

Big Data Cogn. Comput. 2021, 5, 46. https://doi.org/10.3390/bdcc5040046 www.mdpi.com/journal/bdcc

Article

Uncovering Active Communities from Directed Graphs on
Distributed Spark Frameworks, Case Study: Twitter Data
Veronica S. Moertini * and Mariskha T. Adithia

Department of Informatics, Parahyangan Catholic University, Bandung 40141, Indonesia;
mariskha@unpar.ac.id
* Correspondence: moertini@unpar.ac.id

Abstract: Directed graphs can be prepared from big data containing peoples’ interaction infor-
mation. In these graphs the vertices represent people, while the directed edges denote the interac-
tions among them. The number of interactions at certain intervals can be included as the edges’
attribute. Thus, the larger the count, the more frequent the people (vertices) interact with each other.
Subgraphs which have a count larger than a threshold value can be created from these graphs, and
temporal active communities can then be mined from each of these subgraphs. Apache Spark has
been recognized as a data processing framework that is fast and scalable for processing big data. It
provides DataFrames, GraphFrames, and GraphX APIs which can be employed for analyzing big
graphs. We propose three kinds of active communities, namely, Similar interest communities (SIC),
Strong-interacting communities (SC), and Strong-interacting communities with their “inner circle”
neighbors (SCIC), along with algorithms needed to uncover them. The algorithm design and imple-
mentation are based on these APIs. We conducted experiments on a Spark cluster using ten ma-
chines. The results show that our proposed algorithms are able to uncover active communities from
public big graphs as well from Twitter data collected using Spark structured streaming. In some
cases, the execution time of the algorithms that are based on GraphFrames’ motif findings is faster.

Keywords: directed graphs analysis; social network analysis; scalable communities detection; graph
data mining on Spark; off-line data stream analysis

1. Introduction
Community detection is an increasingly popular approach to uncovering important

structures in large networks [1–3]. Recently, its use in social networks for advertising and
marketing purposes has received considerable attention [4]. Dense connections among
users in the same community can potentially magnify “word of mouth” effects and facil-
itate the spread of promotions, news, etc.

Graphs can be used to represent naturally occurring connected data and to describe
relationships in many different fields, such as social networks, mobile phone systems and
web pages on the internet [5–7]. One of the most common uses for graphs today is to mine
social media data, specifically to identify cliques, recommend new connections, and sug-
gest products and ads. Graphs are formed from datasets of vertices or nodes and edges
that connect among vertices. Depending on the context of interactions among vertices, we
may create directed or undirected graphs from datasets. If the interaction directions are
considered important for the purpose of analysis, then directed graphs should be chosen.
Otherwise, if relationships among vertices are equal, undirected graphs may be used. The
aim of community detection in graphs is to identify the groups and possibly their hierar-
chical organization by using only the information encoded in the graph topology [2]. This
is a classic problem of finding subsets of nodes such that each subset has higher

Citation: Moertini, V.S.; Adithia,

M.T. Uncovering Active

Communities from Directed

Graphs on Distributed Spark

Frameworks, Case Study: Twitter

Data. Big Data Cogn. Comput. 2021,

5, 46. https://doi.org/10.3390/

bdcc5040046

Academic Editor: Min Chen

Received: 17 July 2021

Accepted: 16 September 2021

Published: 22 September 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and in-

stitutional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzer-

land. This article is an open access

article distributed under the terms

and conditions of the Creative

Commons Attribution (CC BY) li-

cense (http://creativecom-

mons.org/licenses/by/4.0/).

Big Data Cogn. Comput. 2021, 5, 46 2 of 30

connectivity within itself than it does compared to the average connectivity of the graph
as a whole, and also has appeared in various forms in several other disciplines.

Over the last two decades, data generated by people, machine and organizations
have been increasing rapidly. This modern data can no longer be managed and analyzed
using the traditional technologies, leading to the birth of a new field, namely, big data.
The field of big data analysis is associated with its ”Five Vs”, which are volume, velocity,
variety, veracity and value. The needed technologies have been developed to tackle the
first four of these in order to find value; among those are Apache Hadoop and Spark.
While Hadoop with its Hadoop File Systems (HDFS) and YARN handles the distributed
storage and resource management in the cluster, which may include thousands of ma-
chines, Spark, running on top of YARN with its Resilient Distributed Datasets (RDD), pro-
vides speedy parallel computing with distributed memory. Together, they can process
petabytes of big data. The Machine Learning libraries implemented in Spark are designed
for very simple use [6], and Spark is also well-suited to handling big graphs [5].

Spark’s GraphX is a graph processing system. It is a layer on top of Spark that pro-
vides a graph data structure composed of Spark RDDs. It provides an API to operate on
those graph data structures [5]. GraphX API provides standard algorithms, such as Short-
est Paths, Connected Components and Strongly Connected Components. The Connected
Components algorithm is relevant for both directed and undirected graphs. For directed
graphs, Strongly Connected Components can be used to detect vertices that have “recip-
rocated connections”.

Dave et al. [8] developed GraphFrames, an integrated system that lets Spark users
combine graph algorithms, pattern matching and relational queries and optimize work
across them. A GraphFrame is logically represented as two DataFrames: an edge Data-
Frame and a vertex DataFrame. To make applications easy to write, GraphFrames provide
a concise, declarative API based on the “data frame” concept. The pattern operator enables
easy expression of pattern matching or motif finding in graphs. Because GraphFrames is
built on top of Spark, it has the capability to process graphs having millions or even bil-
lions of vertices and edges stored in distributed file systems (such as HDFS in Hadoop).

