations
for solving various problems from the literature and to highlight newly improved PINN
methodologies that have been proposed using different techniques. The main objectives of
the study were to evaluate the current state of the art in this field of research using numerous
bibliometric analyses, identify the full spectrum of eligibility requirements studied in the
literature through information synthesis, create a collection of general information about
how far research on PINNs has changed over time, and identify newly introduced PINN
approaches while highlighting some topics for future research. We tried to categorize state-
of-the-art PINN techniques into three groups. These are Extended, Hybrid, and Minimized
Loss PINN techniques and will be discussed later in Section 4.1. In this literature review,
we aimed to answer the following question: What techniques have been introduced to optimize
the performance of physics-informed neural networks? Although PINNs are utilized to solve
problems in practically all the domains of human endeavor, throughout this review, we
focused on computational sciences and engineering.

The rest of the paper is organized as follows: Section 2 presents the background.
Section 3 explores the quality assessment and qualitative synthesis used in the literature
review for this study. Section 4 discusses the results of the bibliometric analysis, as well as
the objectives, methods, and limitations of the newly proposed PINN techniques. Sections 5
and 6 discuss future research directions and conclusions, respectively.

2. Background

Many methods for solving differential equations have been established over the years.
Some generate a solution in an array containing the solution’s value in a predefined set
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of locations. Others employ basis-functions to designate the solution in analytic methods
and typically translate the genuine problem to a system of algebraic equations. Most past
projects seeking to solve partial differential equations with neural networks have been
limited to the case of solving methods of algebraic equations that come from domain
discretization. In 1998, Isaac Lagaris et al. [38] introduced an improved method for solving
ordinary DEs and partial differential equations by employing Artificial Neural Networks
(ANNs). In their newly introduced method, the differential equation’s trial solution was
represented by the sum of two parts. There were no adjustable parameters in the first half,
which satisfied the initial/boundary conditions. The second component was designed in a
way that did not change the initial or boundary conditions. In this section, a feedforward
neural network (NN) with programmable constraints (the weights) was used. Therefore,
the network is trained to fit the differential equations together with the initial/boundary
conditions that were satisfied by construction [38] methods and can be used for a range
of ordinary differential equations (ODEs), coupled ODE systems, and partial differential
equations (PDEs).

In 2011, Ladislav Zjavka [39] developed a new technique, known as a Differential
Polynomial Neural Network (D-PNN). The proposed D-PNN technique approximates a
multi-parametric function by generating and solving unknown partial DEs. A differential
equation is substituted to create a system model of dependent variables, leading to the
summation of fractional polynomial derivative terms. In contrast to the ANN method,
the D-PNN allows each neuron to directly participate in the calculation of the network’s
overall output. Consequently, in 2013, Ladislav et al. [40] showed that D-PNNs could be
applied to solve complex mathematical problems.

In 2015, Ladislav et al. [41] presented a recurrent neural network (RNN) of one layer,
which is frequently employed for time series predictions and which was used for compari-
son. With twenty-four succession samples constantly generated by the benchmark and a
continuous step value of 0.1, in the range of 0–2.4, the D-PNN and RNN were trained. Two
incredibly different networks were trained with only a relatively narrow range of values,
which did not accurately reflect function-specific progress over an entire period. The models
were then tested over a longer period. The networks only estimated one benchmark value
for the next step x using the calculated accurate function f(x) with three-input sequences,
rather than making entire predictions built on prior steps’ outputs (approximations).

In 2017, Raissi et al. [42] proposed hidden physics models (machine learning of non-
linear partial DEs). To obtain patterns from the high-dimensional data produced by ex-
periments, the models are essentially data-efficient learning approaches that can exploit
underlying physical laws expressed by time dependency and nonlinear PDEs. The pro-
posed methodology can be used to solve learning problems, identify systems, or find partial
differential equations using data. Within the same time frame, Raissi, Perdikaris, and Karni-
adakis [43] introduced the prototype of novel physics-informed neural networks (PINNs).
It was referred to as “data-driven solutions of nonlinear partial differential equations”. The
term “physics informed neural networks” refers to NNs that have been trained to solve any
supervised learning tasks while complying by any identifiable physics law as expressed by
general nonlinear PDEs. They developed two unique kinds of algorithms, namely continu-
ous time and discrete time models, depending on the type and organization of the available
data. The result is a new family of universal function approximators that efficiently use
data and intuitively encode any underlying physical constraints as prior knowledge.

In 2018, Raissi et al., proposed another technique called “multistep neural networks
for data-driven discovery of nonlinear dynamical systems” [44]. They presented a machine
learning strategy for recognizing nonlinear dynamical systems using data. To clarify the
principles governing the evolution of a particular dataset, they specifically combined
traditional numerical analysis methods, such as multi-step time-stepping patterns, with
potent nonlinear function approximators, such as deep neural networks. They described
how this allowed them to accurately learn dynamics, predict future states, and identify
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points of attraction. They evaluated their methods for a set of benchmark problems that
required the identification of complicated, nonlinear, and chaotic dynamics.

