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Abstract: Large retail companies routinely gather huge amounts of customer data, which are to be
analyzed at a low granularity. To enable this analysis, several Key Performance Indicators (KPIs),
acquired for each customer through different channels are associated to the main drivers of the
customer experience. Analyzing the samples of customer behavior only through parameters such as
average and variance does not cope with the growing heterogeneity of customers. In this paper, we
propose a different approach in which the samples from customer surveys are represented as discrete
probability distributions whose similarities can be assessed by different models. The focus is on
the Wasserstein distance, which is generally well defined, even when other distributional distances
are not, and it provides an interpretable distance metric between distributions. The support of the
distributions can be both one- and multi-dimensional, allowing for the joint consideration of several
KPIs for each store, leading to a multi-variate histogram. Moreover, the Wasserstein barycenter offers
a useful synthesis of a set of distributions and can be used as a reference distribution to characterize
and classify behavioral patterns. Experimental results of real data show the effectiveness of the
Wasserstein distance in providing global performance measures.

Keywords: Wasserstein distance; customer experience; key performance indicators

1. Introduction
1.1. Motivations

Among the many facets of omni-channel retailing, this paper refers to a set of analytics
and decision processes that support the seamless focus of a brand across many channels (in-
store, online, mobile, call center or social). Retailers have come to recognize the importance
of integrating information and services from multiple available channels to reduce data
mismatch in order to create a seamless Customer eXperience (CX) and to obtain data-
supported insight into the management of a network of stores. However, it is important to
identify, promote and provide customers with various experiential benefits to enhance both
shopping intentions and satisfaction. Although price and convenience are still primary
considerations, customers are putting more emphasis on competence in specific categories
and the overall customer experience. This aspect is particularly strong for categories that
are highly fragmented or in which advice to customer plays a large role in sales, such
as furniture, do-it-yourself products, apparel and consumer electronics. Personalization,
meaning the quality of individual attention and tailored service, is largely regarded as
the top criterion in evaluating CX. The analysis of customer data, from questionnaires
and the analyses of online behavior, is instrumental in providing personalized services
such as customized purchase recommendations, sending promotion information based on
individual preferences and providing location-based services. The focus of this paper is on
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the analysis of CX while considering a multinational retail company operating through a
network of stores. To enable this analysis, a number of key performance indicators (KPI),
acquired for each customer through different channels, are associated to the main drivers
of the customer experience. It is important to remark that this analysis must be performed
from a granular perspective on what a consumer really wants, today and in the future, in
order to understand which services/products to offer on which channel. Developing this
detailed understanding of consumers requires harnessing consumer data, which should
be combined with consumer behavior insight from interviews and observations. It also
requires analytics, which can work at the required granular level, gain a clear understanding
of consumer expectations and derive a global picture of the strengths and weaknesses of
each store. Capturing the full potential of omni-channel retailing requires a cross-channel
perspective and transparency to measure and manage channel interplay, obtaining at
the same time measures for the entire network of stores and improvement actions. More
recently, the use of machine learning methods has been gaining more importance to leverage
the wealth of customer data into a richer representation of the CX. It is the opinion of the
authors of this paper that, given the growing number of channels and heterogeneity of
customers, the standard statistical approach, which analyzes samples of the customer
behavior only on parameters such as average and variance, might capture only a part of
the hidden value of the data.

