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Abstract: This paper focuses on different types of backbone networks for machine learning architec-
tures which perform classification of knee Magnetic Resonance Imaging (MRI) images. This paper
aims to compare different types of feature extraction networks for the same classification task, in
terms of accuracy and performance. Multiple variations of machine learning models were trained
based on the MRNet architecture, choosing AlexNet, ResNet, VGG-11, VGG-16, and Efficientnet as
the backbone. The models were evaluated on the MRNet validation dataset, computing Area Under
the Receiver Operating Characteristics Curve (ROC-AUC), accuracy, f1 score, and Cohen’s Kappa as
evaluation metrics. The MRNet-VGG16 model variant shows the best results for Anterior Cruciate
Ligament (ACL) tear detection. For general abnormality detection, MRNet-VGG16 is dominated
by MRNet-Resnet in confidence between 0.5 and 0.75 and by MRNet-VGG11 for confidence more
than 0.8. Due to the non-uniform nature of backbone network performance on different MRI planes,
it is advisable to use an LR ensemble of: VGG16 on a coronal plane for all classification tasks; on
an axial plane for abnormality and ACL tear detection; Alexnet on a sagittal plane for abnormality
detection, and an axial plane for meniscal tear detection; and VGG11 on a sagittal plane for ACL tear
detection. The results also indicate that the Cohen’s Kappa metric is valuable in model evaluation for
the MRNet dataset, as it provides deeper insights on classification decisions.

Keywords: knee MRI; computer-assisted diagnostics; MRNet; deep learning; computer vision

1. Introduction

Magnetic Resonance Imaging (MRI) is one of the most efficient techniques for knee
examination developed up to this day. It has become the preferred modality for imaging
the knee to show pathology and guide patient management and treatment [1].

It allows us to take sequences of images called “slices” across three different planes -
axial, coronal, and sagittal (presented in Figure 1), building a complete representation of
any body part. MRIs provide great insight for expert physicians, including musculoskeletal
(MSK) radiologists, who conclude the diagnosis, and choose treatment methods.

As the population grows, the demand for physicians, and MSK radiologists, in partic-
ular, increases proportionally. Recent statistical studies are forecasting significant shortages
of expert radiologists, along with other specialists in the field of medicine, all across
the world.

In USA only, the shortage of radiologists and other physicians could surpass 35,000 by
2034, according to a recently published annual analysis of physician supply and demand
by the Association of American Medical Colleges’ [2].

Across all care segments, the number could climb as high as 124,000. Both aging and
population growth are primary drivers of these shortages, with the 65-and-up segment
projected to swell by more than 42% over the next decade.

The report did not give a specific number for radiology alone, lumping the specialty
together with anesthesiology, neurology, emergency medicine, and addiction specialists.
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This segment is projected to see a shortfall of between 10,300 and 35,600 physicians by 2034.
All of these findings are part of the mentioned analysis, published on 11 June 2021.

Figure 1. Planes of MRI imaging. axial (green), coronal (blue) and sagittal (red).

This brings to the point that there is a need for robust computer systems, which could
aid MSK radiologists in identifying pathological conditions in patients’ MRI scans. The
primary application of such systems should be to lessen the ever-increasing workload of
MSK radiologists.

Thankfully, at the intersection of artificial intelligence (AI) and radiology fields, a vari-
ety of computer science-derived methods have been already applied to do decision support
for health practitioners in diagnostic tasks. As these methods improve and show certain
success in accomplishing their intended purpose, the interest in them grows proportionally
from both AI scientists and radiologists, also considering the yet unlimited potential of
artificial intelligence applications [3].

Within AI, deep learning (DL) algorithms can learn many different tasks that directly
apply to musculoskeletal radiology, including image reconstruction, synthetic image cre-
ation, tissue segmentation, and detection and characterization of musculoskeletal diseases
and conditions on radiographs, ultrasonography, CT, and MR images.