In the same period, Raissi [45] proposed a new technique called Deep-Hidden Physics
Models to support the use of deep learning in the discovery of nonlinear PDEs. To find
nonlinear PDEs using dispersed and possibly noisy observations in space and time, they
proposed a deep learning approach. They used two different deep neural networks to
estimate the unknown solution and the nonlinear dynamics. They were able to prevent
numerical differentiations because they were intrinsically unstable and ill-conditioned by
acting as a prior on the unknown answer. The second network exhibited nonlinear dy-
namics and aids in our ability to identify the fundamental principles guiding the evolution
of a certain spatiotemporal dataset. They demonstrated how the developed model could
help them to grasp the structure and dynamics of a system and forecast its future state by
testing the efficiency of the approach on a variety of benchmark problems covering a range
of scientific areas.

The following are various adjustments to the basic PINN prototype. In early 2019,
Raissi et al. [1] presented the full version of PINNs as a “Deep Learning Framework for
Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations”.

Despite the significant improvement in simulating multi-physics problems by using
numerical modeling of PDEs, noisy data cannot be totally integrated into current algorithms.
Mesh creation is still complex and challenging and high-dimensional problems constrained
by parameterized PDEs cannot be solved [46–48]. Furthermore, inverse problems that
involve hidden physics are often extremely expensive to solve. This is because they require
complex computer code and several formulations [49–51].

In the recent past, deep learning and physics-informed neural networks (PINNs) have
garnered a lot of interest in scientific research and engineering applications [52–54]. Deep
learning has lately evolved as a modern discipline of scientific machine learning in relation
to solving the governing PDEs of physical situations [55–57] by incorporating the universal
approximation and high expressivity of neural networks [58–60]. Deep neural networks
can estimate any high-dimensional function if adequate training data are available [61–63].

However, these networks do not consider the physical properties of the problem, and
the accuracy of the approximation they provide still depends heavily on the exact geometry
of the problem and the initial and boundary conditions [64–66]. The solution is indeed not
unique without this basic information, and it may lose physical accuracy. Data are scarce
and imprecise in most applications, and the controlling physics are unknown, limiting the
utility of traditional machine learning (ML) and physics-based approaches [56,67–70].

Physics-informed neural networks, on the contrary, use fundamental physical equa-
tions to train neural networks. PINNs should be trained to comply with both the available
training data and the enforced governing equations. A neural network could be managed
in this way by training data that need not be huge and full [58,61,71].

Large volumes of data are required in a wide range of applications to train the neural
network through decreasing the distance (loss) in between network output and the ground
truth [72–75].

A PINN’s loss function is made up of numerous terms, such as governing equations
and boundary conditions. To enable a network model with well-known physical laws,
Raissi et al. [1] proposed physics-informed neural networks (PINNs), which were intended
to resolve direct as well as inverse problems controlled by numerous different types of
PDEs [1,72,76].

In partial and ordinary differential equations, PINNs were applied to learn solutions
and parameters. The basic concept, especially with physics-informed neural networks, is to
employ physics laws in the form of DEs to train NNs [77]. This is significantly distinctive
from using the neural networks as dummy models trained with data from a composition
of input and output values for nonlinear PDEs [1,14,78].

The goal is to train neural networks not only on data, as is common in deep learning,
but also on the fundamental model of the DEs [37,79]. Without understanding the boundary
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conditions, it is feasible to get a precise solution to PDEs [34,62,80]. Therefore, PINNs can
be applied to identify an optimum solution of high reliability with some insight on the
physical properties of the problems and training data (even sparse and partial).

In other words, PINNs provide an inconsistent method for solving differential equa-
tions that violates any mathematical discretization of the system [37,81,82]. PINNs show
improvement in terms of performance and accuracy while only using a small amount of
data for training. They are used to perfectly describe the physical attributes of a system’s
dynamic ecosystem [83–85].

PINNs provide the solutions to a broad range of computational science problems and
are a pioneering technology that is leading towards the advancement of new categories
of numerical solvers for PDEs. PINNs can be viewed as a meshless alternative to classic
methodologies (for example, CFD for fluid dynamics) and novel data-driven methods for
model inversion and system identification [1,3,86].

Moreover, the trained PINNs could predict values on modeled grids of various reso-
lutions without having to be retrained [87]. In addition, they allow for the manipulation
of automatic differentiation (AD) [88,89] when calculating the appropriate derivatives in
PDEs, a novel class of differentiation techniques frequently utilized to derive NNs that have
been shown to be exceptional regarding numeric or symbolic differentiation [87,88,90].

