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Abstract: Printed circuit board (PCB) assurance in the optical domain is a crucial field of study.
Though there are many existing PCB assurance methods using image processing, computer vision
(CV), and machine learning (ML), the PCB field is complex and increasingly evolving, so new
techniques are required to overcome the emerging problems. Existing ML-based methods outperform
traditional CV methods; however, they often require more data, have low explainability, and can be
difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be
used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those
that extract color, shape, and texture features increase PCB assurance explainability. This allows for
incorporation of prior knowledge, which effectively reduces the number of trainable ML parameters
and, thus, the amount of data needed to achieve high accuracy when training or retraining an ML
model. Hence, this study explores the benefits and limitations of a variety of common computer
vision-based features for the task of PCB component detection. The study results indicate that color
features demonstrate promising performance for PCB component detection. The purpose of this
paper is to facilitate collaboration between the hardware assurance, computer vision, and machine
learning communities.

Keywords: artificial intelligence; automated optical inspection; computer vision; feature extraction;
feature selection and analysis; PCB component detection; physical inspection and assurance

1. Introduction

Modern electronic systems ranging from personal computers and mobile devices to
critical government, military, and medical infrastructures use printed circuit boards (PCB)
as functional blocks that connect different electrical components, traces, and vias [1]. With
the advancement of semiconductor industries, the design of these PCBs is getting highly
complex, having multiple layers with hidden vias and embedded passive components to
meet the requirements of advanced systems. Incorporating such complexities creates a
great opportunity for the potential attackers to maliciously modify the design and thus
expose the PCB supply chain to vulnerabilities [2]. Moreover, due to the dominant trend
of outsourcing the PCB manufacturing process, a wide variety of vulnerabilities such
as tampering, recycling, cloning, etc., are being introduced to the hardware assurance
community now more than ever. Therefore, from a hardware assurance perspective, it is of
paramount significance to involve on-site verification under trusted conditions.

Over the years, physical inspection in the optical domain has become a popular ap-
proach within the community due to its mostly non-contact and non-destructive
nature [3]. Traditionally, a subject matter expert (SME) performs visual inspections of
PCBs under certain controlled conditions. They analyze PCBs not only for defects, but also
for maliciously added components and Trojans. However, this process is time-consuming
and error-prone with increasing number of PCBs. Therefore, researchers in the community
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have proposed different methods of image processing, computer vision, and machine
learning for automatic visual inspection. However, many of these approaches rely on the
existence of golden PCB, which is not always available in practice.

Application of an automatic Bill of Materials extraction method to tackle this problem
was introduced in [3]. The proposed framework of materials extraction for PCB assurance
(as shown in Figure 1) involves two major steps: (1) imaging modality, and (2) image
analysis. In this paper, we focus on the image analysis step where the goal is to detect and
identify the components in a PCB with high accuracy.

Figure 1. The framework for bill of materials extraction for PCB assurance as proposed in [3].

While developing an efficient system for detecting components automatically, it should
be kept in mind that the method needs to be fast and highly accurate to meet the require-
ments of critical applications (e.g., military and biomedical applications) [3]. In addition,
there are a wide variety of factors and challenges which needs special attention while de-
veloping an automated PCB assurance system. Though the majority of PCBs are monochro-
matic and consist mostly of standard commercial off-the-shelf components, there are an
increasing variety of new and/or custom components as the state of technology is constantly
advancing. Additionally, in the case of foreign, competitor, and/or malicious technologies,
the components may be intentionally obfuscated with uncommon designs, camouflaging,
and misleading or absent silkscreen labels. Moreover, factors related to image acquisition
systems can also significantly affect the performance of developed component detection
and identification algorithm [3]. Unfortunately, such challenges are very difficult to over-
come with existing traditional computer vision (CV) and image understanding methods
for component detection and identification, alone [4].

Though different machine learning (ML) and deep learning (DL) based approaches
have shown significant progress in case of object detection and localization in other
domains [5], it has not shown much progress in the PCB assurance domain. Though
ML and DL based methods may outperform the traditional CV methods in terms of perfor-
mance, there are a variety of challenges in the PCB domain that must be overcome. For
example, ML and DL based methods tend to require massive amount of labeled data, which
can be expensive, tedious, and time-consuming to obtain. In addition, such methods can
be difficult to interpret and adapt with the technological progresses. To overcome these
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challenges, we propose the benefits of CV methods which can be used in tandem with ML
and DL methods.

This article provides an overview on the development of a novel system in the area
of physical assurance for the problem of PCB component detection based on applying
optimized computer vision techniques using semantic data. It is considered as one of
the few works in the literature that introduces the concepts and the methods from com-
puter vision into the domain of hardware security, specifically for PCB assurance. The
utilized data is nicely different from the related works since the samples are in semantic
format in here, while they use the bounding box information. The semantic attributes
can positively impact classification of the components, tracking the pins, and extraction
of the netlist. Considering a computing system with the hierarchy of (a) application and
data; (b) computational flow, framework, system architecture; (c) system entities; and
(d) computations of entities, then the most significant novelty of the proposing system
in this work is at the levels of “a” and “b”. The review studies various techniques in the
major computing steps/units within a conventional PCB component detection system
that are: data collection, feature extraction, feature selection, and feature classification. So,
our contribution at lower levels (“c” and “d”) is described as implementation of different
computer vision methods within the context of PCB component detection as well as their
further optimization using relevant machine learning procedures. Explicitly, the review
includes a comprehensive introduction, technical evaluation, and conclusive discussion
on three feature types of color, shape, and texture for this application. Such features en-
hance the explainable property of PCB assurance system and allow for incorporation of
PCB domain knowledge, which leads to constriction of learning model, reduction in the
required amount of data for training and testing, and finally achieving highly accurate
results. The researchers and engineers from academia, industry, and government can find
this review paper very useful due to: (1) better understanding the problems, challenges,
and vacancies for this application in hardware security; and (2) realizing opportunities
to develop interesting ideas and initiate new research directions on how to benevolently
and maliciously leverage the processes from computer vision and artificial intelligence.
Therefore, this work serves as a great structure to facilitate collaboration between hardware
security, computer vision, and artificial intelligence research communities.

The remainder of the paper is structured as follows. In Section 2, we present re-
lated works and relevant existing techniques. In Section 3, we explain our methodol-
ogy of analyzing different features using image analysis for PCB component detection.
Sections 4–6 contain detailed discussion on the benefits, limitations, and uses of color,
shape and texture feature descriptors in hardware assurance, respectively. Section 7 shows
quantitative results and analysis of the features’ importance for the task of PCB compo-
nent detection. Finally, in Section 8, we provide an overall discussion and future research
directions for our work followed by the concluding remarks in Section 9.