As previously mentioned, communities can be uncovered from social media data
such as tweets from Twitter. Tweets are considered as big data in a stream. Stream pro-
cessing is a key requirement of many big data applications [6]. Based on the methodology
for processing data streams, a data stream can be classified as either an online (live) data
stream or as an off-line (archived) data stream [9]. An important distinction between off-
line and online is that the online method is constrained by the detection and reaction time
(due to the requirement of real-time applications) while the off-line is not. Depending on
its objective (such as finding trending topics, vs. detecting communities), a stream of
tweets can be processed either online or off-line.

We found that unlike “fixed” communities that can be uncovered from users’ follow-
ing/follower behaviors, temporal “informal”, communities can also be detected from
batches of tweet streams; each batch is collected during a certain period of time (such as
daily or weekly), thus, applying the off-line stream computation approach. For this pur-
pose, graphs are created from users’ interaction through the reply and quote status of each
tweet. The user IDs become the nodes, while the replies or quotes among users are trans-
lated into edges. Intuitively, a group of people who frequently interact with each other
during a certain short period become a community (at least during that period). Thus, the
more frequent a group of users interact with each other, the more potential there is for a
community to be formed among those users. In this regard, we found that the communi-
ties formed from one period of time to another are very dynamic. The number of commu-
nities changes from one period to another, as do the members in each community. Com-
munities which existed in one period may disappear in the next period, whereas other
communities may be formed. The dynamic nature of the communities is in line with the
users’ interest towards particular tweets’ content, which varies over time.

Big Data Cogn. Comput. 2021, 5, 46 3 of 30

In our study of the literature (Subsection 2.1), we found that most community detec-
tion techniques are aimed at processing undirected graphs, and are based on the cluster-
ing techniques. The proposed algorithms take the size of a cluster or a community as one
of their inputs. For processing big data such as batches of tweets this approach poses a
weakness, as the exact number of communities is not known in advance. Moreover, the
number of communities that can be discovered may change from batch to batch. We also
found that most community detection algorithms are complex and thus difficult to imple-
ment, particularly on a distributed framework such as Spark.

As data accumulates, data science has been becoming necessity for a variety of or-
ganizations. When aiming to discover insights, stages in data science include: defining the
problems to be solved by the data; its collection and exploration; its preparation the data
(feature engineering); finding algorithms, techniques or technologies that are suitable for
solving problems; performing data analysis; and evaluating the results. If the results are
not satisfying, the cycle of stages is repeated. The vast majority of work that goes into
conducting successful analyses lies in preprocessing data or generating the right features,
as well as selecting the correct algorithms [10]. Given the objective of uncovering “tem-
poral communities” from batches of tweets and the advantages that have been discussed
in the previous paragraphs, Spark provides Dataframes, GraphX and GraphFrames that
can be best utilized to process big graphs. The technique could be simple yet effective and
scalable for processing big graphs.

In this work, we propose a concept of temporal communities, then develop tech-
niques that are effective for uncovering those communities from directed graphs in the
Spark environment. The case study is of directed graphs prepared from a dataset of tweet
batches. The criteria of the proposed technique are that it is able to (1) discover communi-
ties without defining the number of communities, (2) handle directed big graphs (up to
millions of vertices and/or edges); and (3) take advantages of the Dataframes, GraphX and
GraphFrames APIs provided by Spark in order to process big data. We also propose a
method for preparing the directed graphs that effectively supports the findings. While
most of the communities’ detection techniques (see Section 2.1) have been developed for
undirected graphs, we intend to contribute techniques for processing directed big graphs,
especially using APIs provided by Spark. Although our proposed technique is based on
the intention to analyze graphs of tweets, it will also be useful for other directed graphs
created from other raw (big) data, such as web page clicks, messaging, forums, phone
calls, and so on.

In essence, the major contributions of this paper are summarized as follows:
(1) The concept of temporal active communities suitable for social networks, where the

communities are formed based on the measure of their interactions only (for every
specific period of time). There are three communities defined: similar interest com-
munities (SIC), strong-interacting communities (SC), and strong-interacting commu-
nities with their “inner circle” neighbors (SCIC).

(2) The algorithms to detect SIC, SC and SCIC from directed graphs in an Apache Spark
framework using DataFrames, GraphX and GraphFrames API. As Spark provides
data stream processing (using Spark Streaming as well as Kafka), the algorithms can
potentially be used for analyzing the stream via the off-line computation approach
for processing batches of data stream.

(3) The use of motif finding in GraphFrames to discover temporal active communities.
When the interaction patterns are known in advance, motif finding can be employed
to find strongly connected component subgraphs. This process can be very efficient
when the patterns are simple.
This paper is organized as follows: Section 2 discusses related work on community

detection techniques as well as work that has been done in analyzing Twitter data and the
big data technologies employed in this research, which are Spark, GraphX, and
GraphFrames. Section 3 excerpts the results of the experiment comparing Strongly

Big Data Cogn. Comput. 2021, 5, 46 4 of 30

Connected Component algorithm and motif findings on Spark. Section 4 presents our pro-
posed techniques. Section 5 discusses the experiments using public and Twitter data. In
Section 5, we present our conclusions and further works.