This paper proposes a different approach in which the samples from customer surveys
are represented as discrete probability distributions, in particular as histograms or cloud
points. In this distributional context, the variation in performance between two stores,
considering one KPI, is the distance between two univariate histograms. The method can
be naturally extended to jointly consider several KPIs, leading, for each store, to a multi-
variate histogram. The statistical and, more recently, the machine learning communities
have developed many alternative models to measure the distance between distributions.
A general class of distances, known as f -divergences, is based on the expected value of
a convex function of the ratio of two distributions. Some examples are Kullback–Leibler
(and its symmetrized version Jensen–Shannon), Hellinger, Total Variation and χ-square
divergence. In this paper, the focus is on the Wasserstein (WST) distance. Although other
distances measure pointwise differences in densities (or weights), the WST distance (also
known as the optimal transport distance) is a cross-binning distance; this distinction can
be summed up by saying that the optimal transport distance is horizontal, whereas other
distances are based on vertical displacement. Two important elements of the WST theory
are the barycenter and WST clustering. The WST barycenter offers a useful synthesis of a
set of distributions. A standard clustering method such as k-means can be generalized to
WST spaces, enabling the WST barycenters and k-mean WST clustering, which is used to
characterize and classify behavioral patterns. In general, WST enables the synthetization
of a comparison between two multi-dimensional distributions through a single metric by
using all information in the distributions. Moreover, the WST distance is generally well
defined and provides an interpretable distance metric between distributions.

This study was motivated by the emerging need for a multination retailer to revise the
performance measurement system—currently based on NPS—which has been adopted to
rank the 50 stores of its commercial network. The limitations of NPS and the desire to design
a new performance measurement system able to deal with multiple KPIs coming from
omni-channel customer surveys lead us to propose a completely new analytical framework
based on multi-variate discrete distributions and the Wasserstein distance. Indeed, using
a more comprehensive system to evaluate the relative performance of each store with
respect to the others is a critical decision for the company as a basis for the distribution of
a performance-related bonus (on a quarterly basis), which is subject to negotiation with
trade unions. Although multi-channel surveys are available, this study focuses on only one
specific channel to better evaluate the benefits and limitations of the new framework.
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1.2. Related Works

The cornerstone of the implementation of a CX strategy is the metric used to measure
the performance of a company. A widely used such metric is the Net Promoter Score [1],
which is associated with customer loyalty and is considered a reliable indicator of the future
of a company’s performance.

The author of [2] offered a view about a complete system of performance measure-
ments for an enterprise based on over twenty years of research and development activities.
The system was designed to provide key persons at different units/levels with useful
quantitative information, such as board members to exercise due diligence, leaders to
decide where to focus attention next and people to carry out their work well. Later, the
author of [3] provided a review of various methods for tackling performance measurement
problems. Although technical statistical issues are buried somewhat below the surface,
statistical thinking is very much part of the main line of the argument, meaning that perfor-
mance measurements should be an area attracting serious attention from statisticians. More
recently, the authors of [4] re-visited the use of NPS (Net Promoter Score) as a predictor
of sales growth by analyzing data from seven brands operating in the U.S. sportswear
industry measured over five years. Interestingly, the results confirmed that, although the
original premises are reasonable, methodological concerns arise when NPS is used as a
metric for tracking overall brand health. Only the more recently developed brand health
measure of NPS (using an all-potential customer samples) is effective at predicting future
sales growth.

An interesting approach leveraging machine learning to analyze Customer Experience
(CX) was proposed in [5,6]. The authors of these works considered beyond the NPS and
the Customer SATisfaction score (CSAT) to measure the CX, and they performed a wide
comparative evaluation of several machine learning approaches, analyzing the specific
case of a telecommunication company and applying a wide set of classification methods to
categorize the survey results.

In this paper we propose a distributional approach to performance evaluation; the per-
formance is measured through KPIs represented as discrete probability distributions whose
similarities are computed through the Wasserstein distance. The Wasserstein distance can
be traced back to the works of Gaspard Monge [7] and Lev Kantorovich [8]. Recently,
also under the name of the Earth Mover Distance (EMD), it has been gaining increasing
importance in several fields, such as Imaging [9], Natural Language Processing [10] and a
generation of adversarial networks [11]. Important references include [12], which gave a
complete mathematical characterization, and [13], which also gave an up-to-date survey of
numerical methods. The authors of [14] provided an overview of the Wasserstein space. A
specific analysis of its geometry and geodesic Principal Components Analysis was given
in [15]. Specific computational results related to barycenters and clustering were given
in [16]. A novel Wasserstein distance and fast clustering method were proposed in [17]. One
should note that the computational cost of the WST distance is amplified in computations
of the barycenters of multi-variate distributions for computational as well as theoretical
reasons [13].