Ideally, such systems should also help the radiologists focus specifically on rare
and challenging anomalies and cases, by automatically labeling common injuries with
confidence rates alike those of boards of expert radiologists. In this paper, an evaluation of
the state-of-art deep learning knee MRI classification models is presented.

Despite the fact that there had been no fundamental breakthroughs in the field of
convolutional neural networks for computer vision since the introduction of Resnet in
2015 [4], a lot of research has been made on providing variations of the major model
architectures, that either improve on feature extraction, are lighter in terms of disk size and
faster to train, or both.

Amongst all the related works, there have been few attempts to train the baseline
MRNet architecture on more contemporary computer vision architectures. And so far, there
was no recorded attempt to bring out and document the gradual improvement of MRNet
prediction accuracy, as the effort of the researchers in the computer vision field brought
more robust architectures with improved accuracy.

The reference MRNet architecture and related papers depend on a pre-trained Alexnet
network as a feature extraction layer. In the work of Tsai et al. (2020) [5], the authors use
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their own convolutional feature extraction layer, claimed as having greater efficiency and
reduced number of trainable parameters, compared to AlexNet [6].

A relatively new feature extractor utilized in MRNet was mentioned only in [7], where
they have used a variation of the Resnet architecture—Resnet18.

The paper aims to check the significance and the impact of contemporary models
on feature extraction on the knee MRI classification task. Such comparison is needed as
guidance for building applied machine learning model architectures, focused on automatic
knee injury detection in enterprise systems.

In this paper, we attempt to compare the MRNet baseline architecture performance
for the knee MRI classification task, using modern computer vision feature extraction
architectures. We are also planning to display the gradual prediction accuracy improvement,
aligned with the evolution of these backbone networks: VGG11, VGG16 [8], Resnet [4],
Efficientnet [9].

Even taking into account the fact that the Resnet architecture as a backbone was
already mentioned in the work of Azcona et al. (2020) [7], we still would like to re-train this
architecture as a backbone, to display the gradual improvement of validation accuracy with
the usage of more recent and progressive computer vision tools, and provide transparent
prediction accuracy scores, that might have been otherwise affected by the differences in
model hyper-parameters or training options between our model, and the version listed in
Azcona et al. (2020).

Another significant aspect of our research is the fact, that the models trained during
our experiments have unified architecture, except for the feature extractor part, and they
were all trained from scratch in a reproducible manner. This is the perfect environment
for comparing the prediction accuracy, as non-deterministic factors like random seeds for
classifier layer weight initialization, and training parameters (learning rate, weight decay,
number of epochs) are unified for each model evaluation presented in this paper.

Furthermore, our model evaluation strategies utilize an additional metric, which
was not yet measured in any of the related works—the Cohen’s Kappa score. Here, it is
considered a significant one because of the natural imbalance of the MRNet dataset.

Therefore, the paper contribution is formulated as follows:

• A comparative analysis is conducted for a set of classification models based on the
original MRNet architecture, with different backbone networks as feature extrac-
tors for MRNet blocks, including Alexnet, VGG11, VGG16, Resnet, and Efficientnet.
MRNet-VGG16 shows the best results for ACL tear detection. For general abnormality
detection, MRNet-VGG16 is dominated by MRNet-Resnet for confidence between 0.5
and 0.75 and by MRNet-VGG11 for confidence more than 0.8.

• This research brings out the fact that the performance of the above-mentioned back-
bone models are different across MRI planes. To achieve the best classification accuracy,
it is advisable to use a Logistic Regression (LR) ensemble of different backbone ar-
chitectures: VGG16 on the coronal plane for all classification tasks; on an axial plane
for abnormality and ACL tear detection; Alexnet on a sagittal plane for abnormality
detection, and axial plane for meniscus tear detection; VGG11 on a sagittal plane for
ACL tear detection.

• The interrater reliability approach to model evaluation, in the form of Cohen’s kappa
scores, calculated for each diagnosis, and each backbone type, is a valuable evaluation
metric, as it can provide deeper insights into model performance than traditional
ROC-AUC computation.