2. Literature Review
2.1. Related Works

Formidably sized networks are becoming more and more common, such that many
network sizes are expected to challenge the storage capability of a single physical com-
puter. Fung [11] handles big networks with two approaches: first, he adopts big data tech-
nology and distributed computing as storage and processing, respectively. Second, he de-
velops discrete mathematics in InfoMap for the distributed computing framework and
then further develops the mathematics for a greedy algorithm, called InfoFlow, for detect-
ing communities from undirected big graphs. InfoMap and InfoFlow are implemented on
Apache Spark using the Scala language. The InfoFlow performance is evaluated using big
graphs of 50,515 to 5,154,859 vertices and the results show that the runtime complexity of
InfoFlow had logarithmic runtime complexity, while retaining accuracy in the resulted
community

The existing community detection algorithms principally propose iterative solutions
of high polynomial order that repetitively require exhaustive analysis. These methods can
undoubtedly be considered, resource-wise, to be overdemanding, unscalable, and inap-
plicable in big data graphs such as today’s social networks. To address these issues, Ma-
kris and Pispirigos [3] proposed a novel, near-linear, and scalable community prediction
methodology. Using a distributed, stacking-based model, the underlined community hi-
erarchy of any given social network is efficiently extracted in spite of its size and density.
Their proposed method consists of three stages: first, subgraph extraction (the bootstrap
resampling method is adopted and multiple BFS crawlers are randomly triggered to ex-
tract subgraphs of a predefined size; the maximum number of BFS crawlers, which are
concurrently executed, is practically determined by the level of parallelism of the execu-
tion system); second, feature enrichment (each individual edge is properly enriched with
features that include its network topology information up to a predefined depth of a value
k; The value of k is an essential parameter that seriously affects the community prediction’s
performance); third, a stacking ensemble learner is employed to detect communities (the
independently trained, heterogeneous base learners are aptly combined by training a final
model relying on the individual base learners’ predictions; it is built on top of a distributed
bagging ensemble of L2 regularized, binary logistic regression classifiers, and a distrib-
uted gradient boosted trees ensemble model, also known as distributed GBT boosting en-
semble model). To evaluate the methods, the experiments were conducted on Spark clus-
ter with eight nodes using seven undirected and directed graphs (available at
https://snap.stanford.edu/data/, accessed on 19 March 2021) having 1858 to 154,908 verti-
ces. For evaluating the communities, the metrics measured are accuracy, recall, precision,
specificity and F1-score. The metric values show that the models have detected the com-
munities accordingly. The execution time of stacking ensemble methods executed in par-
allel on the Spark cluster beats that of the Louvain and Girwan–Newman methods that
run on single node.

Bae et al. [1] developed a parallel algorithm for graph clustering called RelaxMap that
parallelizes the optimization of flow-compression for community detection. It employs a
prioritization strategy that avoids handling vertices that do not significantly improve the
algorithm. The core algorithm works in two phases. In Phase 1, the visit probability (rank)
of each vertex is computed in terms of the network flow. In Phase 2, tthe space of possible
modularizations is greedily searched. In the search procedure for the best new module of
a vertex v, the algorithm calculates the total in-flow and total out-flow between the vertex
v and its neighbor modules (i.e., the set of modules to which any of its neighbors belong).

Big Data Cogn. Comput. 2021, 5, 46 5 of 30

The algorithm stops when the change in the minimum description length (MDL) score in
each iteration is less than a minimum quality improvement threshold, Lprev − L < τ.

Bhatt et al. [12] proposed a community detection and characterization algorithm that
incorporates the contextual information of node attributes described by multiple domain-
specific hierarchical concept graphs. The core problem is to find the context that can best
summarize the nodes in communities, while also discovering communities aligned with
the context summarizing communities. The proposed algorithm iteratively optimizes two
tasks, (i) optimal community label assignment while keeping the community context un-
changed, and (ii) optimal community context assignment while keeping the community
labels constant.

Most of the existing community detection methods have been proposed based exclu-
sively on social connections. The emergence of geo-social networks (GeoSNs) motivates
the integration of location information in community detection. In this context, a commu-
nity contains a group of users that are tightly connected socially and are situated in the
same geographic area. Yao, Papadias and Bakiras [4] have proposed a model called Den-
sity-based Geo-Community Detection (DGCD) in geo-social networks. This model ex-
tends the density-based clustering paradigm to consider both the spatial and social rela-
tionships between users. The results of the experiment show that the proposed model
produces geo-social communities with strong social and spatial cohesiveness, which can-
not be captured by existing graph or spatial clustering methods.

In [13], Jia et al. proposed CommunityGAN, a community detection framework that
jointly solves overlapping community detection and graph representation learning. Com-
munityGAN aims to learn network embeddings like AGM (Affiliation Graph Model)
through a specifically designed GAN. AGM is a framework which can model densely
overlapping community structures. It assigns each vertex-community pair a nonnegative
factor which represents the degree of membership of the vertex to the community. Thus,
the strengths of membership from a vertex to all communities compose the representation
vector of it. The algorithm of CommunityGAN takes as inputs the number of communities
c, size of discriminating samples m, and size of generating samples n.