2. Related Works

In comparison to previous efforts in creating effective feature extraction methods,
there has been an increased focus in deploying feature selection approaches in object
identification tasks [6]. Despite the fact that numerous studies have been done to investigate
the relevance of feature extraction and feature selection in machine learning-based objection
detection tasks, there are few studies on applying them in the PCB assurance domain.
Feature saliency, which is dependent on the size of the dataset and the difficulty of the
task, determines the effectiveness of a machine learning model for object identification,
segmentation, and so on. As a result, feature selection techniques are incredibly important.

According to [7], a feature can be classified as (i) very relevant, (ii) somewhat rele-
vant but not redundant, (iii) irrelevant, or (iv) redundant. While analyzing the reasons
for Convolutional Neural Networks (CNNs) remarkable performance on complicated
perceptual tasks such as object recognition, it was discovered that image texture features
are more significant than object forms [8]. In [9], it was demonstrated that when color
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features are mixed with traditional form features, state-of-the-art results for object detec-
tion could be obtained. Due to the fact that a range of external elements can considerably
impair the efficacy of a component detection method for PCB images, a variety of image
attributes (e.g., color, shape, and texture) should be considered [3]. The color normalization
technique [3] will help in employing an appropriate feature selection strategy for PCB
component detection. In [10], a hybrid strategy for extracting color and shape features
for object detection was proposed. In contrast, recent research indicates that, in addition
to color and shape, texture plays a critical role in detecting objects in images [11]. As
demonstrated, there are a variety of examples where CV-based features can benefit ML and
DL models.

A deep learning model will perform well if sufficient data is available to train on. In the
case of a limited training dataset, a deep neural network may overfit and be unable to gen-
eralize. Since a DNN has millions of parameters, each with complicated inter-relationships,
manually tuning the model’s parameters would be incredibly challenging and computa-
tionally expensive. However, in certain cases, a similar performance could be obtained
by simpler methods such as basic color thresholding, which uses small amount of data.
Certain issues can be solved using less sophisticated, and time-consuming traditional
computer vision-based solutions [12]. Conventional CV-based approaches are completely
transparent, but deep learning models are often criticized for being opaque and difficult
to understand. This is even more challenging in the field of PCB assurance due to the
variety of components, continuous changes in technology, so giving rise to more added
features to be considered. As DL models often suffer from a critical phenomenon known
as the curse of dimensionality, dimensionality reduction is imperative to perform to limit
the memory storage requirements and the computational overhead associated with data
analysis. Two main components of dimensionality reduction, such as feature extraction
and feature selection, offer improved learning performance, increased computing efficiency,
decreased memory storage, and the development of more robust generalization models
[13]. Therefore, in our work, we have evaluated the importance of extracted features and
have proposed methods of selecting the optimal set of features strictly relevant to PCB
component detection for hardware assurance.

3. Methodology

To prepare the data for PCB detection, we first have collected PCB images and per-
formed color correction and region windowing. Later, color, shape, and texture features
have been extracted from each windowed region. Finally, feature selection have been used
to determine the importance of each feature. Importance values can be used to reduce the
number of features to only the most salient ones, which can be used in tandem with ML or
DL models to improve their efficiency and generalization. The process of our workflow is
summarized in Figure 2. We introduce the process in this section.

3.1. Data

In this study, we used 15 images of 10 different PCB samples, of which 5 PCBs
possessed components on both the front side and the backside, so both sides were imaged.
The PCBs were purchased online or disassembled from a variety of different devices such
as servers, computer hard drive controllers, and audio amplifiers. The images were taken
under ambient laboratory light using a Nikon D850 digital single-lens reflex (DSLR) camera.
This camera was set to take a 2 s delay and then a 2 s exposure shot to reduce noise
during image collection due to camera shake. After, color correction was used during
preprocessing to effectively normalize the data in a controlled manner [3]. The dataset used
here is derived from a previous study in [3].
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Figure 2. The processing workflow.

Then, PCB components (e.g., resistors, capacitors, and integrated circuits (ICs)) were
annotated with semantic boundaries by human SMEs. In this study, the semi-supervised
semantic annotator (S3A) have been used for annotation. By dividing each image into
non-overlapping boxes in a checker-board pattern, the image data have been divided into
square regions of different kernel sizes (ksizes). Since the ideal ksize is unknown, we have
performed feature extraction on each divided region for ksizes of 5, 10, 15, 20, and 25 pixels.

Since this study is concerned with PCB component detection, ground truth data have
been generated as follows. As feature extraction have been performed on each of the
non-overlapping box regions (bboxes) in the image, the ground truth needed to be in
terms of the bboxes. Therefore, the bbox ground truth have been generated based on the
semantic ground truth data, which consist of pixel-level labels of 1s and 0s for component
and background, respectively. Each bbox ground truth region have been assigned values
of 0–10 for the percentage of the region’s pixels that correspond to a component (e.g., a
region with a value of 0 does not have any component pixels in the semantic ground truth,
whereas a region with a value of 10 completely consist of component pixels in the semantic
ground truth). A visual example of the bbox label mask and semantic ground truth can be
seen in Figure 3.

3.2. Feature Extraction

Feature extraction of the image is the key to the image recognition process. Selecting
appropriate image features for different components can improve the efficiency of compo-
nents recognition. In our study, we have extracted features of PCB board images from three
aspects: color feature, shape feature, and texture feature.

Color is intuitively an important feature for detecting components, as many compo-
nents are distinct in color from the PCB board. For example, a black SMD voltage resistor is
distinct in color from a monochromatic green PCB, but not a black board. Color features
can show good stability in different shapes and placement directions. Here, 13 different
methods to extract color features have been implemented, of which 3 methods will be
discussed in detail in Section 4.
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(a) (b)

(c) (d)

Figure 3. (a) The original PCB image; (b) the corresponding bbox labels; (c) the bbox ground truth
heatmap for this PCB image; (d) and the heatmap overlay on the PCB image.

In addition, shape features are also intuitively with an important feature type for
detecting PCB components, as many components consist of regular shapes. For example,
many SMD resistors are rectangular, while many vias on the PCB appear circular from
above. Shapes are crucial for humans to distinguish different objects, so they are regarded
as very critical and important in computer vision and pattern recognition. There are many
ways to express the shape of an object in a computer: local/boundary shape features
and global shape features. Local shape features require prior segmentation, such as area,
perimeter, etc. Global shape features do not require segmentation and can be computed on
the entire image, such as edge, corner, and blob detection. Since this study concerns PCB
component detection, i.e., prior segmentation is not known, we have used global shape
features. Three feature extraction methods will be discussed in Section 5.

Finally, texture features are also intuitively beneficial for detecting PCB components,
as the components are often composed of different materials which can possess different
patterns when imaged. For example, plastic packaging materials on an IC tend to appear
rougher and less reflective than the head of certain ceramic capacitors. The texture feature is
an image feature that reflects the spatial distribution of pixels, and it is usually characterized
by local irregularities and macroscopic regularities [14]. Different image grayscale pixel
arrangements will produce different texture features to different components for distinction.
Statistical methods and signal processing methods are the two main texture feature methods.
Here, 9 texture feature extraction approaches have been implemented, 3 of which will be
discussed in Section 6.