The Wasserstein distance has also been receiving attention in economic theory, where
the key reference is [18], in which it was shown that a number of seemingly unrelated
problems can be modelled and solved as optimal transport problems. For the term “un-
reasonable effectiveness” in the title of this paper, we are indebted to [19]. Some key
problems in finance have been also dealt with using optimal transport as the pricing of
financial derivatives [18] and the analysis of robustness in risk management [20]. Other
contributions to finance are [21], which provided a Wasserstein-based analysis of stability
in finance, and [22], which proposed Wasserstein k-means clustering to classify market
regimes. An important application domain of the Wasserstein distance is the analysis of
distributional robustness. In [23], the authors analyzed Wasserstein-based distribution-
ally robust optimization and its application in machine learning using the Wasserstein
metric [24,25]. Two contributions, along the line of stochastic programming, were given
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in [26], which proposed an approximation of data-driven chance-constrained programs
over Wasserstein balls, and in [27], which proposed a distributionally robust two-stage
Wasserstein model with recourse. We are not aware of significant applications of the
Wasserstein distance in management science. A management topic where the Wasserstein
distance enables significant contributions is the design of recommender systems using
metric learning [28,29], which has shown to enable the measurement of uncertainty and
the embedding of user/item representations in a low-dimensional space.

1.3. Contributions

The main contribution of this paper is the representation of performance metrics as
measured through KPIs as discrete probability distributions. Embedding these distribu-
tions in the “Wasserstein space” enables the comparison and ranking of different stores.
In addition, through the definition of Wasserstein barycenters, it is possible to perform
clustering in the Wasserstein space with the aim of finding groups of similar stores. More-
over, since some KPIs are correlated with each other, in this paper, a subset of the most
“informative” ones are chosen using feature selection and information gain. To further
motivate the usage of the Wasserstein distance, a barycenter-based measure of how KPI
data are not Euclidean is proposed; the computational results show that the discrepancy
between the analysis in the Euclidean space and the WST space grows with the size of
the subset.

2. Key Performance Indicators and the Formulation of the Problem

The focus of this paper is on a multinational retailer company which operates through
a network of stores. The performance of each store is characterized in terms of service
to the customer and is evaluated by the customers themselves through a number of Key
Performance Indicators. Each store receives its evaluation through a survey composed
of a number of questions. For each question, a customer can answer with a number on a
scale from −100 to 100, which represents the satisfaction of a specific service. Each KPIi,
with i = 1, . . . , K, is computed as the average of a set of questions and captures one feature
of the customer experience. Figure 1 shows an example considering the experience of a
customer inside a store. This aspect of the CX can be evaluated through seven different
KPIs, each of which is obtained from the answers to a set of different questions.
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The objective of this study is to propose a system to assess stores’ performances while
simultaneously considering different KPIs. As a case study, a network of 50 stores owned
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and operated by a multinational retailer is considered. In this paper, the seven KPIs related
to the customer experience inside the store are considered. The following list of KPIs
provides an idea of the scope of this study:

• Overall: Measures the overall sentiment of the customer for the whole process.
• Store Building: Features of the store, such as parking spaces and cleanliness.
• Customer Relationship: Measures sentiment about the vendors.
• Commercial Relationship: Aggregates scores given by customers in the customer

relation before conversion.
• Selection: Aggregates scores from features such as the availability of products and

clarity of presentation.
• Affordability: Aggregates scores from customers related to prices and discounts.
• Payment: Aggregates scores such as the length of the queue and easy payment.