2. Materials and Methods
2.1. Training Datasets and State of the Art Models

One of the first attempts at utilizing artificial intelligence methods for the purpose
of knee injury detection on MRI scans, which resulted in a publicly available dataset of
labeled knee MRI scans gathered from a substantial amount of clinical cases was presented
by [10]. The resulting dataset was named KneeMRI.
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The KneeMRI dataset was gathered retrospectively from exam records made on a
Siemens Avanto 1.5T MR scanner, and obtained by proton density-weighted fat suppression
technique at the Clinical Hospital Centre Rijeka, Croatia, from 2006 until 2014. The dataset
consists of 917 12-bit grayscale volumes of either left or right knees.

Each volume record was assigned a diagnosis concerning the condition of the anterior
cruciate ligament in a double-blind fashion, i.e., each volume record was labeled according
to the ligament condition: (1) healthy, (2) partially injured, or (3) completely ruptured.
A wider rectangular region of interest (ROI) was manually extracted from the original
volumes and is also annotated [10]. This dataset was built to provide scientists, involved
with machine vision and/or machine learning, an easy way of working with the data.

For this paper, the MRNet dataset was chosen as a base for training and tuning our
machine learning models. It was created by the Stanford University School of Medicine, as
means to facilitate the development of deep-learning models able to predict abnormalities
in presented knee MRI scans.

The MRNet dataset consists of 1370 knee MRI exams performed at Stanford University
Medical Center. The dataset contains 1104 (80.6%) abnormal exams, with 319 (23.3%) ACL
tears and 508 (37.1%) meniscal tears; labels were obtained through manual extraction from
clinical reports [11]. Examples of middle slice knee MRI images are shown in Figure 2.

The most common indications for the knee MRI examinations in the dataset included
acute and chronic pain, follow-up or preoperative evaluation, and injury/trauma. Exami-
nations were performed with GE scanners (GE Discovery, GE Healthcare, Waukesha, WI,
USA) with a standard knee MRI coil and a routine non-contrast knee MRI protocol that
included the following sequences: coronal T1 weighted, coronal T2 with fat saturation,
sagittal proton density (PD) weighted, sagittal T2 with fat saturation, and axial PD weighted
with fat saturation. A total of 775 (56.6%) examinations used a 3.0-T magnetic field; the
remaining used a 1.5-T magnetic field [11].

(a) Axial MRI slice example (b) Coronal MRI slice example (c) Sagittal MRI slice example

Figure 2. Input image examples of MRNet. Three images represent (a) axial, (b) coronal and
(c) sagittal knee MRI planes.

Since the introduction and initial publication of the MRNet dataset, many attempts at
building robust decision support systems for the purpose of knee MRI classification have
been made. Most of them utilized the deep learning approach and convolutional neural
networks.

The primary state-of-art model is the original MRNet architecture, implemented
by [11]. In their work, the authors have built a composite model for knee injury detection,
with a dedicated model for each MRI slice.

The overall model architecture is shown in Figure 3. A single MRnet block is a max-
pooling layer, on top of a pre-trained backbone network - AlexNet [6] as a feature extractor,
followed by a fully-connected layer with softmax activation for classification. Then, for
each MRI plane - axial, coronal, and sagittal, a single MRnet block is trained to classify
injuries and abnormalities. Lastly, logistic regression is used as an approach to combine
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these different MRNet blocks into a single binary classifier for ACL tears, Meniscus tears,
and general knee abnormalities.

(a) Single block architecture in MRNet (b) Overall model architecture involving Logistic Re-
gression (LR)

Figure 3. MRNet model architecture: (a) single block, (b) overall model.

In Azcona et al. (2020) [7], the authors have shown that the three-model MRNet
architecture with logistic regression has the best validation performance, compared to
different variations of the same architecture, including self-trained AlexNets as a feature
extraction layer, and single models, which operate on a concatenation of slices throughout
all three MRI planes. Thus, in this paper, the decision is made to use the same base MRNet
architecture for comparing different backbone networks for a single block.