3.3. Feature Selection and Analysis

Feature selection is used to extract the optimal subsets for PCB component detec-
tion [15]. It can effectively eliminate irrelevant features, reduce data dimensions, and
improve the accuracy and efficiency of classification models. In this step, we use the
feature selection algorithm to rank the importance of the 1200 features extracted in the
previous step.
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Commonly-used feature selection algorithms are broadly categorized into filters,
wrappers, and embedding methods [16]. At present, the feature selection mechanisms
are mainly based on Information Theory, Neural Networks, Support Vector Machine
(SVM) [17,18], etc.

Breiman proposed the Random Forest (RF) algorithm in 2001. This method operated
by building a large number of decision trees and belongs to an ensemble algorithm [19].
Random forests can give the importance of features by calculating the average impurity
reduction based on all decision trees in the forest. It won’t need to make any assumptions
about the linear separability of data [20].

In the process of splitting decision tree nodes in a random forest, we define the Gini
importance [21] i as:

i = 1 − ∑
j

p2 (1)

The proportion of samples marked j in the node is p(j). After the split, the importance
of Gini is:

∆i = iparent − (ple f t · ile f t + pright · iright) (2)

Among them, the sample proportions of the left child node and the right child node
are ple f t and pright. iparent, ile f t, and ile f t, respectively, represent the Gini importance of the
parent node, the left child node, and the Gini importance of the left child node. For any
feature Xi, the decreasing sum of impurities in all decision trees is the Gini importance
of Xi:

α∆I = ∑
k

∆ik (3)

Based on this equation, this value indicates the importance of each feature.

4. Color Features

To better express the color feature of PCBs, we have used 13 methods, including
RGB [22], RGB_CIE [23], HSV [24], HLS [25], LAB [26], LUV [27], YCrCb [28],
YDbDr [29], YPbPr [30], XYZ [31], YIQ [32], YUV [33], and HED [34]. In this section,
we discuss 3 kinds of color features, which are RGB, HSV and Lab color features. These
three color features play an important role in image feature extraction computations.

4.1. RGB

The RGB color space is the most common representation for the color of pixels. The
RGB color space uses the superposition of three primary colors in physics to form the
principle of producing various colors. In RGB color space, the attributes of the three
components of R, G, and B are independent, respectively representing the color of red,
green, and blue. The gray-scale images of three channels in RGB color space and the original
image are shown in Figure 4.

(a) (b) (c) (d)

Figure 4. (a) The Original PCB Image; (b) R Channel of the Image; (c) G Channel of the Image;
(d) B Channel of The Image.
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4.1.1. Benefits

RGB is the most commonly used and most basic way of expressing color character-
istics, and the expression of different components on the PCB is more intuitive and easy
to understand.

4.1.2. Limitations

RGB color space is the most common hardware-oriented model, which is usually
used in imaging and display systems, and is rarely used in image processing and feature
extraction [22]. The color components of RGB space may be affected by light and the
environment. The three color components are highly correlated, and the brightness will
change with the transformation of the three components of R, G and B. Moreover, when
one of the color components changes, it will also affect the other two color components to a
certain extent. Two colors with the same chromaticity might be mistaken for each other
when their intensities change even by the slightest amount. The challenging cases include
distinguishing surface-mount resistors and inductors on a PCB.

4.2. HSV

A. R. Smith created the HSV color space in 1978 based on the intuitive characteristics
of colors, and it is also called Hexcone Model [35]. This HSV model, respectively, represents
hue (H), saturation (S), and value (V). To express color on the image, the Hue refers to an
image’s relative lightness and darkness. Saturation shows the proximity between color to
the spectral color. The value indicates how bright the color is. HSL is similar to HSV in
the color space and they are both related to the concept of the human visual system [24].
However, they are slightly different in conceptual expression [36]. Figure 5 shows the PCB
image represented on the HSV color space.

(a) (b) (c) (d)

Figure 5. (a) The original PCB image; (b) H channel of the image; (c) S channel of the image;
(d) V channel of the image.

4.2.1. Benefits

Each attribute of HSV directly corresponds to the basic color concept, which makes it
conceptually simple and easy to understand. HSV can eliminate the influence of intensity
components from the color information carried in color images. When the external illu-
mination environment fluctuates slightly (as is frequently the case when optical images
of PCBs are acquired), hue values vary less than RGB values. For instance, two colors
of red may have comparable hue values yet vastly dissimilar RGB values. Thus, when
differentiating identical components on a PCB under varying lighting conditions, the HSV
color space may produce a more intuitive result.

4.2.2. Limitations

HSV is not suitable for use in illumination models. Many luminous mixed operations
and luminous intensity operations cannot be implemented directly using HSV. A major
disadvantage of the HSV spaces is that white, black, and gray do not have a distinct
chromaticity; consequently, these colors are treated as singularities, making them difficult
to detect. So, the components, e.g., resistors, inductors, diodes and ICs with the surfaces of
these colors will be difficult to deal with using this color space.
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4.3. Lab

The International Eclairage Committee (CIE) developed the Lab color model in 1931,
which is improved in 1976 and named as a international standard color mode for color
measurement. The L component represents the lightness of the pixel. Respectively, a and
b represent the color range from from red to green, and from yellow to blue. Figure 6
indicates the PCB image represented in Lab color space.

(a) (b) (c) (d)

Figure 6. (a) The original PCB image; (b) L channel of the image; (c) A channel of the image;
(d) B channel of the image.

4.3.1. Benefits

This color space can directly compare and analyze different colors by using the geo-
metric distance in the color space. Certain kinds of components in PCB don’t have visible
differences to the naked eye, like the capacitors and the resistors, or different kinds of
chips. Lab feature has a wide color gamut, so it can be effectively and conveniently used to
measure slight color differences, such as surface-mount resistors and inductors.

4.3.2. Limitations

The creation of Lab space is relatively complicated, and the Lab color space gener-
ated is not as natural and understandable for humans as RGB or other perceptual color
spaces [26]. This color space suffers from the same singularity issue as discussed in the
limitations of the HSV color space.

In addition to the above-discussed color features (RGB, HSV, and Lab), the shape
and texture features will help to detect the components of PCBs more efficiently that are
discussed in the Section 3.2. We will converse about few significant shape features in-depth
in the following section.

5. Shape Features

In our study, there are 11 types of shape features: Histogram of Gradients
(HOG) [37], Scale Invariant Feature Transform (SIFT) [38], Oriented FAST and Rotated
BRIEF (ORB) [39], Hough Line Transform, Hough Circle Transform [40], Determinant of
Hessian (DoH)—Blob Detection [41], Fourier Transform [42], Connected Components [43],
Corner Subpixels [44], Local Peak Maxima [45], and Edge Detection [46]. In this section,
we will discuss the following three shape features: Determinant of Hessian (DoH)—Blob
Detection, Corner Subpixels Detection, and Edge Detection features. These three shape
features are significant in the extraction of image features.

