
Citation: Sheikhi, A.S.H.; Iosif, E.;

Basov, O.; Dionysiou, I.

SmartMinutes—A Blockchain-Based

Framework for Automated, Reliable,

and Transparent Meeting Minutes

Management. Big Data Cogn. Comput.

2022, 6, 133. https://doi.org/

10.3390/bdcc6040133

Academic Editor: Michele Melchiori

Received: 6 October 2022

Accepted: 8 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

SmartMinutes—A Blockchain-Based Framework for Automated,
Reliable, and Transparent Meeting Minutes Management
Amir Salar Hajy Sheikhi 1, Elias Iosif 2,3, Oleg Basov 4 and Ioanna Dionysiou 1,*

1 Department of Computer Science, School of Sciences and Engineering, University of Nicosia,
Nicosia 2417, Cyprus

2 Department of Digital Innovation, School of Business, University of Nicosia, Nicosia 2417, Cyprus
3 Institute for the Future, University of Nicosia, Nicosia 2414, Cyprus
4 Faculty of Digital Transformations, ITMO University, Saint Petersburg 197101, Russia
* Correspondence: dionysiou.i@unic.ac.cy

Abstract: The aim of this research work was to investigate the applicability of smart contracts in the
context of automating the process of managing meeting minutes. To this end, smartMinutes, a proof-
of-concept prototype of automating meeting minutes was designed, implemented, and validated with
test cases. The smartMinutes framework improves current practices related to the meeting minutes
process by providing automation in areas where possible, and doing so in a transparent, flexible,
reliable, and tamper-proof manner. The last feature is of paramount importance due to the fact that
meeting minutes offer legal protection, as they are considered official records of the actions taken
by an organisation. Additionally, smartMinutes supports meeting agendas with non-voting items
as well as voting items, offering a pool of three voting schemes, executing under three different
configurations. A particular configuration, the hidden mode, provides for secrecy while at the same
time guaranteeing transparency.

Keywords: smart contracts; Ethereum; meeting minutes; blockchain; voting; legal protection

1. Introduction

Meeting minutes are, in their very essence, records of everything that was discussed
and decided during a particular meeting [1]. They play an important role within the
professional world as they are proof that a meeting did indeed take place and, along
with it, the decisions that were made. Meeting minutes can be used and referred to
in future meetings to identify progress of any previously discussed topics. This could
enhance meeting productivity, as a documented starting point would be already available.
Additionally, if one is absent from a particular meeting, the meeting minutes can be
retrieved to find out details on the topics discussed. Meeting minutes could also be used in
case of conflicts related to any past agreements on decisions. Last but not least, meeting
minutes offer legal protection, as they are considered official records of the actions of a
particular committee or board. Therefore, it is of paramount importance to safeguard and
verify their authenticity.

Voting or polling to determine the stance of meeting attendees on a matter is standard
practice. Items on the meeting agenda may require voting by members, not necessarily
done during the meeting time. The post-meeting voting could introduce challenges to the
smooth process of minute management, as it will be explained in a later section. Conducting
this process in a non-automated manner may prove to be nontrivial, especially if it is done
online using, for example, email: members may forget to submit their vote by the agreed
deadline or may claim they cast a vote when they did not. Specialised online voting systems
do exist; however, to the best of our knowledge, there is no single platform that integrates
online voting with an automated minutes management system.

Big Data Cogn. Comput. 2022, 6, 133. https://doi.org/10.3390/bdcc6040133 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6040133
https://doi.org/10.3390/bdcc6040133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://doi.org/10.3390/bdcc6040133
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6040133?type=check_update&version=1

Big Data Cogn. Comput. 2022, 6, 133 2 of 19

This paper introduces smartMinutes, an approach that aims to automate the manage-
ment of agenda minutes in a transparent, flexible, non-reputable and unforgettable manner.
It provides solutions to existing shortcomings of current practices within this field, as well
as supports automation to fast-track the process of recording and voting on agenda minute
items. Furthermore, smartMinutes is a proof-of-concept prototype that uses blockchain
technology along with smart contracts to manage several aspects of the meeting minutes
process, allowing participants to vote on agenda items not only during the meeting but
also in a post-meeting manner. Voting items are configured separately, specifying their
voting deadlines, as well as the voting scheme to be deployed for each item. Thus, the
paper contributions are twofold:

• Present the smartMinutes framework that aims to improve the overall experience
involved with the management of meeting minutes, as well as provide an integrated
voting platform. This unique combination ensures that committee members do not
resort to a secondary platform for their agenda-related voting needs.

• Discuss the financial feasibility of the proposed approach by analysing the costs
involved during the execution of the embedded smartMinutes smart contracts. Addi-
tionally, the time complexity of the framework is estimated to further assess the overall
performance of the proposed system. As a matter of fact, these two key metrics are
utilised to determine the efficiency of the smart contract code, identifying its strengths
and weaknesses.

The rest of the paper is organised as follows: Section 2 presents challenges related to
the meeting minutes process, suggests the future direction towards an automated approach,
and presents existing approaches to computerised meeting minutes. Section 3 introduces
the design principles and inner workings of the smartMinutes framework, including the
pool of voting schemes and voting configurations. The overall framework performance
in terms of time complexity is analysed in Section 4. The experimental test cases, along
with the financial cost of the smart contract utilisation are described in Section 5. Possible
alternate uses of the smartMinutes framework in other fields, given its modular design, are
identified in Section 6. Section 7 concludes.

2. Review of Literature
2.1. Existing Approaches on Meeting Minutes Systems

Meeting minute related systems typically share the same goal of improving the overall
experience when it comes to the process of creating accurate official records of meetings;
the focus is on the contents discussed and the outcome of the discussion.

An investigation into the published content related to the meeting minutes domain
revealed that the main objective of the existing systems is to provide some level of automa-
tion, which would then streamline a part of the meeting minute lifecycle. With an effective
solution, this would mean that less manual work would be done, and then it could be
argued that there would be a lower chance for human error in areas that are automated. The
overall accuracy of the meeting minutes records would increase, given that the automation
is performed correctly. Below, details on several existing systems are given.

Starting with the system in [2], the authors presented an approach using natural
language processing (NLP) techniques to automate parts of the meeting minute process.
The presented solution is split into three phases, namely, speech recognition, speaker
recognition, and summarisation. The field of speech recognition was developed by big
technology-oriented companies, such as Google, and API access is granted to the public.
The speaker recognition phase involves the system to be able to use speaker diarisation
to identify the key person who is giving the speech based on a particular phrase. The
summarisation phase involves the system making use of networks that utilise bi-directional
long short-term memory (bi-LSTM) to comprehend context based on previous and follow-
ing phrases. Based on the analysis, it was found that abstractive summarisation yielded
better results when compared to extractive summarisation. In addition, it was found that

Big Data Cogn. Comput. 2022, 6, 133 3 of 19

speaker diarisation is more suitable for their system when compared to other methods, such
as naive logic. It was also found that speaker diarisation increases load and complexity.

In [3], the authors proposed a system that summarises meeting minutes given an
input, which is aimed to be used in the Indonesian parliament. This system would make
use of rule-based data extraction in conjunction with regular expressions. ROUGE, or recall-
oriented understudy for gisting evaluation [4], is a metric used to identify the quality of
auto-generated summaries. This method of evaluation identifies the degree of overlapping
content between the system and the human-made references. More specifically, ROUGE-
1 indicates every word overlapping, whereas ROUGE-2 indicates overlapping bigrams.
The authors concluded that summary output produced by this system has an average of
ROUGE-2 alongside a recall of 0.703 and ROUGE-1 with a recall value of 0.803. Additionally,
it is suggested that possible future improvements could potentially reduce errors, as well
as improve the overall performance of the summarisation module.

Yanji [5] is proposed as a mobile solution to automating meeting minutes. The authors
outline the importance of having a portable automated solution in an age of intelligent
mobile devices. The proposed system is Android-based and can record speeches, generate
text, identify speakers, and generate meeting minutes. Yanji makes use of cloud services,
such as IBM Cloud, in real time and has the capability of reducing storage sizes of recordings.
The authors conclude with exploring future improvements to their system, which include
optimised data retrieval, expanding the system to be compatible with online meetings, as
well as the ability to synchronise with participants.