2.1. Physics-Informed Neural Networks

PDEs with high dimensions are commonly used in a variety of disciplines, including
physics, chemistry, engineering, finance, and more [91]. Higher dimensions make numerical
PDE computational methods such as finite difference or finite element methods impractical
due to the explosion in the number of grid points and the need for smaller time steps.

Physics-informed neural networks (PINNs) are models developed to obey physical
laws specified by (nonlinear) partial differential equations (PDEs). They can be used for
supervised tasks where the reduction of errors with respect to data and physical laws is
required [1,91,92].

The loss function is defined as follows:

l = ldata + wlphysics (1)

where ldata is the loss with respect to the data, wlphysics is a physics law’s loss relative to the
PDEs, and w is the weight matrix of a physics loss. By using mean-squared error for both
losses, if fi is the error of each physical state, we derive:

l = ∑i (yi − ŷ)2 − w ∑i f 2
i (2)

The input values x, y, and t are used in the architecture of the network, and the output
values are u and v. The output variables are used directly to calculate the data loss term.
However, we distinguish the variables with respect to the input variables for the physical
loss term to account for the physical loss function, as shown in Figure 1 [91] below. The
goal is to minimize deviations from the physics law by monitoring training with measured
or generated data (i.e., ldata), as well as by training to diminish the departure from the
physics law. To further train to minimize deviation from the physical law, by preventing
overfitting, the term lphysics ensures that such a neural network generalizes better given
unknown inputs. The physical loss allows the output variables to be trained to include
their first and/or second-degree derivatives, as well as a local region around each input
value of the given data (depending on the PDEs).
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2.2. Modeling and Computation

A general nonlinear partial differential equation can be:

∂u
∂t

= 0

ut + N[u; λ] = 0, x ε Ω, t ε [0, T] (3)

u(t, x) denotes the solution, N[u; λ] is a nonlinear operator parametrized by λ, and Ω is a
subset of RD.

Numerous problems in mathematical physics, such as conservative laws, diffusion
processes, advection–diffusion systems, and kinetic equations, fall under this general
category of governing equations.

PINNs can be programmed to solve two major types of PDE problems on the noisy
data of a general dynamical system denoted by the above equation [14,92,93]. These are:

1. Data-driven solutions.
2. Data-driven discovery.

• Data-Driven solutions of Partial Differential Equations
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The data-driven solution of PDE findings when calculating the unknown state u(t, x)
of the system given noisy measurements z of the state and fixed model parameters λ reads
as follows:

ut + N[u] = 0, x ε Ω, t ε [0, T] (4)

By defining f (t, x) as
f := ut + N[u] = 0 (5)

and approximating u(t, x) with a deep neural network, f (t, x) results in a PINN. This
network can be differentiated using automatic differentiation. The parameters of u(t, x)
and f (t, x) can be then learned by minimizing the following loss function Ltot:

Ltot = Lu + L f (6)

where Lu = || u−z||T with u and z representing state solutions and measurements at
sparse location T, respectively, and Lf = ||f ||T is a residual function. To satisfy this second
term, the structured data defined by the PDEs must be used during the training phase [81].

This approach enables the creation of physically informed surrogate models that are
computationally efficient and which can be used for simulations, model predictive control,
and data-driven physical process predictions [1,94–96].

• Data Discovery of Partial Differential Equations

The data-driven discovery of PDEs leads to computation of the unknown states u(t, x)
and f (t, x) of the system and the learning of model parameters, λ, that most accurately
capture the observed data:

ut + N[u; λ] = 0, x ε Ω, t ε [0, T] (7)

Additionally, f (t, x) is defined as

f := ut + N[u; λ] = 0 (8)

Further, approximating u(t, x) with a deep neural network, (t, x), leads to a PINN.
This network can be derived by automatic differentiation. The parameters of u(t, x) and
f (t, x) can then be learned along with the parameters, λ, of the differential operator by
minimizing the following loss function Ltot:

Ltot = Lu + L f (9)

where Lu = ||u−z||T with u and z representing state solutions and measurements at
sparse location T, respectively, and Lf = ||f ||T is a residual function. This second term
involves the well-defined information characterized by the PDEs to be satisfied in the
training procedure.

3. Methodology

For reviewing current research, this paper used the PRISMA framework [97–99]. The
scoping approach was utilized to retrieve the most relevant papers on physics-informed
neural networks. This method aided the control of critical mandatory components and the
classification of potential search terms [97,100,101]. To identify relevant scientific papers
and articles, multiple databases were searched. A search using a single keyword (“physics-
informed neural networks”) was conducted to find relevant publications from the most
reputable and reliable research resources. Scopus and Web of Science were used, along with
the Web of Science core collection, Derwent Innovations Index, MEDLINE, KCI-Korean
Journal Database, and SCIELO Citation Index.