5.1. Determinant of Hessian (DoH)–Blob Detection

The blob objects are generally bright on dark regions or dark on bright regions on an
image, and can be extracted using three algorithms. One algorithm computes Laplacian of
Gaussian (LoG) [47] with consecutively increasing standard deviation and piles them as a
cubic structure. Local maxima of the cube are considered as blobs. This procedure executes
very slowly on extracting larger blobs due to a high number of convolutions and only bright
objects are detected in dark regions. An alternate method to LoG, Difference of Gaussian
(DoG) [47], works on approximation by blurring the image during the convolution, so
the difference between two consecutive blurred images are piled up as a cubic structure.
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Unfortunately, this algorithm fails to detect larger blobs efficiently. The third algorithm,
Determinant of Hessian (DoH), detects blobs using the DoH matrix by computing maxima.
This method uses box filters instead of convolutions which removes the dependency of
blob sizes in execution. Both bright and dark blobs are detected through this procedure.

5.1.1. Hyperparameters

We have set the hyperparameters by tuning them to get appropriate results as shown
in Figure 7. The parameters are: minimum and maximum σ or standard deviation for
Gaussian kernel, the threshold which is lower bound for scale-space maxima, overlap
value that determines area limit of two blobs overlapped, and log scale set to default value,
i.e., False.

(a) (b) (c)

(d) (e) (f)

Figure 7. Determinant of Hessian–Blobs feature images with different label mask k-size. (a) Original
image patch, and (b–f) respective experimental results from 25 to 5 image mask size.These six images
are different images.

5.1.2. Benefits

Any circular and non-circular curvy components such as oscillators, transistors, and a
number of diodes are easily detected using DoH blob features from PCB images.

5.1.3. Limitations

This algorithm will not be able to detect small blobs accurately such as vias on a PCB.

5.2. Corner Subpixels

We can represent corners as the pixel points with huge intensity variation from all
directions around the pixel [48]. According to Harris and Stephens [49], the corners are
identified based on the difference in the intensity for a displacement of (u, v) in all directions
as shown below:

E(u, v) = Σx,yw(x, y)[I(x + u, y + v)− I(x, y)]2 (4)

The window function w(x, y) could be either a Gaussian window or rectangular
window used to add weights to pixels. To detect a corner, we need to maximize the
E(u, v) function. In the process of maximizing, we can apply Taylor expansion to the above
equation that produces the below equation:

E(u, v) ≈
[
u v

]
M
[

u
v

]
(5)
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where M = Σx,yw(x, y)
[

Ix Ix Ix Iy
Ix Iy Iy Iy

]
In the above equation, Ix and Iy are derivatives of the image in x and y directions,

respectively. We can determine whether a point is a corner or not by computing the scoring
function R as below. If the value of R is large, it implies λ1 and λ2 are large and equivalent,
then it is a corner.

R = det(M)− k(trace(M))2 (6)

where det(M) = λ1λ2 , trace(M) = λ1 + λ2

In contrast to Harris corner algorithm, Shi-Tomasi [50] proposed a different approach
of calculating the scoring function (R) as below, which produces better results compared to
previous algorithms.

R = min(λ1, λ2) (7)

If λ1 and λ2 are greater than the minimum threshold R, it can be considered as a corner.
Later, we apply refinement to the detected corners using the corner subpixel algorithm.

5.2.1. Hyperparameters

In this experiment, we have two primary functions: Shi-Tomasi’s GoodFeaturesToTrack
and CornerSubpix. The first function takes the number of corners, quality level, minimum
distance, block size, and gradient size as the hyper-parameters that vary accordingly to the
label mask’s k-size. Similarly, the second function takes three parameters, window size,
zero zone, and criteria, that are constant irrespective of the label mask’s k-size. The results
are shown in Figure 8.

(a) (b) (c)

(d) (e) (f)

Figure 8. Corner Subpixel feature images with different label mask k-size. (a) Original image
patch, and (b–f) respective experimental results from 25 to 5 image mask size. These six images are
different images.

5.2.2. Benefits

Similar to Connected Components features, these features are scale, rotation, and
illumination invariant. Using these corner features, we can easily identify the location of
the component on the PCB.
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5.2.3. Limitations

These features consume more memory space to process the algorithm due to redun-
dancies and are not very robust in a complex image, for example, the image of a PCB with
a high density of components or reference designators.

5.3. Edge Detection

Edge detection is the process of finding consecutive points of a sudden change in
brightness that forms an edge in an image. The major steps involved in edge feature
detection are gray-scaling, bilateral filtering for noise removal, edge detection using Canny
algorithm [51,52], identifying contours around the detected edges, computing statistics such
as the number of contours, maximum contour area, etc., as features. The Canny algorithm
finds the gradients of the blurred image and utilizes the non-maximum suppression along
with the hysteresis for removing spurious edges and weak edges from the detections,
respectively. The canny algorithm has been used due to its adaptability to variations in
the images.

5.3.1. Hyperparameters

There are three different hyperparameters for each step. The diameter is set to 7, and
sigma color and sigma space are set to 50 for the bilateral filtering. For the Canny edge
algorithm, the lower threshold is set to (mean of gray intensities −25% of the mean), the
upper threshold is set to (mean of gray intensities +25% of the mean), and L2 Gradient
to false. Contour finding expects two significant parameters, i.e., retrieval mode is set to
RETR_EXTERNAL and approximation method to CHAIN_APPROX_NONE.

5.3.2. Benefits

This edge feature detects both smaller and larger components on PCBs such as ICs,
diodes, transistors, etc. The Canny edge detector aids in the detection of lines, which is
advantageous for trace analysis in PCBs.

5.3.3. Limitations

These edge features could get biased towards horizontal and vertical edges in the
images. There is a likelihood of wrong approximations of symmetry on rotations that are
common in most PCBs, especially for ICs with square shapes.

Although the shape features play a significant role in image feature extraction, they
are alone not sufficient enough to uniquely identify and detect the components on the
PCB. As we have mentioned that texture indicates the spatial distribution of pixels, the
texture features along with shape and color can improve the accuracy of detecting the PCB
components. In the next section, we will explore the texture features in detail.

6. Texture Features

For texture features, we have used nine kinds of texture feature extraction meth-
ods: Gabor filter [53], Gray-level co-occurrence matrix (GLCM) [54], Local binary pattern
(LBP) [55], Gray-level run length matrix (GLRLM) [56], Tamura [57], Law’s Texture En-
ergy Measures (LTEM) [58], Gray-level difference statistics [59], Autocorrelation function,
and Segmentation-based fractal texture analysis (SFTA) [60]. Among these nine methods,
GLCM, LBP, and Gabor filters have a more obvious effect of distinguishing components,
and they are also the most common feature extraction methods for image texture features.
In this section, we will introduce and analyze these three methods.