A system is proposed in [6], which uses meeting data to produce web pages that
outline the sequence of the meeting. The meeting data that are automatically collected
can consist of text, video, and audio. The proposed system could retrieve key points of
the meeting. Each participant’s meeting data are individually recorded and uploaded to a
server if a connection is available, otherwise it is saved locally on their device. The authors
outline a search module for this system, which allows users to look for a specific instance of
a phrase or word. The main goals are to allow users to look through important points after
the meeting and to provide an interface to search for key terms or phrases used within the
meeting. The authors conclude with suggesting future improvements to their system, such
as a “Slide Synchronisation Tool”, which would allow users to share presentations using
just their web browsers.

The automatic generation of meeting minutes in a parliamentary setting in given in [7].
The authors of the paper state that the presented system makes use of rhetorical structure
modelling (RST) [8], which is a process that is conducted on given text that then can be
used for analysis. Through an effective implementation of this model, the authors aim to
transform audio-based recordings of parliament speeches into automatically generated
summaries of meeting minutes. Additionally, they propose a one-step system for chunking,
parsing, and extracting summarised texts. The paper concludes by stating the results of
the experiments that were conducted on the proposed system. It was found that both the
acoustic and N-gram features of the system ranked similarly, where the former was found
to be 66.7% ROUGE-L F-measure and the latter 68% ROUGE-L F-measure. For reference,
ROUGLE-L [4] is essentially the largest common sequence of words that is found between
the system output and the relative reference.

An online multimedia meeting minutes system called LiteMinutes [9] is proposed,
which has the necessary capabilities for creating, reviewing, and distributing meeting
minutes using the internet. The authors state that the system also supports email-based
interaction, as well as media types such as text, images, and video recordings. Once a
meeting is concluded, any textual notes taken on the specialised application are uploaded
from the user’s computer to the proposed system where they are formatted in HTML. On
top of that, the system automatically links text items to corresponding images (of slides),
as well as any relevant video recordings. The authors state that future improvements of
LiteMinutes include support of more complex interactions with support of multiple users
taking notes.

Big Data Cogn. Comput. 2022, 6, 133 4 of 19

Continuing with the ProMETheus system [10], it is designed as a mobile solution to
automatically generating meeting minutes from audio recordings. The speech recognition
module of the system is capable of transcribing audio into text data. Additionally, a speaker
recognition algorithm is used to equip the system with the capability of identifying different
speakers. The authors state that the system can identify key points from the meeting in
its converted text form using a text summarisation algorithm. The authors performed
experimentations in order to identify the best speaker recognition and text summarisation
algorithms. It was found that the unsupervised speaker recognition algorithm performed
the best. As for the text summarisation, all algorithms were evaluated and the one with
the highest F-score is used. The authors state that the proposed system was tested in an
academic setting. The authors state that ProMETheus can save a significant amount of time
by automating the meeting minute generation process, however, some limitations it may
have include an inability to function accurately in cases of overlapping conversation.

A meeting minutes summarisation system, which utilises a novel approach based
on a two-step sentence extraction methodology, is described in [11]. The authors explain
that the first step involves the system first identifying sentences that are connected to the
main topic of discussion in a meeting. Afterwards, the second step consists of evaluating
extracted sentences from the first step and continuing with further extraction of content
related to the main topic. The result of the two-step extraction process is a tree structure
made up of the relevant extracted sentences that link to the main topic. After some
experimentation, the authors conclude that their methodology is plausible and that the
proposed system demonstrates increased performance. Lastly, they propose a new tree
generation methodology, as they describe their current implementation as not robust in
terms of an increasing summarisation ratio.

A system called the minutes retrieval system, or MRS, is proposed in [12]. The authors
emphasise their aim with this system is to implement a flexible data retrieval system that is
to be used in the context of meeting minutes and to be able to identify links or relationships
between meeting participants and their interests. The system takes meeting minutes in a
custom XML format as input and makes use of latent semantic analysis (LSA). LSA [13]
is used to perform analysis on a given input in order to determine relationships between
terms. As it is presented in the paper, MRS treats each set of meeting minutes independently.
The authors suggest implementing a mechanism that possesses the capability of analysing
meeting minutes spanning from different sets. This can then outline the relationship
between the subjects across different sets of minute data.

Another system that can automatically recognise conversations in a meeting setting
and produce a summary is proposed in [14]. In addition to this functionality, the authors
state that a browser interface is implemented, which allows users access to the transcribed
highlights of the meeting minutes, as well as the ability to search for specific key points.
Some experimentation is conducted in order to determine the best speech recognition
system for the proposed system. On top of that, it was found that using already existing
acoustic models for this use case may be a viable strategy. During testing of the system, the
authors came across a degree of recognition errors due to the segmentation methodology
used. It is stated that by improving the segmentation methodology, the degree of recogni-
tion errors will improve as well. The authors state that other possible future works may
include improving the system to the point where minimal supervision would be needed,
as well as an expansion of the system to incorporate other meeting-related tracking needs,
and the ability for the system to combine different data sources, such as improved speech
recognition and speaker recognition using face identification.

A sliding window methodology in developing a system that can automatically gen-
erate meeting minutes is given in [15]. The authors state that, one of the main goals for
this system is to take on issues with long transcripts of meetings. The presented system
utilises the sliding window approach in combination with a neural abstractive summariser
to identify key points from a given meeting transcript. The testing process of the system
involves comparing two automatically generated transcripts with a human generated one

Big Data Cogn. Comput. 2022, 6, 133 5 of 19

and reviewing the differences in the written key points. After testing, the authors con-
clude that their novel approach shows promise and that it has the potential to be utilised
in different domains. The authors state that potential future work on this system may
involve developing a look-ahead mechanism, which would allow the system to skip to
more relevant sections of the transcript.

The last system presented is the one in [16], which addresses the issue of identifying
and extracting relationships within meeting minutes that are generated by a speech recogni-
tion system. The approach taken by the authors involves using collective entity resolution
(CER). CER [17] is an algorithm or technique that can be used to improve resolution accu-
racy by determining references of entities as a joint rather than an independent occurrence.
As seen in other works, speech recognition systems can be used to generate transcripts of
meetings in the form of unmanaged minutes. The authors of the paper make the argument
that if the generation of minutes using speech recognition software is not managed, then
there would be substantial errors in the output transcript and thus the retrieval of key
topics would be more of a challenge. In this regard, the paper proposes a methodology
that makes use of minute relationships to aid in the process of information retrieval at a
later stage. The developed methodology involves using stop word elimination, as well as
similarity calculations conducted on CER-generated clusters. After experimentation, the
authors conclude that their technique proves to have better performance when compared
to standard techniques.

Several similarities can be identified among the systems discussed above. First, many
of the featured works have the main goal of automating the generation of meeting minutes.
This goal seems to be motivated by the idea of reducing manual work needed in this
domain, and in some cases, fully automating the process by implementing a system that
can record audio of the meeting, generate transcripts in text format, and then finally
generate the meeting minutes. Second, a few systems aim to generate a summary of key
points as deduced by the meeting minutes. Third, many of the featured systems also could
search for specific terms or even phrases found in the summary. The main goal for these
types of systems appears to make the information retrieval process related with meeting
minutes easier.

With these works identified and evaluated, it is evident that currently, there are no
blockchain-based solutions to the management of meeting minutes. More importantly,
there does not seem to be any comprehensive solution that meets all the needs of such
a system. A complete solution may mean that users will not have to rely on multiple
platforms for meeting management and voting, which could then simplify the process as
a whole.

2.2. Meeting Minutes Management: Challenges and Future Direction

The process of managing meeting minutes spans the entire meeting lifecycle, where the
latter usually comprises of three stages: pre-meeting, meeting, and post-meeting. Figure 1
illustrates these phases.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 6 of 20

Figure 1. Meeting minutes lifecycle.

During the pre-meeting phase, it is important to become familiar with the way the
organisation records its agenda minutes [18]. This can be achieved by reviewing the rec-
ords of past meetings and how they were recorded, which then, in turn, can be used as a
template for future meetings. The next stage, the meeting phase, involves recording the
minutes. If sufficient preparation is done, then an effective template should be used that
matches the style of the organisation, making the process of recording the meeting easier.
During the post-meeting phase, adjustments, or finalisations, to meeting minutes are com-
pleted. This usually takes place once the meeting concludes. Final adjustments may in-
clude expanding on agenda items that may be vague or making clarifications about some
items. During this phase, the finalised meeting minutes are distributed and become offi-
cial by having them signed by the meeting participants. Protocols set by the organisation
must be followed to store the minutes. This also includes making backups.