The keyword “Physics Informed Neural Network” was solely used in each database
search for the relevant literature. Predefined inclusion and exclusion criteria and quality
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requirements were used to refine the data search. Each filter verified that the quality
requirement was met, and the next section discusses the inclusion and exclusion criteria.

Because our search query was put in a double quote, we employed deterministic
information retrieval to look for suitable papers, as we described earlier. The literature
searches in all the databases listed above retrieved articles from 2019 to 2022. Initially, 530
items were found; however, this was largely made up of a variety of materials, such as
research articles, reviews, editorials, and book chapters, among others.

Many researchers use PINNs to solve problems in different areas of human endeavor.
We have limited our research to computational sciences and engineering and focused on
research articles, review papers, and book chapters in our literature search. A total of 288
documents were chosen, as illustrated in Figure 2. Articles from computational sciences
and engineering were chosen as the following sequence. This included computer science,
engineering, mathematics, and physics. Non-English documents were also excluded. The
PRISMA checklist can be found in Supplementary Materials.
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Duplicate articles were also removed from the Scopus and Web of Science metadata
files. The two files were combined and duplicate journal articles removed. In this review,
the PRISMA 2020 flow diagram was used, as shown in Figure 3 below.
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3.1. Quality Assessment

This review looks at final published journal articles, reviews, and conference papers
to find the best results and capture an excellent overview of previous data. Abstracts and
conclusions were separated to keep the archive to a minimum. In addition, cited references
in the evaluated articles were considered. As stated earlier, the two metafile records were
combined. The duplicate records were eliminated to improve the findings. Irrelevant data
were also excluded.

3.2. Qualitative Synthesis Used in the Literature Review

After selecting the documents, a two-step approach was used to confirm the quality
of the analysis performed on the published papers. The relevant metadata were initially
imported into Microsoft Excel to conduct a descriptive study of physics-informed neural
network literature, which included identification of articles relating to the evolution and
improvement of PINNs in computational sciences and engineering, among others.

Content analysis was performed in the second stage to classify and analyze recent
research across different disciplines and highlight potential challenges and limitations
which could represent opportunities for future research.

3.3. Quantitative Synthesis (Meta-Analysis)

In a systematic review, quantitative synthesis is used to present statistical data. Typi-
cally, this is referred to as a meta-analysis. Table 1 below is the quantitative study character-
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istics table, which consists of three groups. Journals are grouped by specialization, type,
and the PINN method used in those papers.

Table 1. Quantitative study characteristics.

Group Population Percentage (%)

Journal by Specialization

1. Computer Science 29 24.167
2. Engineering 31 25.833
3. Mathematic 35 29.166
4. Physics 25 20.833

Journal by Type

1. Conference Article 21 17.500
2. Journal Article 99 82.500

Journal by Methods

1. Conventional PINNs 97 80.833
2. Extended PINNs 12 10.000
3. Hybrid PINNs 7 5.833
4. Minimized Loss PINNs 4 3.333

4. Result of Bibliometric Analyses

The main objectives of this research, as mentioned earlier, were to assess the state of
the art in this area of study using various bibliometric analyses and to classify the full range
of eligibility requirements analyzed in the literature through metadata synthesis to produce
a collection of general information on the extent to which the study of PINNs has changed
over time.

Figure 4 illustrates physics-informed neural network evolution over the past three and
a half years in terms of the number of publication relating to this area of study. Between
2019 and mid-2022, research in this field had been developing steadily, with a current peak
in 2021. The trend shows that many researchers are busy finding solutions with PINNs,
and some are also trying to optimize performance.
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Figure 4. Publications per year.

Although PINNs represent a new field of research, they have attracted the interest
of many researchers around the world. Figure 5 shows the countries with the most PINN
publications. The United States, China, and European countries have the most publications.
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The seven most common publication sources represented in the final paper set are
summarized in Figure 6. The data show that Computer Methods in Applied Mechanics
and Engineering is the journal with the most articles in this area of study, followed by
the Journal of Computational Physics. Many journals and conference proceedings have
published numerous papers on PINNs. Out of 120 papers selected for this study, we
considered journals with at least 3 published works in the list of article sources with the
most publications.

The citation report of the studies from 2019 to mid-2022 is presented in Table 1. The
most-cited authors are Raissi M., Perdikaris P., and Karniadakis G.E. [1], with 3442 citations
as at the time of writing this paper. The most cited article’s title is “Physics-informed
neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations”. It was published by the Journal of
Computational Physics and is indexed in the Scopus and Web of Science databases. These
authors are considered pioneers of PINN research. After that, the second most-cited authors
are Yang, Liu et al. [102] and Goswami et al. [103]. Their works were cited 183 and 177 times
and published by the Journal of Computational Physics and Theoretical and Applied Fracture
Mechanics, respectively. Further commonly cited studies are shown in Table 2 below.