6.1. Gabor Filter

To better describe the texture information of the image, the first method we choose
is Gabor filter. It’s usually used in signal processing. To describe the local frequency
information of the image signal, the Gabor kernel adds a window function to the signal in
the frequency domain [61]. Gabor filter kernel is similar to the receptive field of vertebrate
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visual cortex [62], which provides a satisfactory result for texture representation and
discrimination [63].

6.1.1. Hyperparameters

λ represents the wavelength of the filter function. The longer the wavelength, the
greater the interval between black and white stripes in the Gabor kernel image. θ represents
the tilt angle of the kernel function image, which can be used for effective feature extraction
for textures in different directions. ψ determines the phase shift. When ψ is 0, the kernel
center is a white stripe; when ψ is 180, the kernel center is a black stripe. σ is the standard
deviation of the Gaussian function, which reflects the effective size of the kernel. γ is the
spatial aspect ratio, which determines the ellipticity of the filter kernel function [63].

After testing, when λ = 14, ψ = 0, σ = 5, γ = 1, the texture feature extraction effect
is the best. Considering that the components on the PCB may have different placement
directions, we set six values for θ : 0◦, 30◦, 60◦, 90◦, 120◦, 150◦. The output images after
applying Gabor filtering are shown in Figure 9.

(a) (b) (c) (d)

(e) (f) (g)

Figure 9. (a) A part of the original PCB image; (b) filtered image when θ = 0◦; (c) filtered image
when θ = 30◦; (d) filtered image when θ = 60◦; (e) filtered image when θ = 90◦; (f) filtered image
when θ = 120◦; and (g) filtered image when θ = 150◦

6.1.2. Benefits

For the kernels, we have chosen six directions, which can basically cover the direction
of all components on the PCB board, so the Gabor filter has the characteristic of rotation in-
variance. For a certain degree of image rotation and distortion, Gabor filter can still provide
better results. In addition, Gabor filter is insensitive to light changes. If the light at each
position on the PCB is not exactly the same, it is able to provide a satisfactory adaptability.

6.1.3. Limitations

The limitation of the Gabor filter is that it is non-orthogonal, which will result in
different proportions of redundant features [64]. In addition, due to the high frequency
response at the image edge, a “ring” effect may occur [65]. This has potential to create
problems while detecting vias on a PCB.

6.2. Gray-Level Co-Occurrence Matrix

Gray-level co-occurrence matrix (GLCM) was proposed by Haralick et al. in 1973,
which refers to a simple way to describe textures by studying the distribution of different
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gray levels corresponding to different textures in space [66]. That is, the spatial correlation
in grayscale images [67].

6.2.1. Hyperparameters

We select four angle directions of 0◦, 45◦, 90◦, 135◦ to calculate GLCM. With a small
ksize, the best step size should be set to one pixel, otherwise the output images will become
blurry. We have also changed the 8-bit pixel to 4-bit (which means the gray-level is equal
to 16) to improve the computational efficiency. The output images when the angle is 0◦ is
shown in Figure 10.

(a) (b) (c) (d)

(e) (f) (g)

Figure 10. (a) A part of the original PCB image; (b) ASM image when θ = 0◦, (c) contrast image
when θ = 0◦; (d) dissimilarity image when θ = 0◦; (e) energy image when θ = 0◦, (f) entropy image
when θ = 0◦; and (g) homogeneity image when θ = 0◦. These six images are different images.

6.2.2. Benefits

GLCM has strong adaptability and robustness. Its features can be produced for a
single orientation or for a group of orientations, making GLCM direction independent,
which may effectively cover the orientation of all components on the PCB.

6.2.3. Limitations

As a statistical method for texture feature extraction, GLCM has less correlation with
human visual models and lacks the use of global information. With high computational
complexity, GLCM has long execution time. This technique is not suitable for distinguish-
ing between different text fonts that is why this feature faces difficulty when detecting
component markings and reference designators on a PCB.

6.3. Local Binary Pattern

LBP reflects the texture changes around the image pixels. We define a 3 × 3 window
as the LBP operator. For the center pixel in the window, compare the pixel values with its
neighboring 8 pixels. Mark the surrounding positions as 0 or 1 according to the compared
result. Greater than the central pixel value is recorded as 1, otherwise it is recorded as 0. In
this case, we get an 8-bit binary number, and then we convert it to a decimal number. Use
the obtained decimal value to reflect the texture information of the 3 × 3 area, which is also
the LBP value of the center pixel of the window [68].

The LBP at this time is available to represent texture feature, but not rotation-invariant.
As the image rotates, the pixel position changes, and the LBP value will change accordingly,
and the given feature values will be very different. Maenpaa et al. proposed a method to
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achieve Rotated Local Binary Pattern (LBP) operation: continuously rotate the circular field
to obtain all possible initial defined LBP values, and then take the minimum value as the
value of the field [69,70].

Next, in order to further improve statistical capabilities, it is necessary to solve the
problem of excessive binary patterns. Ojala et al. came up with a unified mode adaptation
to reduce the dimensionality of the LBP operator mode type, which is called the unified
local binary mode (ULBP). When the cyclic binary number corresponding to a certain LBP
changes from 0 to 1 or from 1 to 0 at most two transitions, the binary corresponding to the
LBP is called a uniform pattern class.

In here, we have combined the RLBP and the ULBP to form the most powerful rotated
uniform LBP feature.

6.3.1. Hyperparameters

In the calculation process of this algorithm, a sliding window is needed. If the window
is too small, there will be mis-segmentation within the same texture; while when the
analysis window is too big, there will be mis-segmentation in the texture boundary area.
Since the region size is relatively small and the window size is 3 × 3, the testing result
shows that the texture effect has the best form. We can see the output image in Figure 11.

(a) (b)

Figure 11. (a) A part of the original PCB image; (b) The output image after RLBP operators and
ULBP operators.

6.3.2. Benefits

The RLBP and the ULBP are combined to retain the most effective feature value, and
this method has rotation invariance, gray scale invariance, and invariance to monotonic
illumination changes [66]. This helps with the same type of components with different
orientations on a PCB in variant lighting conditions.

6.3.3. Limitations

The calculation time is positively correlated with to the number of pixels in the image.
As the image grows larger, it will take longer to perform calculations [71]. Moreover, noise,
blurring, and any other disturbing effect, all have noticeable impacts on the method perfor-
mance. So, in case of blurry markings or having reference designators and incorporated
noise due to image acquisition, LBP texture feature might not be suitable for PCB assurance.

In the next section, we will compare the different results from the feature extraction
experiment to recognize the importance of few features based on their impact on PCB
component detection.