The various tasks described above can be done either manually, by email, or by using
a web-based platform. There is limited automation that can be offered using any of the
three options above and safeguarding the meeting minutes authenticity is also nontrivial.
In addition, challenges regarding meeting and/or post-meeting voting are difficult to ad-
dress in an effective and time-efficient manner: meeting participants can forget to digitally
send votes, different deadlines for different items can complicate things further, and par-
ticipants can deny having voted/not voted.

It is evident that there is an opportunity for designing and implementing a better
solution to meeting minutes management, one that alleviates the shortcomings of current
solutions. As meeting minutes are considered legal documents, the blockchain technology
can be considered as the backbone of a proposed system, as it offers transparency while
safeguarding against any modifications or attempts to tamper with the authenticity of the
stored data. Many sectors already began implementing integrations, or even full block-
chain-oriented solutions, to create improved solutions where existing solutions fall short
[19]. The proposed system could aim to streamline the steps involved with managing
meeting minutes by providing users the ability to add meeting items, vote on existing
items, and make the items instantly available to all committee members. The direction that
needs to be explored is implementing a blockchain-oriented meeting minutes manage-
ment system with focus on integrating a voting system that allows attendees to cast their
vote on agenda items. An important requirement is to provide the users with the option
of anonymity whilst maintain data integrity. A user may want his/her vote to remain hid-
den, while at the same time participating in the voting process. The aspect of maintaining
data integrity is important for a system with a voting aspect to prevent security issues,
such vote tampering, a form of result manipulation [20].

Figure 1. Meeting minutes lifecycle.

Big Data Cogn. Comput. 2022, 6, 133 6 of 19

During the pre-meeting phase, it is important to become familiar with the way the
organisation records its agenda minutes [18]. This can be achieved by reviewing the records
of past meetings and how they were recorded, which then, in turn, can be used as a template
for future meetings. The next stage, the meeting phase, involves recording the minutes. If
sufficient preparation is done, then an effective template should be used that matches the
style of the organisation, making the process of recording the meeting easier. During the
post-meeting phase, adjustments, or finalisations, to meeting minutes are completed. This
usually takes place once the meeting concludes. Final adjustments may include expanding
on agenda items that may be vague or making clarifications about some items. During this
phase, the finalised meeting minutes are distributed and become official by having them
signed by the meeting participants. Protocols set by the organisation must be followed to
store the minutes. This also includes making backups.

The various tasks described above can be done either manually, by email, or by using a
web-based platform. There is limited automation that can be offered using any of the three
options above and safeguarding the meeting minutes authenticity is also nontrivial. In
addition, challenges regarding meeting and/or post-meeting voting are difficult to address
in an effective and time-efficient manner: meeting participants can forget to digitally send
votes, different deadlines for different items can complicate things further, and participants
can deny having voted/not voted.

It is evident that there is an opportunity for designing and implementing a better
solution to meeting minutes management, one that alleviates the shortcomings of current
solutions. As meeting minutes are considered legal documents, the blockchain technology
can be considered as the backbone of a proposed system, as it offers transparency while
safeguarding against any modifications or attempts to tamper with the authenticity of
the stored data. Many sectors already began implementing integrations, or even full
blockchain-oriented solutions, to create improved solutions where existing solutions fall
short [19]. The proposed system could aim to streamline the steps involved with managing
meeting minutes by providing users the ability to add meeting items, vote on existing
items, and make the items instantly available to all committee members. The direction that
needs to be explored is implementing a blockchain-oriented meeting minutes management
system with focus on integrating a voting system that allows attendees to cast their vote
on agenda items. An important requirement is to provide the users with the option of
anonymity whilst maintain data integrity. A user may want his/her vote to remain hidden,
while at the same time participating in the voting process. The aspect of maintaining data
integrity is important for a system with a voting aspect to prevent security issues, such
vote tampering, a form of result manipulation [20].

3. SmartMinutes: Design Principles and Implementation Details
3.1. Design Principles

None of the systems in Section 2.1 support a blockchain-based solution for meeting
minutes management. Furthermore, none provide a comprehensive platform that provides
for all meeting minutes management tasks while integrating a voting module. To address
the shortcomings of the existing practices of managing meeting minutes, a novel approach
smartMinutes is presented that streamlines several meeting minutes tasks and bundles
them into a reliable system that is guaranteed to be transparent and tamper-proof. The
smartMinutes framework supports the specification of meeting minutes items as voting or
non-voting, allows members to know when a vote is cast, simplifies the management of
different deadlines of voting items, and creates an immutable record of every vote. These
features allow smartMinutes to bypass the major shortcomings of current approaches.

Both blockchain technology and smart contracts are used by smartMinutes to offer
the above guarantees. In the first case, the inherently immutable nature of blockchain
provides assurances regarding the integrity, transparency, and nonrepudiation of the
items themselves. In the latter case, the automation and configuration of voting items are
accommodated and integrated in the blockchain framework. One may claim that smart

Big Data Cogn. Comput. 2022, 6, 133 7 of 19

contracts are still in their infancy stage [21] and their use cases are still being discovered
and theorised. However, they hold several advantages over traditional contracts, such as
reduction in risks, limited costs, and improved efficiency [22]. Additionally, they allow
for user-defined conditions or specifications, which are then programmed into the smart
contract. In the case of smartMinutes, organisation-defined protocols or procedures involved
in the meeting minutes finalisation can be directly fed into the smart contract which, in
turn, enables some level of automation.

SmartMinutes is proof-of-concept prototype designed and developed to automate the
procedures involved in approving meeting minutes in the context of departmental meetings
in the university setting. The Solidity programming language was used to create the smart
contracts [23] that run on Ethereum. Several assumptions were made during the design
phase, and these are stated below:

• Applying blockchain technology to facilitate a comprehensive meeting minutes man-
agement system was investigated before. Thus, there is no recommendation, based
on existing approaches, regarding the type of blockchain to be utilised (public or
private). Public blockchains are decentralised and permissionless, as well as accessible
by everyone, whereas access in private blockchains must be explicitly granted. The
restricted-access characteristic of private blockchains requires centralised management,
unlike the public ones. Since the proposed system is a prototype, it was decided to use
a public blockchain (Ethereum) as the backbone technology for the platform. This is a
suitable choice for application domains, such as e-government, where transparency
is a vital democracy element. However, private organisations may opt to deploy a
private blockchain, as minutes are not expected to be accessed by the general public.
The choice of blockchain type does not affect the overall design of smartMinutes.

• The approval process of the agenda minutes is assumed to follow a 3-tier hierarchy
(see Figure 2). Each tier in this model represents an academic body involved in the
approval of academic minutes. The low level is the department council (where the
meeting took place), the mid-level represents the school council, and the top tier stands
for the senate. Without loss of generality, the prototype utilises only a 2-level hierarchy.

• The minutes themselves consist of decisions and voting items, with possibly different
voting deadlines and voting schemes. It is assumed that there will be two types of
agenda items: voting items and non-voting items. Voting items are agenda items that
require voting by the committee members and non-voting items are agenda items that
do not need a vote.

• A pool of various voting schemes or methodologies should be available, as voting
items may have different voting scheme requirements. Majority voting, speedy mode,
and veto mode are supported, as shown in Table 1.

• A set of three different voting modes of execution is supported.

o Live execution mode allows the participants to view the actual votes as they
are casted. This is the default setting.

o Open execution mode reveals the cast votes only after the voting is completed.
o Hidden execution mode prevents the disclosure of the actual votes during or

after the voting completes.

Table 1. Supported voting schemes.

Voting Scheme Description

Majority voting Requires all members to vote
Speedy mode Does not require all members to vote

Veto mode Ability to veto the item which ends the voting process

Big Data Cogn. Comput. 2022, 6, 133 8 of 19

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 8 of 20

require voting by the committee members and non-voting items are agenda items
that do not need a vote.

• A pool of various voting schemes or methodologies should be available, as voting
items may have different voting scheme requirements. Majority voting, speedy
mode, and veto mode are supported, as shown in Table 1.

• A set of three different voting modes of execution is supported.
o Live execution mode allows the participants to view the actual votes as they are

casted. This is the default setting.
o Open execution mode reveals the cast votes only after the voting is completed.
o Hidden execution mode prevents the disclosure of the actual votes during or

after the voting completes.