Figure 7 illustrates journal publication sources with the most citations relating to
physics-informed neural networks. No other journal publisher matched the number of
citations that the Journal of Computational Physics received. The second most cited journals
were Communication in Computational Physics and Computer Methods in Applied Mechanics
and Engineering.



Big Data Cogn. Comput. 2022, 6, 140 12 of 23Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 12 of 24 
 

 

Figure 6. Journals with the most publications. 

The citation report of the studies from 2019 to mid-2022 is presented in Table 1. The 

most-cited authors are Raissi M., Perdikaris P., and Karniadakis G.E. [1], with 3442 cita-

tions as at the time of writing this paper. The most cited article’s title is “Physics-informed 

neural networks: A deep learning framework for solving forward and inverse problems 

involving nonlinear partial differential equations”. It was published by the Journal of Com-

putational Physics and is indexed in the Scopus and Web of Science databases. These au-

thors are considered pioneers of PINN research. After that, the second most-cited authors 

are Yang, Liu et al. [102] and Goswami et al. [103]. Their works were cited 183 and 177 

times and published by the Journal of Computational Physics and Theoretical and Applied 

Fracture Mechanics, respectively. Further commonly cited studies are shown in Table 2 be-

low. 

  

5
4

16

14

5
4

3

0

2

4

6

8

10

12

14

16

18

Number of Publications

Figure 6. Journals with the most publications.

Table 2. Authors with the most citations.

Authors Source Title Number of Citations

Raissi et al. [1] Journal of Computational Physics 3442
Costabal et al. [104] Frontiers in Physics 122

Jagtap A.D. et al. [105] Communications in Computational
Physics 118

Meng, Xuhui et al. [106] Computer Methods in Applied
Mechanics and Engineering 143

Yang, Liu et al. [102] Journal of Computational Physics 183

Haghighat E. et al. [107] Computer Methods in Applied
Mechanics and Engineering 161

Kharazmi E. et al. [108] Computer Methods in Applied
Mechanics and Engineering 111

Fang, Yin et al. [109] Nonlinear Dynamics 29

Dourado A. et al. [110] Journal of Computing and Information
Science in Engineering 37

Shin Y. et al. [111] Communications in Computational
Physics 137
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Table 2. Cont.

Authors Source Title Number of Citations

Zobeiry N. et al. [112] Engineering Applications of Artificial
Intelligence 52

Goswami et al. [103] Theoretical And Applied Fracture
Mechanics 177

Mehta, Pavan et al. [113] Fractional Calculus and Applied
Analysis 25

Colby et al. [18] Communications in Computational
Physics 54

Liu, Minliang et al. [114] Computer Methods in Applied
Mechanics and Engineering 26

Doan N.A.K. et al. [82] Journal of Computational Science 28
Rao, Chengping et al. [92] Journal of Engineering Mechanics 57

Pu, Juncai et al. [115] Nonlinear Dynamics 21
Meng, Xuhui et al. [116] Journal of Computational Physics 31

Li W. et al. [66] Computer Methods in Applied
Mechanics and Engineering 21Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 14 of 24 
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PINN research has garnered support from researchers and technology practitioners
in recent years, as shown in Figure 4. Despite the popularity of PINNs, contributions to
the field come from few countries around the globe. A review of the number of countries
with the most publications related to PINNs using bibliometric analysis could spark the
interest of scientists and technology practitioners from other countries and encourage
them to collaborate and contribute, as many developed and developing countries are
now competing for higher rankings in the lists of the best countries for scientific and
technical research.

Consequently, evaluating journals with the most publications and authors with the
most citations through bibliometric analysis can lead to more contributors to the literature
because many journal publishers may emphasize PINN research. The number of citations
an author receives from a particular article portrays how other people acknowledge their
contribution and the impact of their research in the academic domain.

In this study, we found that highly cited journals have a unique novelty in terms of
the area of discussion. They try to solve different scientific and technical problems with the
techniques they propose. The publication from Raissi et al. [1] is the most influential article
among all others. As we mentioned earlier, they are the pioneers of PINNs and the results
of their work laid the foundation for PINN research.

In short, bibliometric analysis with a systematic literature search would give enthu-
siasts an insight into how far PINN research has progressed and where they should start
their research.

4.1. Newly Proposed PINN Methods

One of the main contributions of our study was finding a solution to the limitations of
PINNs as mentioned by some authors. Our study also highlights several issues for future
research. To focus on the research question, we evaluated the work of numerous authors
who have worked on improving the performance of PINNs and found solutions to many
of the limitations previously mentioned by different authors.