7. Results

Among the employed 34 feature extraction methods, 13 of them are color, 12 for shape,
and nine are for texture. Overall, we have used these 34 feature extraction methods to obtain
a total of 1200 PCB board image features. The methods used for each type of feature and the
number of generated features are shown in Table 1. After that, we have used random forest
to give the importance of each features. The values of “feature importance” parameter show
the features with the highest influence over the classification and regression results. We
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have obtained the output data of the importance of different features with different ksizes.
Different sizes of the region also have a certain impact on the feature extraction results.

Table 1. The methods used for each type of feature and the number of generated features.

Feature Types Methods Number of Features

Color Feature

RGB
RGB_CIE

HSV
LAB
LUV

YCrCb
YDbDr
YPbPr
XYZ
YIQ
YUV
HED
HLS

12
12
12
12
12
12
12
12
12
12
12
12
12

Shape Feature

Histogram of Gradients (HOG)
Scale Invariant Feature Transform (SIFT)
Oriented FAST and Rotated BRIEF (ORB)

Hough Line Transform
Hough Circle Transform

Determinant of Hessian (DoH) - Blob Detection
Fourier Transform

Connected Components
Corner Subpixels

Local Peak Maxima
Edge Detection

36
384
320

6
9
6

36
3

10
2
3

Texture Feature

Gabor filter
Gray-level co-occurrence matrix (GLCM)

Local binary pattern (LBP)
Gray-level run length matrix (GLRLM)

Tamura
Law’s Texture Energy Measures (LTEM)

Gray-level difference statistics
Autocorrelation function

Segmentation-based fractal texture analysis (SFTA)

24
24
10
44
3

60
12
4

48

The box plot is used to depict the center and spread of the data distribution, so here
we use the box plot to represent the feature data distribution under different ksizes, as
shown in Figure 12. We also give the statistics values of this data distribution correspond
to the boxplot in Figure 12, which is shown in Table 2.

Table 2. Statistics for different ksizes generated according to the boxplot in Figure 12.

Ksize Count Mean Std Min 25% 50% 75% Max

Ksize 5 1200 0.005833 0.013386 0 0 0 0.007345 0.134498
Ksize 10 1200 0.011667 0.021662 0 1.24 × 10−7 0.000733 0.018082 0.216028
Ksize 15 1200 0.012500 0.020859 0 0.000031 0.003261 0.018928 0.218144
Ksize 20 1200 0.012500 0.019310 0 0.000136 0.004696 0.017373 0.017373
Entry 25 1200 0.012500 0.017986 0 0.000715 0.005582 0.017005 0.185656
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Figure 12. The boxplot for different ksizes. It indicate that ksize 25 has the higher median and shorter
distance, so ksize 25 is the best among the 5 different ksizes.

In the box plot, each group of ksize data is composed of the sum of corresponding
features in 15 PCB board images. The two ends of the box are the upper and lower quartiles,
which are the median of numbers larger than the overall median, and the median of
numbers smaller than the overall median. The height of the box, which is the distance
between first quartile and the third quartile, reflects the degree of data fluctuation. So, the
distribution of the data characteristics for ksize15 is more scattered, while for ksize5 is
more concentrated. Although the overall eigenvalues of ksize5 are close to 0, so it is not a
proper choice.

According to the higher median and shorter distance shown in the boxplot of
Figure 12, ksize of 25 has the highest significance among the 5 different ksizes. This result
is explained based on the fact that the smaller ksizes are very unfavorable for extraction of
the shape and texture features. For example, it is difficult for a small region in the shape
feature to reflect the lines and corners, while it is difficult to reflect the repeatability among
pixels in the texture feature.

The distribution of the importance of the color feature values is generally higher than
shape and texture features. Since the regional features of the image are related to the entire
shape area, the shape features in a single area of the PCB board image after bounding box
segmentation are not ideal. The distribution of feature types are displayed in Figure 13.
The corresponding statistic values are shown in Table 3.

Through sorting the features based on their importance, we have selected the five most im-
portant features, which are “HLS_2_mean”, “LAB_1_med”, “LAB_1_mean”, “HED_1_med”,
and “HED_1_mean”. Note that in this study, color features has been identified by their
color space, channel, and the function used to compute a single feature value from each
region. For example, the most important feature, “HLS_2_mean”, indicates the mean of
the second channel of each region when the image was converted to HLS color space was
considered the most important. The distribution of these feature values in 15 images are
shown in Figure 14. Those five significant features belong to the color type. We can also
find the statistic values of the importance of these five features in Table 4.
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Figure 13. The boxplot for different feature types in different images. The distribution of the color
feature in the box plot shows that it is the most effective feature among the three types of features.

Figure 14. The boxplot for the five most important feature types in different images. The top five
important features all come from color features, this also shows that the color feature is the most
important among the three types of features.

Table 3. Statistics for different feature types generated according to the boxplot in Figure 13.

Ksize Count Mean Std Min 25% 50% 75% Max

Color 156 0.043102 0.026751 0.015766 0.023544 0.033614 0.056612 0.185656
Shape 815 0.003625 0.003406 0 0.000186 0.004119 0.005780 0.014832

Texture 229 0.023240 0.011621 0 0.013738 0.021807 0.027370 0.058496
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Table 4. Statistics for the five most important feature methods generated according to the boxplot in
Figure 14.

Feature Count Mean Std Min 25% 50% 75% Max

HLS_2_mean 15 0.012377 0.007098 0.002031 0.007076 0.012545 0.017180 0.024853
LAB_1_med 15 0.009547 0.007315 0.001328 0.002635 0.008607 0.014378 0.022514
LAB_1_mean 15 0.007753 0.004246 0.002942 0.004711 0.006776 0.009983 0.016350
HED_1_med 15 0.006981 0.005926 0.001548 0.002860 0.005006 0.007932 0.021296
HED_1_mean 15 0.006846 0.006392 0.001821 0.002721 0.004022 0.007194 0.023355

8. Discussion

Overall, the results of this study demonstrate color features that are completely in-
formative and useful for PCB component detection. As shown in Section 7, color features
for most cases demonstrated higher levels of importance in PCB component detection
than shape and texture features. In other words, color features are generally more infor-
mative for the task of PCB component detection. The higher strength of color features is
due to monochrome property (a single base color) of PCB boards and the face that they
process a distinct color from the components. Therefore, we consider color features as great
candidates for modeling the PCB boards with satisfactory performance. With respect to
execution time, color features tend to be the fastest to get extracted because no parameter
tuning is necessary and many of the algorithm operations are vectorised and this trait of
color features represents a promising prospect for real-time PCB assurance.