Roghani, Bouyer and Nourani [14] proposed a Spark-based parallel label diffusion
and label selection-based (PLDLS) community detection algorithm using GraphX, which
is an improved version of LPA, by putting aside randomness parameter tuning. PLDLS
introduces NI, which is the importance measure of a node, used to find core nodes that
initially form communities. For every node, NI(i) is locally computed using the following
equation:

𝑁𝑁𝑁𝑁(𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) × deg (𝑖𝑖)2 (1)

where 𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑗𝑗∈𝑁𝑁𝑖𝑖 and deg(i) is the degree measure of ith node.
In essence, PLDLS steps are as follows: Using GraphX, the input dataset is repre-

sented as an RDD containing pairs of vertex and edge collections, G(V,E). NI(i) is com-
puted in parallel using Equation 1. Nodes having NI(i) ≥ Average (NI of all nodes) are
selected. The modes of these selected nodes are computed. The communities are initial-
ized with the member of core nodes with NI(i) ≥ mode of NI. The communities are then
expanded by diffusing with their neighbors, to include first and second level nodes. First-
level nodes are groups of neighbors (FLIN) that form a triangle with a core node and its
most important neighbor; all of them at once get the same label. Second-level nodes are
the neighbor nodes of FLIN that satisfy NI(FLIN) ≥ NI(i) and have Jaccard similarity higher
than 0.5. Through iterative computation, the rest of the nodes (the unlabeled ones) are
visited and labeled with their community ID. Using Pregel functions, the labels are im-
proved, then the communities are merged in parallel (to integrate communities that are
likely to be merged) in order to obtain more dense and accurate communities.

In real world networks, such as interpersonal relationship in human society and ac-
ademic collaboration networks, communities tend to overlap. Thus, finding the overlap-
ping community structure in complex networks is needed. As reported in [15],

Big Data Cogn. Comput. 2021, 5, 46 6 of 30

LinkSHRINK is an overlapping community detection method that combines density-
based clustering with modularity optimization in a link graph. It finds overlapping com-
munities by merging reductant nodes with parameter ω. It avoids the problem of exces-
sive overlapping and reveals the overlapping community structure with different overlap
degrees by using parameter ω. To find overlapping communities in large-scale networks,
Zhang et al. [15] parallelized LinkSHRINK on Spark using GraphX (named as
PLinkSHRINK) and Hadoop using Map-Reduce jobs (named as MLinkSHRINK).
Through a series of experiments using synthetic and real networks, it is reported that: (1)
while LinkSHRINK cannot handle very large graphs, PLinkSHRINK and MLinkSHRINK
can find communities in large networks with millions of edges efficiently without losing
significant accuracy; (2) on Spark, the running time of PLinkSHRINK correlates with the
executer cores, or performance improves with an increasing number of cores; and (3)
PLinkSHRINK runs faster on large networks than MLinkSHRINK and LinkSHRINK.

DENCAST [16] is a parallel clustering algorithm for Spark. It is based on a well-
known density-based clustering algorithm, DBSCAN, which is able to identify arbitrarily
shaped clusters. DBSCAN works iteratively and needs two parameters, which are eps
(maximum distance of objects) and minPts (minimum points). DBSCAN starts with an
arbitrary object o and, if this is a core object, it retrieves all the objects which are density-
reachable from the core by using eps and minPts, and returns a cluster. The algorithm
then proceeds with the next unclustered object until all objects are visited. Thus, DBSCAN
works with graphs that represent the objects and their neighbors. Using GraphX on Spark,
DENCAST identifies the reachable nodes of all the core objects simultaneously. This is
performed by propagating the cluster assignment of all the core objects to their neighbors
until the cluster assignment appears stable enough. Based on the evaluation experiments
on a Spark cluster, it was concluded that DENCAST is able to handle large-scale and high-
dimensional data. The model has high accuracy. It also significantly outperforms the dis-
tributed version of K-means in Apache Spark in terms of running times.

In [17], Krishna and Sharma discuss the review results of five parallel community
detection algorithms, as follows: (1) the distributed memory-based parallel algorithm
based on modularity maximization proposed by Louvain and implemented on an MPI-
based HPC cluster; (2) Picaso, a parallel community detection model based on approxi-
mate optimization. It is based on two approaches: a computing “mountain” (of vertices)
based on approximate optimization and modularity, and the Landslide algorithm, which
is iterative and implemented using GraphX on Spark; (3) FPMQA, a parallel modularity
optimization algorithm that uses the modularity technique to identify communities in the
social networks. The networks are initialized with people connected based on their com-
ments on similar topic of interests, namely similar view network (SVN). The FPMQA al-
gorithm is executed in parallel to process this SVN (there will be a group of nodes con-
nected in this SVN due to common interest). Based on gain modularity measures, SVNs
may be merged. The modularity computation is done in parallel; (4) PLPAC, a label prop-
agation-based parallel community detection algorithm with nodes confidence. In label
propagation algorithm (LPA), each node label (denoting its community ID) is updated
based on the labels with the highest modularity among their neighbors. The proposed
parallel algorithm is implemented using MapReduce; (5) an algorithm for detecting dis-
jointed communities on large-scale networks, which is based on the Louvain algorithm
and implemented for parallel shared memory. All of the algorithms discussed in [17] work
with undirected graphs, or do not consider direction (of the edges between nodes) as im-
portant for finding communities.