Although PINN architecture is built based on feedforward neural networks, due to
the shortcomings of PINNs many authors have tried to extend PINNs by using different
approaches, such as conservative PINNs (cPINNs), nonlocal PINNs (nPINNs), etc. In
contrast, others have tried to combine it with other neural network techniques, expecting
better performance and more precise results. This includes CNNs, RNNs, etc. Consequently,
other authors have tried to boost performance by reducing loss to a minimal level. We
tried to group newly proposed techniques into three categories: Extended PINNs, Hybrid
PINNs, and Minimized Loss techniques.

4.1.1. Extended PINNs

The studies under this category tried to extend the PINN using various techniques,
such as domain and subdomain decomposition, to improve the generalization of PINNs.
Other techniques, such as PINNs with ensemble methods, tried to expand the solution
interval of PINNs to converge to the correct solution. Bayesian physics-informed neural
networks (B-PINNs) are a type of Extended PINN that is more accurate and much faster
than a simple PINN. The objectives and limitations of many more techniques are briefly
discussed in Table 3 below.
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Table 3. Proposed Extended PINNs.

Author Objective(s) Technique Limitation(s)

Jagtap A.D. et al. [35]

The main goal of this study was to
develop a unique conservative

physics-informed neural network
(cPINN) for solving

complicated problems.

Conservative physics-informed
neural network (cPINN)

Despite the parallelization of the
cPINN, it cannot be used for

parallel computation.

Jagtap A.D. et al. [117]

The main objective of this study was
to introduce an XPINN model that

improved the generalization
capabilities of PINNs.

Extended physics-informed
neural networks (XPINNs)

XPINNs enhance generalization in
exceptional conditions.

Decomposition results in less
training data, which makes the

model more likely to overfit and
lose generalizability.

De Ryck et al. [14]

The main goal of this study was to
precisely constrain the errors arising

from the use of XPINNs to
approximate incompressible

Navier–Stokes equations.

PINN error estimates
The authors’ estimates in their

experiment gave no indication of
training errors.

G. Pang et al. [118]

This study aimed to extend PINNs to
the inference of parameters and

functions for integral equations, such
as nonlocal Poisson and nonlocal

turbulence models (nPINNs). A wide
range of datasets must be adaptable to

fit the nPINNs.

Nonlocal physics-informed neural
networks (nPINNs)

nPINNs require more residual
points. Increasing the number of
discretization points, on the other
hand, makes optimization more
challenging and ineffective, and

causes error stagnation.

Liu Yang et al. [102]

The aim of this study was to introduce
a novel method that was designed for

solving both forward and inverse
nonlinear problems outlined by PDEs

with noisy data, which aimed to be
more accurate and much faster than a

simple PINN.

Bayesian physics-informed neural
networks (B-PINNs)

The proposed B-PINNs in this
work were only tested in scenarios
where data size was up to several

hundreds, and no tests were
performed with large datasets.

Ehsan Kharazmi et al. [108]

The purpose of this research was to
bring together current developments
in deep learning techniques for PDEs

based on residuals of least-squares
equations using a newly

developed method.

Variational physics-informed
neural networks (hp-VPINNs)

Although VPINN performance on
inverse problems is encouraging,

no comparison was made to
classical approaches.

Juncai Pu et al. [115]

The goal of the study was to provide
an improved PINN approach for
localized wave solutions of the

derivative nonlinear Schrödinger
equation in complex space with faster

convergence and optimum
simulation performance.

Improved PINN method
Complex integrable equations
were not really considered in

this study.

Enrico Schiassi et al. [21]

The main objective of this study was
to propose a novel model for

providing solutions to problems with
parametric differential equations (DEs)

that is more accurate and robust.

Physics-informed neural network
theory of functional connections

(PINN-TFC)

The proposed technique cannot be
applied to data-driven discovery
of problems when solving ODEs
using both a deterministic and

probabilistic approach.

Rafiq et al. [119]

The main goal of this experiment was
to propose a unique deep Fourier

neural network that expands
information using spectral feature
combination and a Fourier neural

operator as the principal component.

Deep spectral feature aggregation
physics-informed neural network

(DSFA-PINN)

Other mathematical functions,
such as the Laplace transform

coupled with a Fourier transform,
as well as the conventional CNN,

cannot be used to generalize
models using this method.

Gaétan et al. [120]

The major objective of this experiment
was to design a robust model
architecture for reconstructing

periodic flows with a small number of
imperfect sensors by extending PINNs

with forced truncated
Fourier decomposition.

Modal physics-informed neural
networks (ModalPINNs)

The application of ModalPINNs is
restricted to fluid mechanics only.

Colby et al. [18]

The primary objective of this study
was to present an Extended PINN

method which is more effective and
accurate in solving larger

PDE problems.

Adaptive physics informed
neural networks

This study focused primarily on
the problem of solving
differential equations.