Table 5 represents a comparative analysis the between existing works and our study.
It is evident from the table that our work demonstrates a novel high-performance approach
to investigate the impact of different features in recognizing certain components on the
PCB using semantic image datasets. Compared with [72], which is also aimed at detection,
we use the color, shape, and texture in the basic features of the image. However, their
work only focuses on the ORB method, a shape feature descriptor that is not convincing
for extracting the best feature. In addition, our work have proved that color feature is
more important than shape feature when detecting PCB components. Different from our
work, Mahalingam et al. [73,74] are all based on using neural networks to do analysis and
detection. These methods cannot completely explain the reasons behind the falsely detected
components and the impact of the features of the image on those wrong predictions, but
our work focuses on analyzing the features and their impact on detection results. Our work
uses semantic PCB images as the datasets, which classify and localize every pixel in an
image so that we can localize all the components in an image to facilitate feature analysis.
This approach will help the component detection algorithms explain their decisions and
provide insight into the impact of adversarial examples on the detection results. As for
bounding box and bare PCB images used in [72,73,75,76], they are all more suitable for
analysis of the overall PCB image.

Table 5. Comparative analysis between existing works and our study.

Papers Dataset Use Cases Method Result

[75]

CAD files
of the PCB
and bare

PCB image
datasets

PCB
inspection

LIF (Learning
Inspection Features)

and OLI(On-line
Inspection)

Detection
accuracy

exceeded 97%.

[72]

Bounding
box PCB

image
datasets

Detecting
specific

PCBs and
recognizing
mainboards

ORB features
and Random

Forest

The PCB
recognition

accuracy is 98.6%
and the

classification
accuracy is 83%.
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Table 5. Cont.

Papers Dataset Use Cases Method Result

[73]

Bounding
box PCB

image
datasets

Component
analysis, IC

detection and
localization

YOLO,
Faster-RCNN,
Retinanet-50

The mean
average

precision of
these

3 techniques are:
0.698, 0.783 and

0.833.

[74]
Semantic

PCB image
datasets

PCB element
detection

SSD neural
network

The mean
average precision

of normal,
enhanced, and
ideal images

are 0.9209, 0.9272,
and 0.9510.

[76]
Bare PCB

image
datasets

Defect
detection and
classification

Image
processing

and flood fill
operation

Classified up
to 7 defects

and the defects
are identified
successfully.

Our work
Semantic

PCB image
datasets

Analyzing a
variety

of common
computer

vision-based
features for the

task of PCB
component
detection

34 feature
extraction

methods for
color, shape,
and texture;

Random Forest

For most of
the cases,

color features
demonstrated
higher levels

of importance
in PCB component

detection
than shape and
texture features.

9. Conclusions

In this study, we have found color features are faster in overall to extract and more
accurate for PCB component detection than shape and texture features. It is important to
note that this is a controlled experiment, as all PCB images used in this study were obtained
using similar lighting conditions. Since color features are sensitive to such conditions (e.g.,
a brown capacitor imaged under dim light could appear similar to a black resistor), a color
normalization technique and prepossessing algorithms should be utilized prior to feature
extraction to ensure better generalizability.

Though shape and texture features have been generally slower to extract and less
accurate for PCB component detection than color features, they could still be very useful
for PCB assurance. For example, after the components have been detected, local shape
features such as size, aspect ratio, and shape complexity could be helpful for classifying the
different PCB components, as many component types have a distinct footprint (e.g., 3-prong
transistors vs. 8-pin DIP ICs). In addition, texture features such as regional smoothness
and variance could be helpful for detecting visual defects such as scratches, spurious
copper, and mousebites. Since both shape and texture features are sensitive to lighting
conditions as well as imaging resolution, both color and shape normalization techniques
and preprocessing algorithms should be utilized prior to feature extraction to ensure better
generalizability.

Our work and data will be applied to do feature selection for PCB component detection
using semantic data. In future works, the tradeoffs between using more and diverse data
and as well as transferring knowledge in hardware assurance applications should be
comprehensively explored. Employing large high number of varied data samples would
be effective for common cases for which we have lots of examples (such as off-the-shelf
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components), but such data is time-consuming to collect and can be very difficult to acquire
on competitor or foreign custom components, legacy devices, and malicious modifications.
On the other hand, leveraging strong prior knowledge would increase the explainability of
the system and reduce the amount of data needed for difficult-to-obtain cases. However,
domain knowledge can be difficult to translate into an algorithm for certain data types.
Since the hardware assurance domain is a complex and constantly evolving field, there
is a great demand for both approaches. All in all, this work can be considered as a new
direction and motivation for the artificial intelligence and computer vision communities to
get involved in hardware security studies and vice versa.
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7. Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 25–29 May 2015; pp. 1200–1205. [CrossRef]

8. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.; Brendel, W. ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness. arXiv 2019, arXiv:1811.12231.

9. Khan, F.; Anwer, R.M.; van de Weijer, J.; Bagdanov, A.D.; Vanrell, M.; López, A.M. Color attributes for object detection. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012;
pp. 3306–3313.

10. Diplaros, A.; Gevers, T.; Patras, I. Combining color and shape information for illumination-viewpoint invariant object recognition.
IEEE Trans. Image Process. 2006, 15, 1–11. [CrossRef]

11. Bansal, M.; Kumar, M.; Kumar, M. 2D Object Recognition Techniques: State-of-the-Art Work. Arch. Comput. Methods Eng. 2020,
28, 1147–1161. [CrossRef]

12. O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep
Learning vs. Traditional Computer Vision. In Proceedings of the 2019 Computer Vision Conference (CVC), Las Vegas, NV, USA,
2–3 May 2020; pp. 128–144.

http://doi.org/10.1145/3401980
http://dx.doi.org/10.1145/3464959
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://dx.doi.org/10.1016/j.patcog.2004.03.013
http://dx.doi.org/10.1109/MIPRO.2015.7160458
http://dx.doi.org/10.1109/TIP.2005.860320
http://dx.doi.org/10.1007/s11831-020-09409-1


Big Data Cogn. Comput. 2022, 6, 39 22 of 24

13. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv.
2017, 50, 1–45. [CrossRef]

14. Chen, C.H. Handbook of Pattern Recognition and Computer Vision; World Scientific: Singapore, 2015.
15. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3.
16. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
17. Liu, H.; Motoda, H. Feature Selection for Knowledge Discovery and Data Mining; Springer Science & Business Media:

Cham, Switzerland, 2012; Volume 454.
18. Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In Proceedings of the European Conference on Machine

Learning, Catania, Italy, 6–8 April 1994; pp. 171–182.
19. Ma, L.; Fan, S. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random

forests. BMC Bioinform. 2017, 18, 169. [CrossRef] [PubMed]
20. Raschka, S. Python Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2015.
21. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
22. Pitas, I. Digital Image Processing Algorithms and Applications; John Wiley & Sons: New York, NY, USA, 2000.
23. Martínez, J.; Pérez-Ocón, F.; García-Beltrán, A.; Hita, E. Mathematical determination of the numerical data corresponding to the

color-matching functions of three real observers using the RGB CIE-1931 primary system and a new system of unreal primaries X’
Y’ Z’. Color Res. Appl. 2003, 28, 89–95. [CrossRef]

24. Wen, C.Y.; Chou, C.M. Color image models and its applications to document examination. Forensic Sci. J. 2004, 3, 23–32.
25. Setiawan, N.A.; Seok-Ju, H.; Jang-Woon, K.; Chil-Woo, L. Gaussian mixture model in improved hls color space for human

silhouette extraction. In Proceedings of the International Conference on Artificial Reality and Telexistence, Hangzhou, China,
29 November–1 December 2006; pp. 732–741.