Figure 2. 3-Tier hierarchy.

It is important to emphasise an important security feature integrated in the frame-
work, which is that of access control. The smart contract is configurable and interactable
only by the committee members at their respective hierarchical level. For example, a com-
mittee member from Level-1 voting cannot interact with the smart contract in Level-2 and
vice versa. This is so in order to provide voting integrity and prevent tampering with the
votes.

Table 1. Supported voting schemes.

Voting Scheme Description
Majority voting Requires all members to vote
Speedy mode Does not require all members to vote

Veto mode Ability to veto the item which ends the voting process

The three voting schemes, as described in Table 1, provide users with a level of flex-
ibility. For example, if an item is bound to an important decision, then, all users may be
required to participate in the voting process. This can be enforced by using the majority
voting scheme. Another scenario could involve the committee members having a busy
schedule, thus they could utilise the speedy mode voting scheme, which aims to conclude
the voting process as soon as enough votes are cast. Additionally, the option to reject a
particular voting item is also provided in the form of the veto mode scheme. This reserves
the user’s right to immediately conclude the voting process for an item.

3.2. System Design Details
In this section, design diagrams depicting the inner workings of the smartMinutes

framework are presented. To be more specific, the core operations of smartMinutes and
the voting module in greater detail are outlined.

The general operation of smartMinutes can be summarised with the following com-
ponents: the minute management module, voting module, item deadline module, and
lastly, the user registration module. The meeting minutes module is responsible for han-
dling user inputs (agenda items) and storing them correctly for later use. Committee

Figure 2. 3-Tier hierarchy.

It is important to emphasise an important security feature integrated in the framework,
which is that of access control. The smart contract is configurable and interactable only by
the committee members at their respective hierarchical level. For example, a committee
member from Level-1 voting cannot interact with the smart contract in Level-2 and vice
versa. This is so in order to provide voting integrity and prevent tampering with the votes.

The three voting schemes, as described in Table 1, provide users with a level of
flexibility. For example, if an item is bound to an important decision, then, all users may be
required to participate in the voting process. This can be enforced by using the majority
voting scheme. Another scenario could involve the committee members having a busy
schedule, thus they could utilise the speedy mode voting scheme, which aims to conclude
the voting process as soon as enough votes are cast. Additionally, the option to reject a
particular voting item is also provided in the form of the veto mode scheme. This reserves
the user’s right to immediately conclude the voting process for an item.

3.2. System Design Details

In this section, design diagrams depicting the inner workings of the smartMinutes
framework are presented. To be more specific, the core operations of smartMinutes and the
voting module in greater detail are outlined.

The general operation of smartMinutes can be summarised with the following compo-
nents: the minute management module, voting module, item deadline module, and lastly,
the user registration module. The meeting minutes module is responsible for handling
user inputs (agenda items) and storing them correctly for later use. Committee members
can enter agenda items into the system. Afterwards, this module will store the input item
in memory to be used at a later stage. The voting module requires two core conditions
to continue its operations. Firstly, the agenda item in question needs to already be input
into the system and marked to require voting. Secondly, the vote would need to take place
before the deadline specified for the item. The voting module performs these two critical
checks before proceeding with the voting procedure. The voting procedure is further
described later in this section. The item deadline module expects user input in the form of
Unix time and assigns this deadline to the specified agenda item. The final core component,
user registration module, handles registering the user as committee members. The user
must specify the hierarchical level in which they want to be assigned. This module then
whitelists the user’s wallet address, thus promoting them to a committee member. These
operations can be seen in Figure 3.

Big Data Cogn. Comput. 2022, 6, 133 9 of 19

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 9 of 20

members can enter agenda items into the system. Afterwards, this module will store the
input item in memory to be used at a later stage. The voting module requires two core
conditions to continue its operations. Firstly, the agenda item in question needs to already
be input into the system and marked to require voting. Secondly, the vote would need to
take place before the deadline specified for the item. The voting module performs these
two critical checks before proceeding with the voting procedure. The voting procedure is
further described later in this section. The item deadline module expects user input in the
form of Unix time and assigns this deadline to the specified agenda item. The final core
component, user registration module, handles registering the user as committee members.
The user must specify the hierarchical level in which they want to be assigned. This mod-
ule then whitelists the user’s wallet address, thus promoting them to a committee mem-
ber. These operations can be seen in Figure 3.

Figure 3. smartMinutes operations diagram.

The voting module handles all aspects of the voting process. Once this process be-
gins, smartMinutes starts to accept votes from committee members. When a vote is cast,
the voting module performs a check to determine whether the minimum number of votes
required for the selected voting scheme was reached. It does this by invoking the vote
determination module. This module first checks the selected voting scheme by invoking
a call to the vote scheme handler and then determines whether the voting process is con-
cluded. The result of the vote is then passed onto the voting module, where it can be ac-
cessed by the committee members. The described process is depicted in Figure 4.

Figure 3. SmartMinutes operations diagram.

The voting module handles all aspects of the voting process. Once this process begins,
smartMinutes starts to accept votes from committee members. When a vote is cast, the voting
module performs a check to determine whether the minimum number of votes required for
the selected voting scheme was reached. It does this by invoking the vote determination
module. This module first checks the selected voting scheme by invoking a call to the vote
scheme handler and then determines whether the voting process is concluded. The result of
the vote is then passed onto the voting module, where it can be accessed by the committee
members. The described process is depicted in Figure 4.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 9 of 20

members can enter agenda items into the system. Afterwards, this module will store the
input item in memory to be used at a later stage. The voting module requires two core
conditions to continue its operations. Firstly, the agenda item in question needs to already
be input into the system and marked to require voting. Secondly, the vote would need to
take place before the deadline specified for the item. The voting module performs these
two critical checks before proceeding with the voting procedure. The voting procedure is
further described later in this section. The item deadline module expects user input in the
form of Unix time and assigns this deadline to the specified agenda item. The final core
component, user registration module, handles registering the user as committee members.
The user must specify the hierarchical level in which they want to be assigned. This mod-
ule then whitelists the user’s wallet address, thus promoting them to a committee mem-
ber. These operations can be seen in Figure 3.

Figure 3. smartMinutes operations diagram.

The voting module handles all aspects of the voting process. Once this process be-
gins, smartMinutes starts to accept votes from committee members. When a vote is cast,
the voting module performs a check to determine whether the minimum number of votes
required for the selected voting scheme was reached. It does this by invoking the vote
determination module. This module first checks the selected voting scheme by invoking
a call to the vote scheme handler and then determines whether the voting process is con-
cluded. The result of the vote is then passed onto the voting module, where it can be ac-
cessed by the committee members. The described process is depicted in Figure 4.

Figure 4. Voting module diagram.

3.3. Implementation Details

The prototype was developed using the Ethereum Remix IDE. Remix offers a graphical
user interface (GUI) for deploying, testing, and interacting with the contract. For ease of
development, the Visual Studio Code (VS Code) text editor was used alongside the Remix
IDE extension. This approach enables the full use of vs. Code’s arsenal of useful extensions
for development, whilst making use of the compilation, deployment, and testing features
of Remix IDE. For testing the smart contract locally, Ganache was used. This tool acts as an
emulator, which simulates the Ethereum blockchain for development purposes. A major
benefit of using Ganache over other similar tools is the user-friendly interface that allows
for block inspection. This tool provides the user with the necessary resources to test smart
contracts locally.

Big Data Cogn. Comput. 2022, 6, 133 10 of 19

Note that some experimental features were enabled. Given that smartMinutes is a proof-
of-concept prototype, these features allow for easier string manipulation, as these features
are not readily available with the compiler version. The experimental features are the only
dependency of the smart contract.

As outlined in Figure 5, the available functions and accessible variables are: addItem-
NeedsVoting, addItemNoVoting, level1, level2, majority, proposeDocument, setDeadline, speedy,
veto, vote, addressCount, allHaveVoted, documentResult, getActualVote, getItemResults, getItems,
getWalletArrayDEBUG, level, proposedDocument, voteCount, and votingDeadline. Details on
these functions and variables are given below.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 10 of 20

Figure 4. Voting module diagram.