Katsiaryna et al. [121]

The objective of this experiment was
to determine an acceptable time

window for expanding the solution
interval using an ensemble of PINNs.

PINNs with ensemble models

The ensemble algorithm seems to
be more computationally

intensive than the standard PINN
and is not applicable to

complex systems.
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4.1.2. Hybrid PINNs

Although PINNs are feedforward in nature, some researchers have tried to combine
them with a variety of neural network architectures to overcome their limitations and
improve overall performance. Parareal physics-informed neural networks (PPINNs) were
proposed to improve high-level computational efficacy by using a small dataset. Hybrid
physics-informed neural network (Hybrid PINNs) use convolutional neural networks to
solve PDE problems. Physics-informed recurrent neural networks model an industrial
process called a grey box. The objectives and limitations of Hybrid PINNs are highlighted
in Table 4 below.

Table 4. Proposed Hybrid PINNs.

Author Objective(s) Technique Limitation(s)

Meng et al. [106]

The main goal of this research was to
introduce a new a hybrid technique
that can exploit the high-level
computational efficacy of training a
neural network with small datasets to
significantly speed up the time taken
to find solutions to challenging
physical problems.

Parareal physics-informed neural
network (PPINN)

Domain decomposition of
fundamental problems with huge
spatial databases cannot be solved
with PPINNs.

Zhiwei Fang et al. [33]

This paper aimed to present a Hybrid
PINN for PDEs and a differential
operator approximation for solving
the PDEs using a convolutional neural
network (CNN).

Hybrid physics-informed neural
network (Hybrid PINN)

This Hybrid PINN is not
applicable to nonlinear operators.

Lahariya M. [122]

The goal of this research was to
propose a physics-informed neural
network based on grey-box modeling
methods for identifying energy
buffers using a recurrent
neural network.

Physics-informed recurrent
neural networks

The proposed model was not
validated with real-world
industrial processes.

Wenqian Chen et al. [11]

The main goal of this research was to
develop a reduced-order model that
uses high-accuracy snapshots to
generate reduced basis information
from the accurate network while
reducing the weighted sum of
residual losses from the
reduced-order equation.

Physics-reinforced neural
network (PRNN)

The reduced basis set must be
small to outperform the
Proper Orthogonal
Decomposition–Galerkin
(POD–G) method in terms of
accuracy, as the numerical results
of the experiment showed.

Xiaoping Zhang [123]

The main objective of this study was
to develop a novel method for solving
groundwater flow equations using
deep learning techniques.

Ground Water-PINN (GW-PINN)
The proposed model cannot be
used to predict groundwater flow
in more complex and larger areas.

Dourado et al. [110]

The major goal of this experiment was
to develop a hybrid technique for
missing physics estimates in
cumulative damage models by
combining data-driven and
physics-informed layers in deep
neural networks.

PINNs for missing physics

Even if the proposed additional
levels are used to initialize the
neural network, suboptimal
setting of these parameters may
lead to the failure of the training.

Mingyuan Yang [124]

The goal of this experiment was to
develop a new hybrid model for
uncertain forward and inverse
PDE problems.

Multi-Output physics-informed
neural network (MO-PINN)

The proposed method cannot be
used to solve problems involving
multi-fidelity data.

4.1.3. Minimized Loss Techniques

The newly proposed methods under this category attempt to minimize loss using
different techniques. For instance, the new reptile initialization-based physics-informed
neural network (NRPINN) uses many sample tasks from parameterized PDEs. It modifies
the loss penalty term so the model can adopt the initialization parameters of related
tasks using supervised, unsupervised, and semi-supervised learning. Consequently, the
physics-informed and physics-penalized neural network model (PI-PP-NN) expresses
many physical constraints and integrates the regulating physical laws into its loss function.
The objectives and limitations of newly proposed techniques are briefly discussed in
Table 5 below.
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Table 5. Proposed PINN techniques using Minimized Loss.

Author Objective(s) Technique Limitation(s)

Apostolos F. et al. [125]

The main goal of this study
was to provide a

gradient-based meta-learning
method for offline discovery

that uses data from task
distributions created using
parameterized PDEs with
numerous benchmarks to

meta-learn PINN
loss functions.

Meta-learning PINN
loss functions

Optimizing the performance
of methods such as RMSProp
and Adam for handling inner
optimizers with memory was

not considered in
this experiment.

Liu X. et al. [8]

The major objective of this
experiment was to use

multiple sample tasks from
parameterized PDEs and

modify the loss penalty term
to introduce a novel method

that depends on labeled data.

New reptile
initialization-based

physics-informed neural
network (NRPINN)

NRPINNs cannot be used to
solve problems in the absence

of prior knowledge.

Habib et al. [126]

The main goal of this
experiment was to develop a
model that expresses physical
constraints and integrates the
regulating physical laws into

its loss function
(physics-informed), which the

model penalizes when they
are violated

(physics-penalized).