26. Chavolla, E.; Zaldivar, D.; Cuevas, E.; Perez, M.A. Color spaces advantages and disadvantages in image color clustering
segmentation. In Advances in Soft Computing and Machine Learning in Image Processing; Springer: Cham, Switzerland, 2018;
pp. 3–22.

27. Kekre, H.; Thepade, S.; Sanas, S. Improving performance of multileveled BTC based CBIR using sundry color spaces. Int. J. Image
Process. 2010, 4, 620–630.

28. El Baf, F.; Bouwmans, T.; Vachon, B. A fuzzy approach for background subtraction. In Proceedings of the 2008 15th IEEE
International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 2648–2651.

29. Sahdra, G.S.; Kailey, K.S. Detection of Contaminants in Cotton by using YDbDr color space. Int. J. Comput. Technol. Appl. 2012,
3, 1118–1124.

30. Campadelli, P.; Lanzarotti, R.; Lipori, G.; Salvi, E. Face and facial feature localization. In Proceedings of the International
Conference on Image Analysis and Processing, Cagliari, Italy, 6–8 September 2005; pp. 1002–1009.

31. Kekre, H.; Sonawane, K. Comparative study of color histogram based bins approach in RGB, XYZ, Kekre’s LXY and L’ X’ Y’ color
spaces. In Proceedings of the 2014 International Conference on Circuits, Systems, Communication and Information Technology
Applications (CSCITA), Mumbai, India, 4–5 April 2014; pp. 364–369.

32. Liu, Z.; Liu, C. A hybrid color and frequency features method for face recognition. IEEE Trans. Image Process. 2008, 17, 1975–1980.
33. Sudhir, R.; Baboo, L.D.S.S. An efficient CBIR technique with YUV color space and texture features. Comput. Eng. Intell. Syst. 2011,

2, 85–95.
34. Birchfield, S. Color, in Image Processing and Analysis, 1st ed.; Cengage Learning: Boston, MA, USA, 2018; pp. 401–442.
35. Smith, A.R. Color gamut transform pairs. ACM Siggraph Comput. Graph. 1978, 12, 12–19. [CrossRef]
36. Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding color models: A review. ARPN J. Sci. Technol. 2012,

2, 265–275.
37. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.
[CrossRef]

38. Lowe, D. Object recognition from local scale-invariant features. In Proceedings of the Proceedings of the Seventh IEEE International
Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [CrossRef]

39. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [CrossRef]

40. Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15.
[CrossRef]

41. Lindeberg, T. Image Matching Using Generalized Scale-Space Interest Points. In Proceedings of the International Conference on
Scale Space and Variational Methods in Computer Vision, Leibnitz, Austria, 2–6 June 2013; pp. 355–367.

42. Zheng, Y.; Meng, F.; Liu, J.; Guo, B.; Song, Y.; Zhang, X.; Wang, L. Fourier transform to group feature on generated coarser
contours for fast 2D shape matching. IEEE Access 2020, 8, 90141–90152. [CrossRef]

43. Häfner, M.; Uhl, A.; Wimmer, G. A novel shape feature descriptor for the classification of polyps in HD colonoscopy.
In Proceedings of the International MICCAI Workshop on Medical Computer Vision, Nagoya, Japan, 26 September 2013;
pp. 205–213.

http://dx.doi.org/10.1145/2996357
http://dx.doi.org/10.1186/s12859-017-1578-z
http://www.ncbi.nlm.nih.gov/pubmed/28292263
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/col.10127
http://dx.doi.org/10.1145/965139.807361
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1109/ACCESS.2020.2994234


Big Data Cogn. Comput. 2022, 6, 39 23 of 24

44. Lucchese, L.; Mitra, S.K. Using saddle points for subpixel feature detection in camera calibration targets. In Proceedings of the
Asia-Pacific Conference on Circuits and Systems, Denpasar, Indonesia, 28–31 October 2002; Volume 2, pp. 191–195.

45. Brieu, N.; Schmidt, G. Learning size adaptive local maxima selection for robust nuclei detection in histopathology images.
In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia,
18–21 April 2017; pp. 937–941.

46. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [CrossRef]
47. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
48. Kenney, C.S.; Zuliani, M.; Manjunath, B.S. An axiomatic approach to corner detection. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1,
pp. 191–197. [CrossRef]

49. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK,
31 August–2 September 1988.

50. Jianbo Shi.; Tomasi. Good features to track. In Proceedings of the 1994 Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [CrossRef]

51. Rong, W.; Li, Z.; Zhang, W.; Sun, L. An improved Canny edge detection algorithm. In Proceedings of the 2014 IEEE International
Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 577–582. [CrossRef]

52. Abdusalomov, A.; Mukhiddinov, M.; Djuraev, O.; Khamdamov, U.; Whangbo, T.K. Automatic Salient Object Extraction Based on
Locally Adaptive Thresholding to Generate Tactile Graphics. Appl. Sci. 2020, 10, 3350. [CrossRef]

53. Mehrotra, R.; Namuduri, K.; Ranganathan, N. Gabor filter-based edge detection. Pattern Recognit. 1992, 25, 1479–1494. [CrossRef]
54. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man, Cybern. 1973,

SMC-3, 610–621. [CrossRef]
55. He, D.C.; Wang, L. Texture Unit, Texture Spectrum, And Texture Analysis. IEEE Trans. Geosci. Remote Sens. 1990, 28, 509–512.
56. Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [CrossRef]
57. Tamura, H.; Mori, S.; Yamawaki, T. Textural Features Corresponding to Visual Perception. IEEE Trans. Syst. Man Cybern. 1978,

8, 460–473. [CrossRef]
58. Laws, K.I. Rapid texture identification. In Proceedings of the International Society for Optics and Photonics, SPIE, San Diego, CA,

USA, 29 July–1 August 1980; Volume 238, pp. 376–381. [CrossRef]
59. Baraldi, A.; Panniggiani, F. An investigation of the textural characteristics associated with gray level cooccurrence matrix

statistical parameters. IEEE Trans. Geosci. Remote Sens. 1995, 33, 293–304. [CrossRef]
60. Costa, A.F.; Humpire-Mamani, G.; Traina, A.J.M. An efficient algorithm for fractal analysis of textures. In Proceedings of the 2012

25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 22–25 August 2012; pp. 39–46. [CrossRef]
61. Zhou, J.; Fang, X.; Tao, L. A sparse analysis window for discrete Gabor transform. Circuits Syst. Signal Process. 2017, 36, 4161–4180.

[CrossRef]
62. Stork, D.G.; Wilson, H.R. Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? JOSA A 1990,

7, 1362–1373. [CrossRef] [PubMed]
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