Usually, the mean of each KPI for each store is analyzed to build a ranking or to
evaluate different aspects of the stores. A very effective way to visualize these means is by
using the parallel coordinates plot, as shown in Figure 2. This chart enables the easy and
clear visualization of a set of points (stores) in a multi-dimensional space (KPIs).
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3. Space of Data and Distributional Representation
3.1. Distributional Representation

All the data of a store si can be stored in a matrix L(si) ∈ Rm×K, in which the columns
represent the K KPIs, and the rows represent the m users that completed the survey for a
specific store si (Table 1). Then, each cell contains the value of a KPI for a customer.

Table 1. Matrix representing store si. Each column refers to a KPI, and each row refers to a customer.

L(si) KPI1 KPI2 . . . KPIK

1

2

. . .

m

Each column of L(si) can be considered to be a sample of the data related to a KPI. A
column k can then be represented as a one-dimensional histogram h(si)

k , whose support
space [zk, uk] can be divided into η bins. The weight of each bin is given by the number of
customers of the sample, whose score for the specific KPI falls into that bin. Figure 3 shows
an example of the histograms associated with three different stores regarding a KPI.



Big Data Cogn. Comput. 2022, 6, 138 6 of 13
Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 6 of 14 
 

 

Figure 3. Three different stores represented as univariate histograms. KPI values are on the x-axis, 

and their relative frequencies are on the y-axis. 

As each histogram represents a single KPI, it is possible to compute the distance be-

tween two stores as the distance between the two histograms given by the same KPI. This 

representation naturally extends to multi-dimensional histograms. Characterizing a store 

using all KPIs, each store is represented as a 𝐾-dimensional histogram. For instance, con-

sidering two KPIs, the supports of the two-dimensional bins are squares, and the weights 

of the bins are the number of customers whose 𝐾𝑃𝐼𝑖 and 𝐾𝑃𝐼𝑗 scores fall into that bin. 

The natural representation is a heatmap, as shown in Figure 4. 

 

Figure 4. Two different stores represented as bivariate histograms. KPI values related to 𝐾𝑃𝐼𝑖 and 

𝐾𝑃𝐼𝑗 are on the x-axis and y-axis, respectively, and each bin is colored by their relative frequencies. 

Since histograms are instances of discrete probability distributions, the stores become 

elements in a probabilistic space. Another characterization of stores in this probabilistic 

space can be obtained by representing the matrices 𝐿(𝑠𝑖) as point clouds. Figure 5 displays 

an example of point cloud representation. On the left, one KPI for two stores is shown, 

and on the right, a plot of the same two stores for two KPIs is shown. 

  

Figure 5. Point cloud representations of two stores. The left plot considers one KPI: KPI values are 

on the x-axis, and the absolute frequency is on the y-axis. The right plot considers two KPIs: KPI 

values are on the x-axis and y-axis, and each point represents a user. 

Figure 3. Three different stores represented as univariate histograms. KPI values are on the x-axis,
and their relative frequencies are on the y-axis.

As each histogram represents a single KPI, it is possible to compute the distance
between two stores as the distance between the two histograms given by the same KPI.
This representation naturally extends to multi-dimensional histograms. Characterizing a
store using all KPIs, each store is represented as a K-dimensional histogram. For instance,
considering two KPIs, the supports of the two-dimensional bins are squares, and the
weights of the bins are the number of customers whose KPIi and KPIj scores fall into that
bin. The natural representation is a heatmap, as shown in Figure 4.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 6 of 14 
 

 

Figure 3. Three different stores represented as univariate histograms. KPI values are on the x-axis, 

and their relative frequencies are on the y-axis. 

As each histogram represents a single KPI, it is possible to compute the distance be-

tween two stores as the distance between the two histograms given by the same KPI. This 

representation naturally extends to multi-dimensional histograms. Characterizing a store 

using all KPIs, each store is represented as a 𝐾-dimensional histogram. For instance, con-

sidering two KPIs, the supports of the two-dimensional bins are squares, and the weights 

of the bins are the number of customers whose 𝐾𝑃𝐼𝑖 and 𝐾𝑃𝐼𝑗 scores fall into that bin. 