3.3. Implementation Details
The prototype was developed using the Ethereum Remix IDE. Remix offers a graph-

ical user interface (GUI) for deploying, testing, and interacting with the contract. For ease
of development, the Visual Studio Code (VS Code) text editor was used alongside the
Remix IDE extension. This approach enables the full use of vs. Code’s arsenal of useful
extensions for development, whilst making use of the compilation, deployment, and test-
ing features of Remix IDE. For testing the smart contract locally, Ganache was used. This
tool acts as an emulator, which simulates the Ethereum blockchain for development pur-
poses. A major benefit of using Ganache over other similar tools is the user-friendly inter-
face that allows for block inspection. This tool provides the user with the necessary re-
sources to test smart contracts locally.

Note that some experimental features were enabled. Given that smartMinutes is a
proof-of-concept prototype, these features allow for easier string manipulation, as these
features are not readily available with the compiler version. The experimental features are
the only dependency of the smart contract.

As outlined in Figure 5, the available functions and accessible variables are: addI-
temNeedsVoting, addItemNoVoting, level1, level2, majority, proposeDocument, setDeadline,
speedy, veto, vote, addressCount, allHaveVoted, documentResult, getActualVote, getItemResults,
getItems, getWalletArrayDEBUG, level, proposedDocument, voteCount, and votingDeadline.
Details on these functions and variables are given below.

Figure 5. smartMinutes operations.

The addItemNeedsVoting function expects an input from the user. This function will
take the user input and store it locally. The program accepts any string, but the intended
use is to add agenda items that require voting. Additionally, this function will signal to
the program that the added item is qualified for the voting process.

The following addItemNoVoting function is similar to the previous function, however,
it is intended to be used for agenda items that do not require voting. The function expects
the user to enter an input that would be the agenda item, however, unlike the addI-
temNeedsVoting function, does not signal the program for voting.

Figure 5. SmartMinutes operations.

The addItemNeedsVoting function expects an input from the user. This function will
take the user input and store it locally. The program accepts any string, but the intended
use is to add agenda items that require voting. Additionally, this function will signal to the
program that the added item is qualified for the voting process.

The following addItemNoVoting function is similar to the previous function, how-
ever, it is intended to be used for agenda items that do not require voting. The function
expects the user to enter an input that would be the agenda item, however, unlike the
addItemNeedsVoting function, does not signal the program for voting.

The following two functions are level1 and level2, and as their names suggest, they
will change the hierarchical level of the contract. For example, if it is in level-1 mode, the
level2 function will put the contract into level-2 mode and vice versa. This is of course,
assuming that the program is in a “safe” state to change levels. This means that all items
that require voting must be voted on before the level change and that that voting is not
currently in progress.

The next function is called majority, and when it is executed, it will switch the voting
configuration to majority voting. By default, the program is set to this voting method.

The next function is proposeDocument and it expects an input from the user. This is
used for specifying the document or item that the committee should vote on. This function
stores the name of the document, which is to be voted on and also triggers the voting
functionality of the contract.

The setDeadline function expects the user to specify the deadline for the document or
item that is to be voted on. The format the program expects the input deadline to be is in

Big Data Cogn. Comput. 2022, 6, 133 11 of 19

Unix time (Epoch). For example, the long integer 1651932954 represents the time and date
of 17:15 on Saturday 7th of May 2022.

The following function, called speedy, executes a function that sets the voting method-
ology to speedy mode.

Afterwards, the next function is called veto and is the last voting configuration of the
specified voting schemes. This function sets the voting methodology to veto mode.

The next function is also the final user-interactable function. This function is called veto
and expects a user input, which is in this case the user’s actual vote. The program expects
1 for yes, 0 for no, and −1 for a veto vote if applicable. Note that the option to abstain is
not considered, however, can be easily implemented at a later date. Upon execution, the
function records the user’s vote.

The remaining functionality available to the user has to do with being able to check
the value(s) of public variables. To be more specific, addressCount will reveal the number of
committee wallet addresses registered for the current hierarchical level. Then, allHaveVoted
will reveal whether all registered committee members have cast a vote. Afterwards, doc-
umentResult will reveal whether the item passed voting, as in it was determined by the
committee members. Next, getActualVote, given a wallet address, will return a committee
member’s actual vote if they voted. Then, getItems will reveal a list of agenda items input
by committee members where the list specifies whether an item requires voting. After-
wards, getWalletArrayDEBUG will reveal the list of registered committee member’s wallet
addresses, which is of course only for proof-of-concept demonstration purposes only. Then,
level will reveal the current hierarchical level the contract is in. Next, voteCount will show
how many committee members casted a vote for the current item. Finally, votingDeadline
will reveal the voting deadline that was input to the contract in Unix time format.

3.4. SmartMinutes Graphical User Interface

Figure 6 illustrates what the presented smart contract solution, smartMinutes, will
present to the user upon deployment. As shown, 23 interactable buttons appear. These
buttons are split into two different categories. The first category of buttons includes
ones with an orange background and the second category includes buttons with a blue
background. The orange ones signify that upon triggering the button (by clicking it),
a function will execute. The blue buttons represent variables within the contract and
triggering them will simply display the variable’s current value.

Either orange or blue buttons with a field next to them signify that the function expects
an input from the user in order to execute the function or to reveal the current value of
the variable.

Through the interaction with the buttons, the user interacts with the smart contract.
Each button is labelled with the name of the function it executes or variable it shows.
For example, the blue button labelled “level” will display the hierarchical level (level-1,
level-2) that the contract is currently set to. Note that for purposes of demonstrating
this proof-of-concept project, some critical variables were left to be accessible by the user.
In actual live deployment, these variables should not be visible as their free access is a
cybersecurity concern.

When the user is required to submit an input, they can utilise the default input GUI
provided by Remix. This interface even allows the user to see what type of input the smart
contract is expecting. As shown in Figure 7, the selected function requires a user to input
a string.

Big Data Cogn. Comput. 2022, 6, 133 12 of 19Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 12 of 20

Figure 6. smartMinutes initial deployment output GUI.

Through the interaction with the buttons, the user interacts with the smart contract.
Each button is labelled with the name of the function it executes or variable it shows. For
example, the blue button labelled “level” will display the hierarchical level (level-1, level-
2) that the contract is currently set to. Note that for purposes of demonstrating this proof-
of-concept project, some critical variables were left to be accessible by the user. In actual
live deployment, these variables should not be visible as their free access is a cybersecurity
concern.

When the user is required to submit an input, they can utilise the default input GUI
provided by Remix. This interface even allows the user to see what type of input the smart
contract is expecting. As shown in Figure 7, the selected function requires a user to input
a string.

Figure 6. SmartMinutes initial deployment output GUI.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 13 of 20

Figure 7. User input field GUI.

4. smartMinutes Time Complexity Performance
The importance of determining the time complexity of a program comes from the fact

that there are many different types of devices with their own hardware architecture. On
top of that, devices may run different operating systems, which can be a major factor when
it comes to determining the overall runtime of executed code. These factors can affect the
speed in which the device’s processor can operate, thus affecting the overall runtime of
programs. The determination of time complexity in any program is important in under-
standing its efficiency in terms of both execution time and resources, regardless of the
hardware and operating system of the device.

Table 2 showcases the overall runtimes of each function used within the smartMinutes
contract in terms of BigO notation. Please note that these functions were already described
in Section 3.

Table 2. smartMinutes BigO of functions.

Function Name BigO Resultant T
addItemNoVoting O(1) O(1)

addItemNeedsVoting O(1) O(1)
getItems O(1) O(1)

getItemResults O(1) O(1)
getActualVote O(1) O(1)

setDeadline O(1) O(1)
containsAddress O(1) O(1)

committeeHasVoted O(1) O(1)
actualCommitteeVote O(1) O(1)

setAddress O(1) O(1)
initialise O(1) O(1)

reset O(2N) O(N)
l1Reset O(4N) O(N)
l2Reset O(4N) O(N)

proposeDocument O(2N) O(N)
majority O(1) O(1)
speedy O(1) O(1)

veto O(1) O(1)
checkAllVoted O(N) O(N)

determineDocument O(N) O(N)
majorityVoting O(N) O(N)
speedyVoting O(N) O(N)

vote O(N) O(N)

Figure 7. User input field GUI.