Atastina et al. [7] discusses how to process communication transaction data to find
the communities and track the evolution of the communities over time. The Facetnet al-
gorithm, which is based on clustering vertices, is applied to undirected graphs to mine the
communities.

Big Data Cogn. Comput. 2021, 5, 46 7 of 30

Twitter messages or tweets, which originate from all over the world using many lan-
guages, have also attracted researchers. Three examples of recent work results are ex-
cerpted below.

In a case study using Twitter data, Sadri et al. [18] analyzed the characteristics and
growth of online social interaction networks, examining the network properties and de-
riving important insights based on the theories of network science literature. The data is
specific to the Purdue University community. They collected tweets (between 16 April
2016 and 16 May 2016) using a specific keyword ‘purdue’ and captured 56,159 tweets. Of
these tweets, 19,532 did not include any user mentions, while the rest of the tweets in-
cluded at least one user mention in each tweet. The dataset contains 34,363 unique users
and 38,442 unique undirected links (39,709 links if direction is considered). The graphs,
which are created from users and their mentions, are analyzed as both undirected and
directed graphs, using visualization, vertex degree (including in-out degree), graph ra-
dius, connected component and clustering. Key insights found were: (i) the graph indi-
cated that with some vertices being highly active, there are connected components and
hubs; (ii) network elements and average user degree grow linearly each day, but network
densities tend to become zero, and the largest connected components exhibit higher con-
nectivity when compared to the whole graph; (iii) network radius and diameter become
stable over time, which suggests a small-world property.

All of the above community detection techniques do not discuss the importance of
edge direction. The directed graphs discussed in [18] are only used to compute in-out
degree.

2.2. Spark, GraphX and GraphFrames
2.2.1. Apache Spark

Apache Spark is a data processing framework that is fast and scalable for processing
big data, employing non-iterative as well as iterative algorithms. It is written in Scala and
runs in Java Virtual Machine (JVM). For processing big data, Spark is more often used in
tandem with a distributed storage system (such as Hadoop Distributed File System,
HDFS) and a cluster manager, such as Apache Hadoop YARN [6,19,20]. HDFS is a distrib-
uted file system designed to reliably store very large files across machines in a large clus-
ter. Each HDFS file is stored as a sequence of blocks; these blocks are replicated for fault
tolerance. Apache Hadoop YARN (Yet Another Resource Negotiator) provides the re-
source management and job scheduling for Hadoop clusters, consisting of master and
data (slave/worker) nodes [21,22]. As YARN is able to manage clusters each with thou-
sands of machines, it supports Spark scalability for processing big data. When run on top
of YARN, a physical Spark cluster that consists of driver and worker machines may have
thousands of workers that can run parallel tasks on the workers.

Resilient Distributed Datasets. Spark is built around a data abstraction called Resili-
ent Distributed Datasets (RDD). An RDD is an immutable distributed collection of objects
and is commonly split into multiple partitions [19,23]. Those partitions are stored across
worker nodes’ memory if Spark is run on YARN or another resource manager. Each par-
tition of an RDD can be processed by one task or more that run parallel across the core
machines, which speeds up overall computation. Once created, RDDs offer two types of
operations, transformations and actions. Actions are functions that return values that are
not RDDs, whereas transformations return other forms of RDD. Each Spark application
must contain at least one action (such as collect, count, take and saveAsTextFile), since
actions either bring information back to the driver or write the data to stable storage.
Transformations (such as sort, reduce, group and filter) construct new RDDs from the old
ones. Transformations and actions are different because of the way Spark computes RDDs.
Operations on RDDs are queued up in a lazy fashion and then executed all at once only
when needed, that is, when an action is called. At this time, Spark optimizes those opera-
tions and also plans data shuffles (which involve expensive communication, serialization,

Big Data Cogn. Comput. 2021, 5, 46 8 of 30

and disk I/O) and generates an execution graph, the Directed Acyclic Graph (DAG), de-
tailing a series of execution plans; it then executes these plans [5]. Spark can keep an RDD
loaded in-memory on the executor nodes throughout the life of a Spark application for
faster access in repeated computations [21].

Spark Application. A Spark application corresponds to a set of Spark jobs defined by
one SparkContext in the driver program [4]. A Spark application begins when a Spark-
Context is started, which causes a driver and a series of executors be started on the worker
nodes of the cluster. Each executor corresponds to a JVM. The SparkContext determines
how many resources are allotted to each executor. When a Spark job is launched, each
executor has slots for running the tasks needed to compute an RDD. Physically, each task
runs on a machine core, and one task may process one or more RDD partition (when an
RDD is created by loading a HDFS file, the default is: Spark creates an RDD partition for
each HDFS block, and stores this partition in the memory of the machine that has the
block). One Spark cluster can run several Spark applications concurrently. The applica-
tions are scheduled by the cluster manager and correspond to one SparkContext.

A Spark application can run multiple concurrent jobs, whereas a job corresponds to
an RDD action that is called (see Figure 1). That is, when an RDD action is called, the Spark
scheduler builds a DAG and launches a job. Each job consists of stages. One stage corre-
sponds to one wide-transformation, which occurs when a reducer function that triggers
shuffling data (stored as RDD partitions) across the network is called (see Figure 2). Each
stage consists of tasks, which are run in parallel, and each task executes the same instruc-
tion on an executor [19,23]. The number of tasks per stage depends on the number of RDD
partitions and the outputs of the computations.