In Tsai et al. (2020) [5], the authors present an Efficiently-Layered Network (ELNet)
architecture optimized for knee diagnosis detection using MRI. The main contribution of
their work is a novel feature extracting network that incorporates multi-slice normalization
along with BlurPool downsampling, instead of max pooling or adaptive average pooling,
which could be seen in other related works.

2.2. Overfitting Prevention

As stated in Shorten, C., Khoshgoftaar T.M. (2019) [12], it is a generally accepted notion
that bigger datasets result in better Deep Learning models. However, assembling enormous
datasets can be a very daunting task due to the manual effort of collecting and labeling
data. Limited datasets are an especially prevalent challenge in medical image analysis.

MRNet could be considered a small dataset, so the overfitting mitigation techniques
listed in the mentioned paper are very useful for this application, to help the built models
generalize on previously unknown and non-trained data.

For overfitting prevention, we utilize an approach of image augmentation. This is a
method of synthetically boosting the number of input images, by applying random image
transformations. Each input image is processed, and a set of new “transformed” images is
created from it. The process of image augmentation for input knee MRI images is shown
in Figure 4. This helps to create a more vast and diverse input for the machine learning
models, also helping with the overfitting issue.

Data augmentation has been shown to produce promising ways to increase the ac-
curacy of classification tasks. Even traditional ways of image augmentation, without
involving additional Generative Adversarial Networks (GAN), proved to be very effective,
as described in Wang, J., Perez, L. (2017) [13].
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Figure 4. Random input image transforms applied to a middle axial image slice to augment the
original MRNet imaging data.

2.3. Model Evaluation Strategy using Cohen’s Kappa

When building a binary classification model, there are a lot of ways to interpret and
evaluate the results based on the model predictions. Well-known evaluation metrics like
Area Under the Receiver Operating Characteristics Curve (ROC-AUC) are based on the
confusion matrix. However, not all metrics tend to perform well on imbalanced datasets.

Imbalanced data refers to those types of datasets where the target class has an uneven
distribution of observations, i.e., one class label has a relatively high number of observations,
whereas the other class has a low number of observations compared to the total amount.

The MRNet dataset, on which this paper is based, can be considered an imbalanced
dataset. Having a total of 1370 knee MRI exams, the dataset contains as high as 1104,
or 80.6% of abnormal exams. The amount of knee MRIs that are labeled as normal is
only 19.4%.

Taking this into account, the evaluation results for the models described in our paper
cannot rely solely on ROC-AUC or plain prediction accuracy metrics, as the imbalance,
in the form of lacking normal knee examinations, is significant. Thus, for the purpose of
further and more accurate evaluation of the machine learning models, we also introduce
the calculation of the Cohen’s Kappa score.

In his original paper, J. Cohen (1960) [14] describes his Kappa statistic as simply
the proportion of chance-expected disagreements between two judges which do not oc-
cur, or alternatively, the proportion of agreement after a chance agreement is removed
from consideration.

This statistic is frequently used to test interrater reliability. The importance of rater
reliability lies in the fact that it represents the extent to which the data collected in the study
are correct representations of the variables measured [15].

In Cohen’s terms, we are expected to have two independent judges, or classifiers, with
the categories under classification being independent, mutually exclusive, and exhaustive.
To achieve these conditions, we interpret the first judge as our classification model for a
given diagnosis - ACL tear, meniscus tear, or general abnormality. The second judge is
the set of validation labels. Although in Cohen’s terminology, there are no “correct” or
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“incorrect” judgments to be made, in our case, the predictions made by the second judge
are considered “true”.

Cohen’s kappa value can be calculated as follows:

K =
p0 − pe

1 − pe
(1)

where p0 is the observed accuracy, or the proportion of predictions, where the judges
have agreed, p1 is the rate of predictions, where agreement is expected by chance, or the
expected accuraccy.