The natural representation is a heatmap, as shown in Figure 4. 

 

Figure 4. Two different stores represented as bivariate histograms. KPI values related to 𝐾𝑃𝐼𝑖 and 

𝐾𝑃𝐼𝑗 are on the x-axis and y-axis, respectively, and each bin is colored by their relative frequencies. 

Since histograms are instances of discrete probability distributions, the stores become 

elements in a probabilistic space. Another characterization of stores in this probabilistic 

space can be obtained by representing the matrices 𝐿(𝑠𝑖) as point clouds. Figure 5 displays 

an example of point cloud representation. On the left, one KPI for two stores is shown, 

and on the right, a plot of the same two stores for two KPIs is shown. 

  

Figure 5. Point cloud representations of two stores. The left plot considers one KPI: KPI values are 

on the x-axis, and the absolute frequency is on the y-axis. The right plot considers two KPIs: KPI 

values are on the x-axis and y-axis, and each point represents a user. 

Figure 4. Two different stores represented as bivariate histograms. KPI values related to KPIi and
KPIj are on the x-axis and y-axis, respectively, and each bin is colored by their relative frequencies.

Since histograms are instances of discrete probability distributions, the stores become
elements in a probabilistic space. Another characterization of stores in this probabilistic
space can be obtained by representing the matrices L(si) as point clouds. Figure 5 displays
an example of point cloud representation. On the left, one KPI for two stores is shown, and
on the right, a plot of the same two stores for two KPIs is shown.
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values are on the x-axis and y-axis, and each point represents a user.
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The set of all KPIs is denoted as S. The power set of S is the set of all subsets, including
the empty one and S itself. If S has cardinality K, then the number of subsets is 2K. All
subsets but the empty one can be regarded as a description of a store. Therefore, the
analysis can be performed on each element (except the empty one) of the power set of S.

A subset of cardinality k = 1, . . . , K is associated with store k’s KPIs, which can be ana-
lyzed as k one-dimensional histograms or one k-dimensional histogram. The informational
value of the two approaches is different, and the computational cost is also very different,
as it increases with k. To mitigate this cost, one can choose the most significant KPIs using
feature selection methods, as outlined in Section 5.1.

The histogram is a convenient representation of the m× K matrix L(si) in a space Rd,
where d = ηK, with η representing the number of bins. It is important to remark that d does
not depend on the number of users m and can be reduced by considering an element of the
power set S of cardinality k < K or a smaller number of bins.

3.2. Graph Representation

An effective way to visualize all the stores and their similarities is by building a graph
G = (V, E), where the vertices V represent the stores that are connected with an edge if
their similarities are above a given threshold. As previously mentioned, each store can
be represented as a k-dimensional histogram H(si). Therefore, the set of edges can be
given by E =

{(
si, sj

)
: D
(

H(si), H(sj)
)
< τ

}
. Any distance between histograms can be

used, and in this case, the Wasserstein distance (whose basic definition and properties are
provided in Section 3) is considered. Figure 6 shows an example of the graph resulting
from 4 KPIs and 50 stores. In this case, only the stores whose distances are below the first
decile are connected.
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4. Wasserstein Distance
4.1. Basic Definitions

Consider the case of a discrete distribution P specified by a set of support points xi
with i = 1, . . . , m and their associated probabilities wi, such that ∑m

i=1 wi = 1 with wi ≥ 0
and xi ∈ M for i = 1, . . . , m. Usually, M = Rd is the d-dimensional Euclidean space where
xi are the support vectors. M can also be a symbolic set provided with a symbol-to-symbol
similarity. Therefore, P can be written as follows in Equation (1):