4. SmartMinutes Time Complexity Performance

The importance of determining the time complexity of a program comes from the
fact that there are many different types of devices with their own hardware architecture.
On top of that, devices may run different operating systems, which can be a major factor
when it comes to determining the overall runtime of executed code. These factors can
affect the speed in which the device’s processor can operate, thus affecting the overall
runtime of programs. The determination of time complexity in any program is important

Big Data Cogn. Comput. 2022, 6, 133 13 of 19

in understanding its efficiency in terms of both execution time and resources, regardless of
the hardware and operating system of the device.

Table 2 showcases the overall runtimes of each function used within the smartMinutes
contract in terms of BigO notation. Please note that these functions were already described
in Section 3.

Table 2. SmartMinutes BigO of functions.

Function Name BigO Resultant T

addItemNoVoting O(1) O(1)
addItemNeedsVoting O(1) O(1)

getItems O(1) O(1)
getItemResults O(1) O(1)
getActualVote O(1) O(1)

setDeadline O(1) O(1)
containsAddress O(1) O(1)

committeeHasVoted O(1) O(1)
actualCommitteeVote O(1) O(1)

setAddress O(1) O(1)
initialise O(1) O(1)

reset O(2N) O(N)
l1Reset O(4N) O(N)
l2Reset O(4N) O(N)

proposeDocument O(2N) O(N)
majority O(1) O(1)
speedy O(1) O(1)

veto O(1) O(1)
checkAllVoted O(N) O(N)

determineDocument O(N) O(N)
majorityVoting O(N) O(N)
speedyVoting O(N) O(N)

vote O(N) O(N)

The smartMinutes contract uses arrays of committee wallet addresses at its core. This
keeps track of the committee members and their interactions with the smart contract. The
need to loop through these addresses is kept at a minimum.

The addItemNoVoting function is O(1), as the only action it will take is to simply push a
given user input to an array. Therefore, this function has constant complexity. Similarly,
following function addItemNeedsVoting is O(1), as it performs a similar operation with the
addition of string concatenation. This function also has constant time.

The next function getItems is O(1). This function does not have a dependency on an
input size, as its purpose is to return the contents of an array without having to access
each item individually. With this in mind, this getter function has constant time complexity.
The getItemResults function performs the same operation with another array, which stores
data about the results of the voting process of an item. This getter function is O(1) and has
constant time complexity.

The getActualVote function is O(1). This function has constant time complexity, as it
returns the value of vote cast by a particular committee member. This is accomplished
by directly accessing a particular array index and returning its contents. The following
function setDeadline stores user input for later use. Since this function is O(1), it has constant
time complexity.

The next function containsAddress is O(1). It accesses a particular key of a mapping
(dictionary) and returns its paired value. This function has constant time complexity. The
committeeHasVoted function performs a similar operation on a different mapping. It is
O(1) which means it has constant time complexity. The actualCommitteeVote function is
a helper that retrieves the vote value of a committee member. It accesses a particular

Big Data Cogn. Comput. 2022, 6, 133 14 of 19

key in a mapping and returns the value pair. This function is O(1), which is constant
time complexity.

The following function setAddress is O(1) and uses a helper function to initialise the
wallet address of a new committee member. This is done by appending the new address
to the relevant arrays/mappings. This function has constant time complexity. The helper
function is called initialise and is set as a private function. The setAddress function is set as
public and uses modifiers to control user access.

The reset function is O(2N). Its purpose is to perform a reset and re-initialise all relevant
committee wallet data. Since the function has to individually reset the state of the wallets,
it is dependent on the number of committee members (N). This reset is performed for both
the presence of the committee member as well as re-initialising the mapping used to keep
track of their votes. With this in mind, this function has linear time complexity.

The following functions l1Reset and l2Reset are both O(4N). Their main purpose is to
switch the contract’s hierarchical level. This is accomplished by resetting the committee
wallet address-related arrays/mappings. It re-initialises variables to adjust the presence of
committee members based on the particular level the contract is switching to, as well as
makes use of the reset function. These two functions have linear time complexity.

The proposeDocument function is O(2N). This function keeps track of the document
or item that is currently being voted on. Additionally, upon submitting a new item to be
voted on, this function uses the reset function to prepare the contract for the voting process.
With this in mind, the function has linear time complexity.

The following functions majority, speedy, and veto set the contract’s voting mode to
their respective modes. Each of the three of these functions are O(1), meaning they have
constant time complexity.

The next function checkAllVoted is O(N). This function has to perform a check on a
mapping, which contains whether the committee member voted. Since the function is
dependent on the number of wallet addresses, it has linear time complexity. The determine-
Document function performs a check on an array, which holds all committee member votes
to determine the voting outcome. This function is O(N) and has linear time complexity, as
it is dependent on the number of committee wallet addresses.

The majorityVoting function is O(N) and makes use of the determineDocument function.
This function first performs a check to see if all members voted. It has linear time complexity.
The next function speedyVoting operates in a similar manner, however, this function does not
perform a check as per the speedy voting scheme. It still makes use of the determineDocument
function, therefore it is O(N), and therefore linear time complexity.

Lastly, the vote function is responsible for registering the user’s vote. It makes use of
majorityViting or speedyVoting functions depending on the selected voting scheme. With
this in mind, this function is O(N), which means it has linear time complexity.

It can be determined that the overall time complexity of smartMinutes is O(N)—linear
time. The main factor, which would linearly increase runtime, would be the number of
committee members present. Furthermore, smartMinutes was designed to accommodate
five committee members per level for up to two hierarchical levels. For the support of up
to 10 committee members, the determined overall runtime is acceptable. If the system is
to be expanded to fit a much larger committee, then further optimisations to the code of
smartMinutes should be made to reduce the overall runtime complexity.

5. Experimental Findings

The objective of the experimentation is to determine overall costs in terms of fees [24].
Two use case scenarios were run on smartMinutes, and the findings are described below.
More details on the testing findings can be found in [25]. Measuring the total costs involved
with the usage and operation of smartMinutes is crucial in determining its feasibility to
be deployed as a valid solution. Additionally, viewing the total gas costs as a key metric
can help determine the smart contract’s cost-effectiveness, which can then be compared to
other available meeting minute management solutions.

Big Data Cogn. Comput. 2022, 6, 133 15 of 19

The aim of use case Scenario 1 is to investigate the overall gas costs for smartMinutes
functions and to determine if its deployment has a cost. Use case Scenario 2 is designed to
determine the Ethereum gas cost-effectiveness of the speedy mode voting configuration
compared to majority voting and veto mode. This experiment involves recording the gas
costs of the executed functions using speedy mode, majority voting, and veto mode voting
configurations and then comparing the overall costs.

The general methodology, which was used for conducting these experiments, is as
follows: First, the combination of voting scheme and simulated voting scenario is identified.
Then, the locally simulated wallet(s) are reset to be able to keep track of transactions and
their fees for a particular instance. Next, smartMinutes is configured to the desired voting
scheme. Last, the committee votes are simulated, and their respective gas costs are recorded.
These experiments were conducted on a Windows 10 machine using an 8-core Ryzen 7
2700x processor clocked at 4.0 GHz.

5.1. Use Case Scenario 1

Consider an agenda that contains six items. This agenda is then input into smartMin-
utes, and the gas costs are tracked and recorded per item. Table 3 illustrates the agenda
item configuration along with the gas costs.

Table 3. Use case Scenario 1 total gas cost per item.

Item Requires Voting Total Gas Cost (ETH)

Item #1 Yes 7.8390 × 10−13

Item #2 No 5.0445 × 10−14

Item #3 Yes 7.7219 × 10−13

Item #4 No 9.5108 × 10−14

Item #5 No 9.5132 × 10−14

Item #6 No 5.0553 × 10−14

For this particular simulated scenario, out of the six total items, two of them (items #1
and #3) required the use of the voting functionality of smartMinutes, whereas the remaining
four items were simply input in order to keep track of them. It was calculated that for
item #1 the gas cost was about 7.8390 × 10−13 ETH and for item #3, it was calculated at
7.7219 × 10−13 ETH. It was found that for the non-voting items, the recorded gas costs
were as low as 5.0445 × 10−14 ETH.

As is evident by the findings in Table 3, items that require voting have a significantly
higher overall cost than non-voting items. This is due to the difference in the number of
critical functions that are executed when it comes to the implemented voting procedure.
It was also found that deploying the smart contract itself does indeed have an initial cost.
The Ethereum gas fee for deploying smartMinutes is around 4.0886 × 10−12 ETH, given
Remix IDE’s [23] default local deployment settings.