Like many other evaluation metrics for classification models, Cohen’s kappa calcu-
lation relies on the confusion matrix. In contrast to calculating overall accuracy, Cohen’s
kappa takes imbalance in class distribution into account for the validation dataset.

Having a confusion matrix for a single classification task (Abnormal, ACL tear, Menis-
cus tear) as in Table 1, where TP = True Positives, FP = False Positives, FN = False Negatives,
TN = True Negatives, and taking N as a total number of observations, we can calculate
required values for the Kappa statistic in our case with the following formulas:

p0 =
TP + TN

N
(2)

pe =
Rcond + Rnorm

N
(3)

Rcond =
(TP + FP) · (TP + FN)

N
(4)

Rnorm =
(TN + FP) · (TN + FN)

N
(5)

The observed accuracy p0 is simply the number of instances that were classified
correctly throughout the confusion matrix. That represents the level of agreement between
the true data and the predicted data. Rcond and Rnorm can be described as rates for a given
label, compared to the total number of observations. This is the part that defines the
imbalance of the validation dataset.

Table 1. Confusion matrix for a MRNet-based classification model.

Predicted Pathologic
Conditions Predicted Normal Cases

True pathologic conditions TP FP

True normal cases FN TN

Although the interpretation of the kappa score may be more difficult than for tra-
ditional evaluation metrics, as it is ranged in the interval [−1, 1], we believe it has the
potential to unveil better classification models by taking out the random guessing factor.

2.4. Resulting Architecture and Training Process

In this work, a few classification models are built and trained on the original MRNet
architecture, with the usage of more contemporary backbone networks as feature extractors
for a single MRNet block, including VGG11, VGG16, Resnet, and Efficientnet. The original
AlexNet version of the MRNet architecture is trained as well to compare the newer model
evaluation results.

Our evaluation strategy is to measure classification performance metrics, such as
ROC-AUC, plain accuracy score, and F1 score. Additionally, as described in Section 2.3, the
Cohen’s Kappa score is evaluated for each model and each diagnosis type.



Big Data Cogn. Comput. 2022, 6, 69 8 of 13

Each trained model block corresponds to the original MRNet architecture, defined
by [11]. The block operates on a single MRI plane and learns to extract relevant features
from this plane, in the process of training.

Throughout all of the models, presented in this paper, the only varying layers are
the feature extraction layer, and different classifier input dimensions, since not all of the
backbones extract a feature vector of the same dimensions from the input image sequence.
The resulting architecture of model blocks used in this paper is presented in Figure 5.

Figure 5. Adapted architecture of a single MRNet block. The input is processed by varying CV archi-
tectures (backbones), and adaptive average pooling is applied to the backbone output for each MRI
slice. Afterwards, a fully-connected classifier layer returns the probability for a particular diagnosis.

Each model contains three training blocks, which were trained exclusively on axial,
coronal, and sagittal MRI slices respectively. The Logistic regression (LR) approach is used
to combine the outputs of three separate per-plane MRNet blocks. This provides the final
layer of aggregated predictions as a result of consensus between decisions made by each of
the per-plane blocks. The resulting macro-architecture involving LR models is the same as
in Figure 2. Only individual block changes were applied in this paper.

Input image transformations were applied to prevent overfitting, exactly as described
in Section 2.2.

We started by training each of the baseline MRNet blocks, on each of the MRI planes.
The training process was conducted on the Google Cloud Platform, specifically using the
Vertex AI service. A total of 45 models were trained in the cloud (3 training jobs for each
diagnosis type, multiplied by 3 MRI planes, multiplied by the number of backbones(5)).
Each training job was accelerated using 2×NVIDIA Tesla P100 GPU instances.

Each of the blocks was trained for 10 epochs, with model evaluation on the validation
dataset after the end of each epoch. At the end of each epoch, a snapshot of the block was
taken and uploaded to Google Cloud Storage. After the training process, only the blocks
with the best evaluation scores were selected.