P(x) =
m

∑
i=1

wiδ(x− xi) (1)

where δ(·) is the Kronecker delta.
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The WST distance between two distributions P(1) =
{

w(1)
i , x(1)i

}
with i = 1, . . . , m1

and P(2) =
{

w(2)
i , x(2)i

}
with i = 1, . . . , m2 is obtained by solving the following linear

program (2):
W
(

P(1), P(2)
)
= min

γij∈R+
∑

i∈I1, j∈I2

γij d
(

x(1)i , x(2)j

)
(2)

The cost of transport between x(1)i and x(2)j , d
(

x(1)i , x(2)j

)
is defined by the p-th power

of the norm ‖x(1)i , x(2)j ‖, which is usually the Euclidean distance.
Two index sets can be defined as I1 = {1, . . . , m1} and I2 likewise, such that

∑
i∈I1

γij = w(2)
j , ∀j ∈ I2 (3)

∑
j∈I2

γij = w(1)
i , ∀i ∈ I1 (4)

Equations (3) and (4) represent the in-flow and out-flow constraints, respectively. The
terms γij are called matching weights between support points x(1)i and x(2)j or the optimal

coupling for P(1) and P(2). The basic computation of OT between two discrete distributions
involves solving a network flow problem whose computation typically scales cubically in
the sizes of the measure. In the case of a one-dimensional histograms, the computation
of the Wasserstein distance can be performed by a simple sorting algorithm and with the
application of Equation (5).

Wp

(
P(1), P(2)

)
=

(
1
n

n

∑
i

∣∣∣x(1)∗i − x(2)∗i

∣∣∣p) 1
p

(5)

where x(1)∗i and x(2)∗i are the sorted samples. The discrete version of the WST distance is
usually called the Earth Mover Distance (EMD). For instance, when measuring the distance
between grey scale images, the histogram weights are given by the pixel values and the
coordinates by the pixel positions.

Consider now the three univariate histograms in Figure 3, which represent three
different stores. Support xi is the range of values of the KPI, and the weights wi are the
number of users whose KPI score falls into that interval. Table 2 shows the differences
between the Wasserstein distance and the Manhattan and Euclidean distances.

Table 2. The difference between Manhattan, Euclidean and Wasserstein distances.

Distance Order D(Sh,Si) D(Sh,Sj) D(Si,Sj)

Manhattan 1 2.000 1.000 1.000
Euclidean 2 0.894 0.510 0.490

Wasserstein
1 0.583 0.250 0.333
2 0.677 0.324 0.374

The Wasserstein distance agrees with the intuition that Sh is closer to Sj than Si. Instead,
the Manhattan distance does not discriminate because it assigns the same value to the pairs
(Sh, Sj) and (Si, Sj). In [30], it was remarked that the information reflected in histograms
lies more in the relative value of their coordinates rather than on their absolute value.

The computational cost of optimal transport can quickly become prohibitive. The
method of entropic regularization [13] enables scalable computations, but large values of
the regularization parameter can induce an undesirable smoothing effect, whereas low
values not only reduce the scalability but might induce several numerical instabilities.
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4.2. Barycenter and Clustering

Under the optimal transport metric, it is possible to compute the mean of a set
of empirical probability measures. This mean is known as the Wasserstein barycen-
ter and is the measure that minimizes the sum of its Wasserstein distances to each el-
ement in that set. Consider a set of N discrete distributions, P =

{
P(1), . . . , P(N)

}
, with

P(k) =
{(

w(k)
i , x(k)i

)
: i = 1, . . . , mk

}
and k = 1, . . . , N. Therefore, the associated barycenter,

denoted with P = {(w1, x1), . . . , (wm, xm)}, is computed as follows in Equation (6):

P = argmin
P

1
N

N

∑
k=1

λkW
(

P, P(k)
)

(6)

where the values λk are used to weigh the different contributions of each distribution in
the computation. Without the loss of generality, they can be set to λk =