Spark
Application

Job Job

Stage

Task

Stage

Task Task

Stage

Task Task

Spark Context (Spark Session Object)

RDD Actions (e.g.,
saveAsTextFile, collect)

Wide transformation (e.g.,
reduceByKey, sort)

Computation to evaluate
one RDD partition (narrow
transformations)

Figure 1. The Spark application tree [23].

Examples of transformations that cause shuffling include groupByKey, reduce-
ByKey, aggregateByKey, sortByKey, and join. Several narrow transformations (such as
map, filter, mapPartitions and sample) are grouped into one stage. As shuffling is known
as an expensive operation and can degrade computation, it is necessary to design Spark
applications that involve minimum number of shuffles or stages to achieve better perfor-
mance.

Big Data Cogn. Comput. 2021, 5, 46 9 of 30

Figure 2. Illustration of shuffling for a stage on a Spark cluster with four workers: each worker stores
one RDD partition and runs a map task, then two reducer tasks on two workers process data from
map tasks.

2.2.2. GraphX and GraphFrames
GraphX is an embedded graph processing framework built on top of Apache Spark.

It implements a notion called the property graph, whereby both vertices and edges can
have arbitrary sets of attributes associated with them. GraphX recasts graph-specific op-
timizations as distributed join optimizations and materialized view maintenance [24]. Us-
ers can simply use GraphX’s API to operate on those graph data structures [5]. This pro-
vides a powerful low-level interface. However, like RDDs it is not easy to use or optimize.
However, GraphX remains a core part of Spark for graph processing [6].

Distributed Graph Representation [24]: GraphX represents graphs internally as a pair
of vertex and edge collections built on the RDD abstraction. These collections introduce
indexing and graph-specific partitioning as a layer on top of RDDs. The vertex collection
is hash-partitioned by the vertex IDs. To support frequent joins across vertex collections,
vertices are stored in a local hash index within each partition. The edge collection is hori-
zontally partitioned. GraphX enables vertex-cut partitioning. By default, edges are as-
signed to partitions based on the partitioning of the input collection (e.g., the HDFS
blocks). A key stage in graph computation is constructing and maintaining the triplets
view, which consists of a three-way join between the source and destination vertex prop-
erties and the edge properties. The techniques used include Vertex Mirroring, Multicast
Join, Partial Materialization, and Incremental View Maintenance.

GraphX API provides an implemented standard algorithm, such as PageRank, Con-
nected Components and Strongly Connected Components (SCC). While the Connected
Components algorithm is relevant for both directed and undirected graphs, Strongly Con-
nected Components is for directed graphs only, and can be used to detect vertices that
have “reciprocated connections”. A few of the graph algorithms, such as SCC, are imple-
mented using Pregel.

The Pregel algorithm that computes SCCs from a directed graph G = (V,E) is ex-
cerpted as follows.

Let SCC(v) be the SCC that contains v, and let Out(v) (and In(v)) be the set of vertices
that can be reached from v (and that can reach v) in G, then SCC(v) = Out(v)∩ In(v). Out(v)
and In(v) are computed by forward/backward breadth-first search (BFS) from a source v
that is randomly picked from G. This process then repeats on G[Out(v)- SCC(v)], G[In(v)-
SCC(v)] and G[V- (Out(v)ՍIn(v)-SCC(v))], where G[X] denotes the subgraph of G induced
by vertex set X. The correctness is guaranteed by the property that any remaining SCC
must be in one of these subgraphs.

Big Data Cogn. Comput. 2021, 5, 46 10 of 30

Yan et al. [25] designed two Pregel algorithms based on label propagation. The first
propagates the smallest vertex (ID) that every vertex has seen so far (namely, the miLabel
algorithm), while the second propagates multiple source vertices to speed up SCC com-
putation (namely, multi-Label algorithm). miLabel algorithm requires a graph decompo-
sition, which allows the algorithm to run multiple rounds of label propagation.

Graph Decomposition: given a partition V, denoted by V1, V2,…, Vl, G is decomposed
into G[V1], G[V2],…, G[Vl] in two supersets (here, each vertex v contains a label i indicating
v ε Vi): (i) each vertex notifies all its in-neighbors and out-neighbors about its label i; (ii)
each vertex checks the incoming messages, removes the edges from/to the vertices having
labels different from its own label, and votes to halt.

MinLabel Algorithm: the min-label algorithm repeats the following operations: (i)
forward min-label propagation; (ii) backward min-label propagation; (iii) an aggregator
collects label pairs (i, j), and assigns a unique ID to each V(i,j); graph decomposition is then
performed to remove edges crossing different G[VID]; finally, each vertex v is labeled with
(i; i) to indicate that its SCC is found. In each step, only unmarked vertices are active, and
thus vertices do not participate in later rounds once their SCC is determined. Each round
of the algorithm refines the vertex partition of the previous round. The algorithm termi-
nates once all vertices are marked.

GraphX Weaknesses: GraphX limitations stem from the limitations of Spark. GraphX
is limited by the immutability of RDDs, which is an issue for large graphs [5]. In some
cases, it also suffers from a number of significant performance problems [21].