5.2. Use Case Scenario 2

For this experiment, consider a committee of five members. Table 4 depicts simulated
votes by the committee members as well as their relative gas costs. For this run, the speedy
mode voting configuration was used.

Table 4. Speedy mode votes and gas costs.

Committee Member Vote Cast Gas Cost (ETH)

Member #1 1 1.1434 × 10−13

Member #2 1 9.6680 × 10−14

Member #3 1 1.7983 × 10−13

Member #4 N/A N/A
Member #5 N/A N/A

Big Data Cogn. Comput. 2022, 6, 133 16 of 19

The speedy mode configuration concludes the voting process as soon as the necessary
number of votes is made to pass the agenda item. This means that, for example, if three
out of five committee members cast the same vote (positive or negative vote), then the
speedy mode configuration will determine the result of the agenda item and conclude the
voting process.

For this simulated scenario, only three of the five committee members cast a vote. The
remaining two voters, members #4 and #5 did not need to vote as per the mechanisms of
speedy mode described above. This means that members #4 and #5 did not have any gas
costs related to this scenario.

The same process is repeated, but using the majority voting configuration. This
configuration requires all committee members to cast their vote before determining the
result of the agenda item. The simulated votes, as well as the gas costs can be seen in
Table 5. The gas costs associated with each member’s positive vote are quite similar, with
the exception of member #5, which can be regarded as an outlier.

Table 5. Majority voting votes and gas costs.

Committee Member Vote Cast Gas Cost (ETH)

Member #1 1 9.7547 × 10−14

Member #2 1 8.5132 × 10−14

Member #3 1 8.9817 × 10−14

Member #4 1 9.4502 × 10−14

Member #5 1 2.0008 × 10−13

The process is repeated one last time using the veto mode voting scheme. This voting
configuration allows committee members to veto an agenda item by inputting the value of
−1. Upon vetoing, the voting process is immediately terminated. Table 6 demonstrates the
simulated votes, as well as their gas costs.

Table 6. Veto mode votes and gas costs.

Committee Member Vote Cast Gas Cost (ETH)

Member #1 −1 1.8357 × 10−13

Member #2 N/A N/A
Member #3 N/A N/A
Member #4 N/A N/A
Member #5 N/A N/A

For this particular scenario, only member #1 cast a vote. The first vote cast in this
scenario is a veto vote, which terminates the voting process. The only gas cost associated
with this scenario is for member #1′s veto vote.

The summation of the overall gas costs for speedy mode, majority voting, and veto
mode for a single run can be seen in Table 7. From the findings of this experiment, a few
things can be determined about the voting schemes. First, the majority voting configuration
has the highest overall gas cost, with 5.6708 × 10−13 ETH. Second, veto mode has the
lowest cost with 1.8357 × 10−13 ETH. Last, speedy mode has the second lowest cost in
terms of gas fees with 3.9085 × 10−13 ETH.

Table 7. Voting scheme gas costs.

Scheme Total Gas Cost (ETH)

∑ Speedy Mode Voting 3.9085 × 10−13

∑ Majority Voting 5.6708 × 10−13

∑ Veto Mode Voting 1.8357 × 10−13

Big Data Cogn. Comput. 2022, 6, 133 17 of 19

It is determined that the veto mode voting scheme can have the lowest possible gas
cost. Based on the results of this experiment, when compared to majority voting, the veto
mode voting configuration can save up to 3.8351 × 10−13 ETH in gas fees. The specific
scenario, which allows for this, as shown above, involves the first committee member
casting a veto vote, thus terminating the voting process. However, if the veto vote would be
entered by the last member to cast his/her vote, then indeed the veto mode voting would
have the same cost as the majority voting. Speedy mode would then be the second most
cost-effective configuration, as it allows for the voting process to conclude with fewer votes
than there are committee members. When compared to majority voting, speedy mode can
save up to 1.7623 × 10−13 ETH in gas fees. Majority voting, the default voting scheme, is
determined to be the least cost-effective from this experiment. A reason for this is that this
configuration requires all committee members to cast a vote, with no exceptions.

6. Alternate Uses of SmartMinutes

At its core, smartMinutes consists of a meeting minute management module, as well
as a voting module. With minimal changes, as a possible alternate use case, the meeting
minute module can be re-purposed to keep track of important documents, as well as their
corresponding status, if applicable. This could make smartMinutes suitable for organisa-
tions of any size to utilise as a bureaucratic system. With modifiable data access policies,
smartMinutes can provide users with the ability to track documents and their statuses at
an organisation-wide level. This could provide users with a reliable way to track their
documents, as well as the bureaucratic process, without the need for any direct input from
the organisation.

Electronic voting (e-voting) at an electoral level is a developing field. The key goal
of developing this type of technology is to improve the overall experience involved with
participating in government elections, as well as make it more accessible for citizens to
cast their vote. The existing voting module in smartMinutes can be adapted and deployed
at a wide-scale level as an e-voting system using blockchain technology. With the cor-
rect governmental integration, this would provide citizens with a voting system that is
tamper-proof, given the blockchain’s immutability core attribute. On top of that, users
would be able to maintain their anonymity whilst maintaining voter data integrity. The
discussed benefits are a few examples of many more [26]. This implementation can indeed
increase accessibility, which could then, in turn, increase overall participation in elections.
Additionally, the process of counting the votes or tallying can be automated, which would
then mean that election results can be determined much faster. This then could possibly
shorten the length of the entire election process.

The adoption of a modified smartMinutes or any other blockchain does present some
challenges [26]. First, the complexity of implementing the necessary technological infras-
tructure to support such frameworks might prove to be a difficult task. Second, in their
current state, blockchain networks can be quite slow, and considering a scenario where the
masses would be making transactions in order to cast their vote may subject the network
to further congestion.

With the constant efforts of developers, making improvements may mean that this
type of solution would be feasible to implement. The Ethereum Mainnet upgraded from
a proof-of-work model to proof-of-stake [27]. This, as it is referred to as “The Merge”,
is said to reduce the blockchain’s energy usage by approximately 99.95%. This example
of a major change to the existing technology can be an indication that in the near future,
implementations such as blockchain-based e-voting may become more feasible. As for
the effects “The Merge”, in terms of gas fee means for smartMinutes, it is reported [28]
that this upgrade to the Mainnet will not affect its overall capacity, as it is a change to the
consensus mechanism.

Big Data Cogn. Comput. 2022, 6, 133 18 of 19

7. Conclusions

In this paper, smartMinutes, a framework solution for the management of meeting
minutes, is presented. With the combination of an agenda item voting functionality, this
framework aims to resolve challenges present within existing solutions. To the best of
our knowledge, this is not only the first blockchain-based platform for meeting minutes
management, but also the only framework that integrates voting as part of the platform.

The experimental findings show that the veto mode implementation can be the most
cost-effective voting scheme in some scenarios when compared to the majority voting and
speedy mode schemes. Determining the cost-effectiveness of the supported schemes in the
framework can better outline the feasibility of the framework financially. From the total
costs of the simulated scenarios, it is found that the highest gas cost for the whole voting
process of a particular agenda item is about 5.6708 × 10−13 ETH. This value can then
be regarded as an approximation of the maximum cost of utilising the voting module of
smartMinutes. This promising result can indicate that the presented framework is financially
feasible, given that the Ethereum Mainnet is not congested.

Possible use cases of smartMinutes in other domains may include a transparent
organisation-wide documents tracker with adjustable privacy settings, or even, with some
adjustments, a standalone e-voting solution. The future directions of smartMinutes include
the design and implementation of an easy-to-use, user-friendly front-end interface that
communicates with smartMinutes. As it stands, some technical knowledge is required to
utilise the presented framework, however, with the use of a well-designed front-end that
uses smartMinutes as a back-end, the framework can become more accessible to a greater
range of users, regardless of technical background. Another future enhancement may
include the support of a configurable multi-tier hierarchy. By implementing a dynamic
mechanism to adjust the hierarchy, smartMinutes may become easier to be adopted by dif-
ferent organisations, as their company structure may be more complex than a simple 2-tier
hierarchy. Last but not least, it is in the future plans to integrate a richer set of attributes for
specifying agenda items. This can then help improve the clarity of the nature of agenda
items, as well as include a wider range of related tools.