1
N ∀ k = 1, . . . , N.

The concept of the barycenter enables clustering among distributions in a space
whose metric is the Wasserstein distance. More simply, the barycenter in a space of
distributions is the analog of the centroid in a Euclidean space. The most common and
well-known algorithm for clustering data in the Euclidean space is k-means. Since it is
an iterative distance-based (also known as representative-based) algorithm, it is easy to
propose variants of k-means by simply changing the distance adopted to create clusters,
such as the Manhattan distance (leading to k-medoids) or any kernel allowing for non-
spherical clusters (i.e., kernel k-means). The crucial point is that only the distance is
changed, and the overall iterative two-step algorithm is maintained. This is also valid
in the case of the Wasserstein k-means, where the Euclidean distance is replaced by the
Wasserstein distance and where centroids are replaced by barycenters.

5. Results
5.1. Feature Selection

The computational complexity of the Wasserstein distance can quickly become in-
tractable in the case of multi-variate histograms, as already mentioned. The computation
of the barycenter and performing the clustering procedure using the WST distance add
substantially to the computational cost. It is therefore important to reduce the number of
variables to consider, and for this reason, a feature selection strategy based on the Informa-
tion Gain (IG) is used to select the most relevant KPIs. In turn, each KPI is considered as a
target variable in a classification problem, and the IGs of all the others KPIs are computed.
Since seven KPIs are considered, for each of them, six different values of IG are obtained,
each of which represents the importance for the specific KPI in predicting the other six.
Therefore, for each KPI, the average of these six represents its IG. Table 3 reports these
results. In the following analysis, the four most relevant KPIs are considered.

Table 3. Information Gain of the seven KPIs.

KPI Information Gain

Selection 0.37
Customer Relationship 0.34

Commercial Relationship 0.33
Store Building 0.32
Affordability 0.30

Overall 0.29
Payment 0.26

5.2. Wasserstein Analysis

The distributional representation of the stores enables the definition of an ideal store
that can be used to build a Wasserstein-based ranking. The histogram associated with the
ideal store has the entire mass concentrated on the bin of the most favorable assessment.



Big Data Cogn. Comput. 2022, 6, 138 10 of 13

For instance, Figure 7 shows the ideal univariate and bivariate histograms. This definition
can be naturally extended to multi-dimensional histograms.
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Figure 7. Univariate histogram associated with the ideal store (left): KPI values are on the x-axis, and
their relative frequencies are on the y-axis. Bivariate histogram associated with the ideal store (right):
KPI values related to KPIi and KPIj are on the x-axis and y-axis, respectively, and each bin is colored
by their relative frequencies.

Given such a histogram, it is now possible to build a ranking computing the Wasser-
stein distance between the histograms associated with each store and the ideal one. In this
way, the ranking is built upon the entire distributions of the KPIs’ values and not only
considering their means. To highlight the advantages of this framework, Figure 8 shows
the correlation between the distances of the stores for the ideal and different statistics of the
KPIs’ distributions while considering histograms in one to four dimensions.
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Figure 8. Pearson correlation between the distances of stores from the ideal and four statistics (mean,
variance, kurtosis and skewness).

In the case of univariate histograms related to the KPI “selection”, the correlation
between the distance from the ideal and the mean is at a maximum; therefore, the rankings
built upon the mean and the distance from being ideal are the same. By increasing the
dimensionality of the data, the correlation of the Wasserstein distance with the mean tends
to decrease, but the correlation with other statistics, such as kurtosis and skewness, tends
to increase. The Wasserstein distance is able to capture other aspects or statistics of a
distribution rather than just the mean, resulting in a more robust ranking.