The resulting 45 blocks were then gathered from Cloud Storage and grouped by
backbone type. A logistic regression model was then trained over the per-plane models, to
weigh each one’s classification decisions in correspondence to the true validation label data.
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LR training was done on a local machine, using NVIDIA GeForce GTX 1080 Ti to speed up
the process.

Afterward, the combined model predictions were gathered on the validation dataset.
Corresponding model output was saved to CSV files, to be used in model evaluation. The
evaluation metrics and plots were built on top of this prediction data.

3. Results
3.1. Overall Model Accuracy

The first obvious and significant evaluation metric for this classification task is the
overall model accuracy. Table 2 shows the accuracy comparison between the models for
each diagnosis, as well as the average accuracy across the three diagnoses.

Since the classification model returns probabilities instead of actual positive or negative
labels, the model predictions were transformed with a probability threshold of 0.5. All
probabilities greater than or equal to 0.5 were considered a “positive” label.

Table 2. Accuracy comparison per model, per diagnosis (threshold = 0.5). Maximum values are
highlighted in bold.

Diagnosis Alexnet VGG11 VGG16 Resnet Efficientnet

abnormal 0.825 0.858 0.842 0.858 0.850
acl 0.683 0.792 0.808 0.583 0.550

meniscus 0.70 0.733 0.750 0.608 0.583

average 0.738 0.752 0.799 0.683 0.661

3.2. F1-Score Evaluation

Another significant evaluation metric is the F1 score because it fits well with the actual
imbalance of the dataset. It balances precision and recall for the positive class, which is
dominant in this dataset.

Table 3 shows F1-score, calculated for each trained model and for each diagnosis.
Output predictions were transformed in the same way as for overall model accuracy, using
a threshold value of 0.5.

Table 3. F1-Score evaluation per model, per diagnosis (threshold = 0.5). Maximum values are
highlighted in bold.

Diagnosis Alexnet VGG11 VGG16 Resnet Efficientnet

abnormal 0.900 0.917 0.909 0.917 0.912
acl 0.486 0.713 0.753 0.167 0.000

meniscus 0.673 0.628 0.717 0.299 0.324

average 0.686 0.752 0.793 0.461 0.412

3.3. ROC-AUC Scores

Next, the receiver operating characteristics are displayed. Figure 6 shows the ROC-
AUC scores for each model. Each panel corresponds to a certain diagnosis type.

3.4. Cohen’s Kappa Scores

We believe that the most significant evaluation metric for this research is the Co-
hen’s Kappa score. Due to the imbalanced nature of the MRNet dataset, it is likely that
putting the model evaluation in an interrater reliability perspective could bring more useful
information than traditional evaluation scores.
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(a) General abnormality classification ROC-AUC stats (b) ACL tear classification ROC-AUC stats

(c) Meniscus tear classification ROC-AUC stats

Figure 6. ROC-AUC stats for each model and for each diagnosis type: (a) general abnormality
classification, (b) ACL tear classification, (c) meniscus tear classification.

Yet again, to convert model predictions from probabilities to actual labels, different
thresholds have been used, ranging from 0.5 to 0.9. This could better illustrate the overall
behavior of certain models, not fixating on a single value for the threshold.

Figure 7 displays the graph of Cohen’s Kappa values for certain thresholds, or confi-
dence values.

3.5. Single Block Performance for Each Backbone Type

One more very significant aspect of this model evaluation is the per-plane performance
of each backbone listed in this paper. These results are displayed in Table 4, and they show
the raw ROC-AUC classification score of each MRNet block, trained on specific backbones.
The Logistic Regression layer is not involved in this evaluation, meaning this table shows
the sole performance of a given backbone network on the three MRI slices for the three
classification tasks.

The highest evaluation score per plane and diagnosis type is highlighted in respective
plane color in the table.