GraphFrames extends GraphX to provide a DataFrame API and support for Spark’s
different language bindings so that users of Python can take advantage of the scalability
of the tool [6]. So far, it is a better alternative to GraphX [21]. GraphFrames is an integrated
system that lets Spark users combine graph algorithms, pattern matching and relational
queries, and optimizes work across them. A GraphFrame is logically represented as two
DataFrames: an edge DataFrame and a vertex DataFrame [8].

In Spark, DataFrames are distributed as table-like collections with well-defined rows
and columns [6]. These consist of a series of records that are of type Row, and a number
of columns that represent a computation expression that can be performed on each indi-
vidual record in the Dataset. Schemas define the name as well as the type of data in each
column. Spark manipulates Row objects using column expressions in order to produce
usable values. Filtering and applying aggregate functions (count, sum, average, etc.) to
group records are among these useful expressions. With its lazy computation (see Section
2.2.1), whenever Spark receives a series of expressions for manipulating DataFrames that
need to return values, it analyzes those expressions, prepares a logical optimized execu-
tion plan, creates a physical plan, then executes the plan by coordinating with the resource
manager (such as YARN) to generate parallel tasks among the workers in the Spark clus-
ter.

GraphFrames generalizes the ideas in previous graph-on-RDBMS systems, by letting
the system materialize multiple views of the graph and executing both iterative algo-
rithms and pattern matching using joins [8]. It provides a pattern operator that enables
easy expression of pattern matching in graphs. Typical graph patterns consist of two
nodes connected by a directed edge relationship, which is represented in the format ()-[]-
>(). The graph patterns as the input of the pattern operator are usually called network
motifs, which are sub-graphs that repeat themselves in the graph that is analyzed. The
pattern operator is a simple and intuitive way to specify pattern matching. Under the
hood, it is implemented using the join and filter operators available on a GraphFrame.

Because GraphFrames builds on top of Spark, this brings three benefits: (i)
GraphFrames can load data from the volumes saved data in many formats supported by
Spark (GraphFrames has the capability of processing graphs having millions or even bil-
lions of vertices and edges); (ii) GraphFrames can use a growing list of machine learning
algorithms in MLlib; and (iii) GraphFrames can call the Spark DataFrame API.

Big Data Cogn. Comput. 2021, 5, 46 11 of 30

One case of using GraphFrames is discussed in [26], where an efficient method of
processing SPARQL queries over GraphFrames was proposed. The queries were applied
to graph data in the form of a Resource Description Framework (RDF) that was used to
model information in the form of triples <subject, predicate, object>, where each edge can
be stored as a triple. They created queries based on two types of SPARQL queries, chain
queries and star-join queries. The experiments were performed using the dataset pro-
duced by the Lehigh University benchmark (LUBM) data generator, which is a synthetic
OWL (Web Ontology Language) dataset for a university. Overall, the proposed approach
works well for large datasets.

3. Comparing SCC Algorithm and Motif Finding on Spark
As presented in Section 2.2.2, GraphFrames provides graph pattern matching (motif

finding). We found that SCC subgraphs used to uncover active communities from di-
rected graphs can be detected using GraphX SCC algorithm as well motif finding. In this
section, we present our experimental results of SCC algorithm and motif finding perfor-
mance.

As discussed in Section 2.2.1, data shuffling across a Spark cluster is expensive. When
an algorithm for processing big data is run, Spark generates a stage whenever it encoun-
ters a wide transformation function, a computation that requires shuffling among RDD
partitions across the network. Using the Spark web UI, we can observe and learn several
kinds of computation statistics, DAG, execution plan and other related information re-
garding the applications being run. The DAG, execution plan, jobs, stages and parallel
tasks can be used to measure the complexity of the program or algorithm that is run.

We created seven synthetic small graph datasets (g1, g2, … , g7), each consisting of
vertex and edge dataframes. Each of the six datasets has an SCC subgraph that is shown
in Figure 3, while one dataset (g7) contains all of the SCC subgraphs.

Figure 3. Six SCC subgraphs to be detected from graph dataset: (a) g1, (b) g2, (c) g3, (d) g4, (e) g5,
(f) g6.

As the synthetic datasets are small, we performed these experiments on a Spark clus-
ter with a single machine with i7-3770 CPU, four cores and 16 Gb memory. The cluster
ran Apache Spark 2.4.5, Java 1.8.0_40, and Scala 2.11.12. The following steps were per-
formed for each graph dataset:

Big Data Cogn. Comput. 2021, 5, 46 12 of 30

(1) An instance of GraphFrame for each graph dataset was created;
(2) SCC algorithm was used to detect SCCs from the graph instance;
(3) A set of patterns was searched from the graph instance. The pattern set searched on

g1 was “(a)-[e1]->(b); (b)-[e2]->(a)”, g2 was “(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(a)”,
g3 was “(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(d); (d)-[e4]->(a)”, g4 was “(a)-[e1]->(b);
(b)-[e2]->(c); (c)-[e3]->(b); (b)-[e4]->(a)”, g5 was “(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]-
>(d); (d)-[e4]->(e); (e)-[e5]->(a)”, and g6 was “(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(b);
(b)-[e4]->(a);(c)-[e5]->(d); (d)-[e6]->(c)”. For g7, all of the patterns were combined.
Then the execution time as well as the information on the Spark web UI were ob-

served on each run and recorded.
The Scala codes executed in these experiments are attached in Appendix A.
As discussed in Section 2.2.2, motif findings were executed using the join and filter

operators. For instance, below is the optimized logical plan of query (a), g1.find(“(a)-[e1]-
>(b); (b)-[e2]->(a)”) generated by Spark:
1 +- Project [cast(a#34 as string) AS a#83, cast(e1#32 as string)