Author Contributions: All authors have made substantial contributions to the submitted work. All
authors approved the submitted version and agree to be accountable for its contents. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morand, T. How to Write Effective Meeting Minutes (with Templates and Samples). WildApricot Blog. Available online:

https://www.wildapricot.com/blog/how-to-write-meeting-minutes (accessed on 6 April 2020).
2. Mohammed Farooq Abdulla, F.M.; Pawankumar, S.; Guruprasath, M.; Jayaprakash, J. Automation of Minutes of Meeting (MoM)

using Natural Language Processing (NLP). In Proceedings of the 2022 International Conference on Communication, Computing
and Internet of Things (IC3IoT), Chennai, India, 10–11 March 2022; pp. 1–6. [CrossRef]

3. Yulyanto, M.T.; Khodra, M.L. Automatic extractive summarization on Indonesian parliamentary meeting minutes. In Proceedings
of the 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), Denpasar,
Indonesia, 16–18 August 2017; pp. 1–6. [CrossRef]

4. Lin, C.-Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2004; pp. 74–81. Available online: https://aclanthology.org/W04-1013
(accessed on 1 November 2022).

5. Chen, X.; Sheng, F.; He, R.; Chen, S.; Ma, H.; Wu, Y.; Xu, J. Yanji: An Automated Mobile Meeting Minutes System. In Proceedings
of the 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Nanjing, China,
6–8 August 2021; pp. 425–428. [CrossRef]

https://www.wildapricot.com/blog/how-to-write-meeting-minutes
http://doi.org/10.1109/IC3IOT53935.2022.9767933
http://doi.org/10.1109/ICAICTA.2017.8090993
https://aclanthology.org/W04-1013
http://doi.org/10.1109/ISCEIC53685.2021.00095

Big Data Cogn. Comput. 2022, 6, 133 19 of 19

6. Hirashima, D.; Tanaka, M.; Teshigawara, Y. Development and evaluation of a minutes system focusing on importance in a
meeting. In Proceedings of the 18th International Conference on Advanced Information Networking and Applications, Fukuoka,
Japan, 29–31 March 2004; AINA 2004. Volume 2, pp. 293–298. [CrossRef]

7. Zhang, J.J.; Fung, P. Automatic Parliamentary Meeting Minute Generation Using Rhetorical Structure Modeling. IEEE Trans.
Audio Speech Lang. Process. 2012, 20, 2492–2504. [CrossRef]

8. Mann, W.C.; Thompson, S.A. Rhetorical Structure Theory: Toward a functional theory of text organization. Text Interdiscip. J.
Study Discourse 1988, 8, 243–281. [CrossRef]

9. Chiu, P.; Boreczky, J.; Girgensohn, A.; Kimber, D. LiteMinutes: An Internet-based system for multimedia meeting minutes.
In Proceedings of the Tenth International Conference on World Wide Web—WWW’01, Hong Kong, China, 1–5 May 2001;
pp. 140–149. [CrossRef]

10. Liu, H.; Wang, X.; Wei, Y.; Shao, W.; Liono, J.; Salim, F.D.; Deng, B.; Du, J. ProMETheus: An Intelligent Mobile Voice Meeting
Minutes System. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, New York, NY, USA, 5–7 November 2018; pp. 392–401. [CrossRef]

11. Lee, J.-K.; Song, H.-J.; Park, S.-B. Two-Step Sentence Extraction for Summarization of Meeting Minutes. In Proceedings of the
2011 Eighth International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 11–13 April 2011;
pp. 614–619. [CrossRef]

12. Ito, H.; Miyazato, K.; Ishikawa, K.; Taki, T.; Hasegawa, J.; Raita, K. Structure and retrieval mechanism of a minutes retrieval
system. In Proceedings of the 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES), Larnaca,
Cyprus, 20–23 October 2017; pp. 000291–000296. [CrossRef]

13. Evangelopoulos, N.; Zhang, X.; Prybutok, V.R. Latent Semantic Analysis: Five Methodological Recommendations. Eur. J. Inf. Syst.
2012, 21, 70–86. [CrossRef]

14. Yu, H.; Clark, C.; Malkin, R.; Waibel, A. Experiments in automatic meeting transcription using JRTK. In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), Seattle, WA, USA,
15 May 1998; Volume 2, pp. 921–924. [CrossRef]

15. Koay, J.J.; Roustai, A.; Dai, X.; Liu, F. A Sliding-Window Approach to Automatic Creation of Meeting Minutes. arXiv 2021,
arXiv:2104.12324. Available online: http://arxiv.org/abs/2104.12324 (accessed on 1 November 2022).

16. Nishita, S.; Itoh, M. Extracting Relationship of Meeting Minutes Generated by Speech Recognition System using Entity Resolution.
IAENG Int. J. Comput. Sci. 2016, 43, 284–289.

17. Bhattacharya, I.; Getoor, L. Collective entity resolution in relational data. ACM Trans. Knowl. Discov. Data 2007, 1, 5-es. [CrossRef]
18. Eisenstein, L. How to Take Minutes at a Board Meeting. BoardEffect. Available online: https://www.boardeffect.com/blog/how-

to-take-minutes-ata-board-meeting/ (accessed on 15 July 2019).
19. Al-Jaroodi, J.; Mohamed, N. Blockchain in Industries: A Survey. IEEE Access 2019, 7, 36500–36515. [CrossRef]
20. Bannet, J.; Price, D.W.; Rudys, A.; Singer, J.; Wallach, D.S. Hack-a-vote: Security issues with electronic voting systems. IEEE Secur.

Priv. 2004, 2, 32–37. [CrossRef]
21. Reed, J. Smart Contracts: The Essential Guide to Using Blockchain Smart Contracts for Cryptocurrency Exchange; Wydawca Nieznany;

CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2016.
22. Zheng, Z.; Xie, S.; Dai, H.-N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and

platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]
23. Remix—Ethereum IDE & Community. Available online: https://remix-project.org (accessed on 1 November 2022).
24. Peaster, W.M. Ethereum Gas Explained. DeFiprime.com. Available online: https://defiprime.com/gas (accessed on 22

September 2022).
25. Sheikhi, A.S.H. smartMinutes: A Blockchain-Based Approach to Automate the Meeting Minutes Process. Master’s Thesis,

University of Nicosia, Nicosia, Cyprus, 2022.
26. Kshetri, N.; Voas, J. Blockchain-Enabled E-Voting. IEEE Softw. 2018, 35, 95–99. [CrossRef]
27. The Merge. Ethereum.Org. Available online: https://ethereum.org/en/upgrades/merge/ (accessed on 21 September 2022).
28. Salvo, M.D. What the Ethereum Merge Means for Ordinary Users—And What It Doesn’t. Decrypt. Available online:

https://decrypt.co/109724/what-ethereum-merge-means-and-doesnt-users (accessed on 14 September 2022).

http://doi.org/10.1109/AINA.2004.1283806
http://doi.org/10.1109/TASL.2012.2215592
http://doi.org/10.1515/text.1.1988.8.3.243
http://doi.org/10.1145/371920.371971
http://doi.org/10.1145/3286978.3286995
http://doi.org/10.1109/ITNG.2011.210
http://doi.org/10.1109/INES.2017.8118572
http://doi.org/10.1057/ejis.2010.61
http://doi.org/10.1109/ICASSP.1998.675416
http://arxiv.org/abs/2104.12324
http://doi.org/10.1145/1217299.1217304
https://www.boardeffect.com/blog/how-to-take-minutes-ata-board-meeting/
https://www.boardeffect.com/blog/how-to-take-minutes-ata-board-meeting/
http://doi.org/10.1109/ACCESS.2019.2903554
http://doi.org/10.1109/MSECP.2004.1264851
http://doi.org/10.1016/j.future.2019.12.019
https://remix-project.org
https://defiprime.com/gas
http://doi.org/10.1109/MS.2018.2801546
https://ethereum.org/en/upgrades/merge/
https://decrypt.co/109724/what-ethereum-merge-means-and-doesnt-users

	Introduction
	Review of Literature
	Existing Approaches on Meeting Minutes Systems
	Meeting Minutes Management: Challenges and Future Direction

	SmartMinutes: Design Principles and Implementation Details
	Design Principles
	System Design Details
	Implementation Details
	SmartMinutes Graphical User Interface

	SmartMinutes Time Complexity Performance
	Experimental Findings
	Use Case Scenario 1
	Use Case Scenario 2

	Alternate Uses of SmartMinutes
	Conclusions
	References