Physics-informed and
physics-penalized neural

network model (PI-PP-NN)

The proposed model can only
be used to create friction

pendulum bearings. For any
other isolation system, the
theoretical basis must be

adapted accordingly before it
can be used for design.

Zixue Xiang [127]

The main goal of this
experiment was to develop a
technique that allows PINNs

to perfectly and efficiently
learn PDEs using Gaussian

probabilistic models.

Loss-balanced
physics-informed neural

networks (lbPINNs)

In this experiment, the
adaptive weight of PDE loss

gradually decreased.
Therefore, a theoretical

investigation of this paradigm
is necessary to increase the

robustness and scalability of
the technique.

5. Future Research Direction

We previously pointed out various limitations of PINNs that were highlighted by
different authors and later discussed the newly proposed techniques used to solve most
of the mentioned problems. We have also outlined the limitations of the newly proposed
PINN methods. The focus of our future research will be more on the limitations of the
newly proposed techniques. Since they have addressed most of the PINN limitations, the
limitations of some selected articles are discussed because of their significance. One of the
main benefits of using the cPINNs introduced by [35] to solve complicated problems is
their capacity for parallelization, which effectively lowers training costs; however, they
cannot be used for parallel computation. In future research, cPINNs may be extended for
use in parallel computation.

The enhanced PINN technique proposed by [115] improves neural network perfor-
mance. Through numerous trainable parameters in the activation function, they noted
that an important issue for the future was considering how to integrate machine learn-
ing using integrable systems theory more fully and construct substantial integrable deep
learning algorithms.

A new approach presented by [21] can also be applied to data-driven discoveries and
solutions of parametric differential equations. Future research will focus on extending this
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method to data-driven problem discovery for solving ODEs using both deterministic and
probabilistic methods.

Noting the nature of optimization when training PINNs, the capacity to perform
uncertainty quantification (UQ) on physical systems was highlighted by [1]. The PINN
framework implemented by [92] could be extended to provide these features.

Despite the numerous desirable features of the hybrid approach proposed by [110],
their findings proved that the methodology has a shortcoming that could be considered as
a topic of future research. Their research has limitations regarding training results, as they
were proven to be very responsive to the initial hyperparameters of the neural network;
even if the proposed auxiliary planes are used to initialize the neural network, the poor
initialization of these parameters can potentially hinder training. Therefore, optimization
with a wide range of initial hyperparameter values is still required.

The recent work of Liu X. et al. [8] has one limitation. As a new reptilian initializa-
tion learning task, NRPINN needs prior information, especially higher- and zero-order
information. As a result, NRPINN is not suitable for handling problems where previ-
ous information is not available. Using transfer learning from related efforts to acquire
an initialization may be another technique for improving the performance of PINNs in
future studies.

A new hybrid technique proposed by [106] cannot be used to solve the domain
decomposition of basic problems with big spatial databases. Extending this work to support
large spatial databases could be a possible area of future research. The Ground Water-PINN
(GW-PINN) technique proposed by [123] can be extended to predict groundwater flow in
more complex and larger areas.

The work of [124] could be extended to problems with multi-fidelity data in future
research. Additionally, their approach could also be stretched to time-dependent problems
because time dimension is comparable to space dimensions from an implementation
standpoint; since early uncertainties are transmitted and magnified over time, distinct
behavior in relation to the uncertainty correlation may emerge.

6. Conclusions

The review and bibliometric analysis of the published literature revealed several
limitations of PINNs. We discovered that a significant amount of experimental research
in the 120 peer-reviewed articles used conventional PINNs to solve various scientific and
engineering problems. In contrast, other studies developed new methods to overcome the
limitations of PINNs and achieve higher performance results.

Data evaluation was an essential and significant step in the review. Based on the
relative number of PINN-related journals, two reputable databases were chosen: Scopus
and Web of Science. The first PINN papers were published in early 2019. For this reason,
the papers used in this study are from 2019 to mid-2022.

We discussed the objectives, methodologies, and limitations of the newly proposed
PINN techniques. Despite the feedforward nature of PINNs, we have found several arti-
cles that combined them with other neural network architectures. While some extended
the conventional PINNs, others tried to improve performance by using different tech-
niques for reducing loss. We have also identified several potential research directions for
PINNs based on the limitations of proposed solutions to increasing prediction power and
optimizing performance.

As part of our contribution to the literature, we intend to implement a new model that
combines PINNs with either a graph neural network or a recurrent neural network using a
time series dataset.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bdcc6040140/s1, the PRISMA 2020 Checklist [128].

https://www.mdpi.com/article/10.3390/bdcc6040140/s1
https://www.mdpi.com/article/10.3390/bdcc6040140/s1
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