5.3. Clustering Analysis

The barycenters enable the clustering of a set of distributions using the Wasserstein
distance in a framework similar to k-means, as explained in Section 3.2. Two different
clustering approaches are considered and compared with the standard k-means.
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Consider a network of n stores and a set of k KPIs. Each store can be represented as
k univariate histograms (one for each KPI) or one k-dimensional histogram. Clustering
can be performed to divide the stores into two different groups. In the first case, each
clustering iteration requires the computation of 2k different univariate barycenter and 2kS
Wasserstein distances between univariate histograms. In the second case, each cluster-
ing iteration requires the computation of two different k-dimensional barycenter and 2S
Wasserstein distances between k-dimensional histograms. The first approach considers just
the marginals of the entire distribution of KPIs, losing the correlations between them and
resulting in a more efficient but less effective algorithm. The second approach can instead
quickly become too computationally expensive as the number of KPIs k grows.

These two approaches are compared with the k-means algorithm performed on the
mean of KPIs. Each store is represented as a k-dimensional vector, where each component
contains the mean of a KPI. To enable the visualization of the clustering, the results of
the three algorithms are mapped on the network representation of the stores, as shown in
Figure 9.
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The resulting clusters using the standard k-means approach and the approach that
considers just the marginals are visually similar, while the approach that consider the whole
distributions of KPIs bring to different groups. Therefore, using the multi-dimensional
histogram representations of the stores allows one to capture the entire distribution of the
KPIs and their correlations, thus bringing different insight.

5.4. Nonlinear Structures in Data

A key assumption in this paper is that large datasets can exhibit a nonlinear structure,
which is not easily captured by a Euclidean space. A key conjecture of this paper is that the
WST space of histograms is a non-linear manifold. As a consequence, one can expect that
embedding the problem in a Wasserstein space and using barycenters can provide a better
synthesis of the dataset than the Euclidean mean.

To test this conjecture, the difference between the Euclidean mean and the barycenter
is analyzed. First, a single KPI is considered, and the Euclidean mean and the barycenter
of the histograms associated with the 50 stores are computed. The same process is also
repeated in the cases of two, three and four KPIs to consider multi-dimensional histograms.

The computational results support the initial hypothesis. Figure 10 shows the Wasser-
stein distances between the Euclidean means of the histograms and the barycenters. This
distance monotonically increases with the dimension of the support space of the histograms.
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6. Conclusions, Limitations and Perspectives

The analytics proposed in this paper, based on the Wasserstein distance and barycen-
ters, enables one to capture the quality of the customer experiences and to provide per-
formance measures for the entire network of stores. It is the authors’ opinion that the
growing diversity and heterogeneity of customers makes a distributional approach more
effective for analyzing samples of customer behavior than relying only on parameters such
as average and variance. The Wasserstein distance (also known as the optimal transport
distance) is shown to uncover nonlinear dependencies in the dataset without requiring the
alignment of the distributions’ support. This is demonstrated by the growing gap between
the Euclidean average and the barycenter as the dimensionality of the support increases.
The histograms can also be clustered in the Wasserstein space.

These features are demonstrated in a challenging business problem: the performance
evaluation of the Italian store network (50 stores) of a multination retailer. Assessing the
relative performance of each store with respect to the others is a critical decision for a
company as a basis for the distribution of a performance-related bonus. The results enable
the company to move towards a different evaluation platform. The analytics proposed
in this paper, based on the Wasserstein distance and barycenters, is suitable to obtain a
credible ranking system for the stores.

In terms of limitations, it is fair to remark that, although univariate distributions
can be easily handled using the quantile-based closed formula, computational problems
may hinder the application of the WST distance to large-scale multivariate problems.
This problem is amplified in the computation of the barycenter and in the clustering of
histograms in the Wasserstein space.

In terms of perspectives, it should be remarked that a byproduct of the computation
of the WST distance between two stores is an optimal transport plan that indicates how
much of the “probability mass” is to be moved between each couple of bins in the multi-
variate histograms representing the two stores. This result can be read as the impact of an
improvement of each KPI on the overall score of a store.
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