Big Data Cogn. Comput. 2022, 6, 69 11 of 13

(a) General abnormality classification Cohen’s Kappa scores (b) ACL tear classification Cohen’s Kappa scores

(c) Meniscus tear classification Cohen’s Kappa scores

Figure 7. Cohen’s Kappa scores per model and for each diagnosis type: (a) general abnormality
classification, (b) ACL tear classification, (c) meniscus tear classification.

Table 4. ROC-AUC evaluation of each backbone per MRI plane. Highest evaluation scores per plane
and for given diagnosis are highlighted with respective plane color.

Backbone Plane General Abnormality ACL Meniscus Tear
axial 0.845 0.738 0.813

Alexnet coronal 0.788 0.616 0.633
sagittal 0.935 0.834 0.707

axial 0.892 0.758 0.811
VGG11 coronal 0.732 0.926 0.762

sagittal 0.917 0.903 0.753
axial 0.919 0.829 0.759

VGG16 coronal 0.840 0.950 0.808
sagittal 0.909 0.883 0.801

axial 0.848 0.763 0.618
Resnet coronal 0.477 0.462 0.659

sagittal 0.912 0.700 0.632
axial 0.845 0.586 0.642

Efficientnet coronal 0.667 0.593 0.535
sagittal 0.723 0.631 0.591
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4. Discussion

As seen from the model evaluations, there is a steady overall model performance
increase from using Alexnet to VGG11 and VGG16 backbones for classification. This result
implies that the sole replacement of the Alexnet backbone with VGG counterparts is already
beneficial in terms of classification performance.

Another fact that stands out is the rather underperformance of the newest CV architec-
tures. Both ResNet and Efficientnet are the most contemporary models from the whole set
on which the evaluations were conducted. They tend to outperform both Alexnet and VGG
models in the results of the ImageNet competition 2021 [16]. However, for the purpose of
knee MRI classification they did not seem to utilize their full potential. This is likely related
to image pre-processing steps, and perhaps, this issue could be fixed by using more robust
image augmentation methods.

One more significant result is the non-uniform nature of backbone network perfor-
mance on different MRI planes. Instead of sticking to a single backbone network type, it
is advisable to use an LR ensemble of different ones: VGG16 on a coronal plane for all
classification tasks; on an axial plane for abnormality and ACL tear detection; Alexnet on a
sagittal plane for abnormality detection, and axial plane for meniscal tear detection; VGG11
on a sagittal plane for ACL tear detection.

The results also show that model evaluation using the interrater reliability approach,
by measuring the Cohen’s Kappa metric, could show different results than traditional
model evaluation techniques. For instance, in abnormality detection, using ROC-AUC,
the Alexnet model has almost the same value as VGG16, but the Cohen’s Kappa graph
shows it mostly as way below every model except Efficientnet. Also, these metrics help to
bring out the true issues of Efficientnet in this application - for meniscus classification, the
Efficientnet model has gone negative in threshold value 0.7, which can be interpreted as
the model making wrong decisions, unaffected by randomness.

The possibilities of future research might include three main directions. Firstly, there
is the possibility to investigate more complex image pre-processing steps. It is promising
to investigate the application of the BlurPool downsampling technique listed in Tsai et al.
(2020), to modern backbone networks, and use this for reducing the number of training
parameters, without greatly reducing the overall model performance.

The second direction is to use optimized versions of more advanced computer vision
models for feature extraction. There are still models like Inception-v4, and Inception-Resnet,
which could be used as backbones. However, they are considerably heavier in terms of
training resources, and thus, we were not yet able to apply these newest models to this
classification task.

Lastly, but most importantly, one may experiment with using per-plane MRNet blocks
with different backbones, and combine them using Logistic Regression. In our opinion,
one of the most significant results obtained in this paper is the fact that not all computer
vision models behave uniformly on different MRI planes. Thus, it is advisable to use the
best possible backbone architecture for each MRI plane, instead of sticking to a single
architecture for all planes. Choosing this option should increase the overall performance of
the LR-combined classification model.
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