 AS e1#84, cast(b#36 as string) AS b#85, cast(e2#57 as string)

 AS e2#86]

2 +- Join Inner, ((e2#57.src = b#36.id) && (e2#57.dst = a#34.id))

3 :- Join Inner, (e1#32.dst = b#36.id)

4 : :- Join Inner, (e1#32.src = a#34.id)

5 : : :- Project [named_struct(src, src#10, dst, dst#11, weight, weight#12) AS e1#32]

6 : : : +- Relation[src#10,dst#11,weight#12] csv

7 : : +- Project [named_struct(id, id#26) AS a#34]

8 : : +- Relation[id#26] csv

9 : +- Project [named_struct(id, id#26) AS b#36]

10 : +- Relation[id#26] csv

11 +- Project [named_struct(src, src#10, dst, dst#11, weight, weight#12) AS e2#57]

12 +- Relation[src#10,dst#11,weight#12] csv
In the plan above, the inner join (between vertex and edge dataframes) is performed

three times, to resolve part of the query “(a)-[e1]” (line 4), “(a)-[e1]->(b)” (line 3) and “(b)-
[e2]->(a)” (line 2). As discussed in Section 2.2.1, a Spark job is created when an application
calls an RDD action. Here, a job is created each time a project (filter) operation is applied
to the result of the join (line 5, 7, 9, and 11). Thus, there are four jobs. The overall DAG is
shown on Figure 4. In the physical execution plan, the inner join is implemented by Broad-
castExchange then BroadcastHashJoin. Broadcasting records stored in the RDD partitions
causes data shuffling (such as in wide transformation) that produces one stage. Hence,
there are four stages (one job only having one stage). Other queries of motif findings are
executed using join and filter, analogous to (a); the number of jobs and stages is presented
on Table 1.

Big Data Cogn. Comput. 2021, 5, 46 13 of 30

Figure 4. The DAG of motif finding of SCC from g1, Cyclic_2.

Unlike motif findings, which implement queries where the execution plan is availa-
ble for observation, when running the SCC algorithm (as with other algorithms designed
based on RDD) we can only observe the execution process through its jobs, stages, DAG
and tasks. As can be observed, when the SCC algorithm is run it requires many jobs and
stages (see Table 1). For instance, when processing g1, Spark generates 29 jobs. As an ex-
ample, the DAG of its sixth job (with Id 9) with three stages is provided in Appendix A,
Figure A1: Stage 14 performs mapping at GraphFrame, Stage 13 performs mapPartition-
ing at VertexRDD, and Stage 15 folding at VertexRDDImpl. From the number of jobs,
stages and DAG, we can learn that the implementation of the iterative SCC algorithm on
Spark (see Section 2.2.2) is complex and requires lots of machine and network resources.

Table 1. Comparison of Spark jobs and stages.

Case Graph
Motif Finding SCC Algorithm

#Jobs #Stages #Jobs #Stages
(a) g1 4 4 29 75
(b) g2 6 6 28 75
(c) g3 8 8 30 83
(d) g4 7 7 32 80
(e) g5 10 10 38 105
(f) g6 10 10 37 98
(g) g7 45 45 41 114

In line with the number of jobs and stages (Table 1), the execution time of each motif
finding is also smaller compared to the SCC algorithm (see Figure 5).

It is known that hash-join time complexity is O(n+m), where n + m denotes the total
records in two tables being joined. On a system with p cores, the expected complexity of

Big Data Cogn. Comput. 2021, 5, 46 14 of 30

the parallel version of no partitioning hash join is O((n + m)/p) [27]. Although this com-
plexity it not specifically applied for hash join in Spark, the motif finding execution time
seems to be in line with O((n + m)/p).

The time complexity of parallel SCC algorithm for Spark is not discussed in [8] and
[24]. To the best of our knowledge, it is not discussed in any other literature either. How-
ever, by comparing the stages of SCC versus motif finding presented in Table 1, it can be
learned that the SCC computation is far more complex than the motif finding.

Figure 5. Execution time of motif finding vs. SCC algorithm.

Findings of these experiments: when there are not many patterns of SCC subgraphs
in a directed graph, motif finding runs faster and uses less network resources compared
to the SCC algorithm. Hence, this can be used as an optional technique in finding active
communities from directed graphs.

4. Proposed Techniques
A streaming computational model is one of the widely used models for processing

and analyzing massive data [9]. Based on the methodology for processing data streams, a
data stream can be classified as an online (live stream) data stream or an off-line (ar-
chived) data stream. Online data streams (such as those of stock tickers, network meas-
urements, and sensor data) need to be processed online because of their high speed. An
Off-line stream is a sequence of updates to warehouses or backup devices, where the que-
ries over the off-line stream can be processed offline. The online method is constrained by
the detection and reaction times due to the requirement of real-time applications, while
the off-line is free from this requirement. Depending on its objective (such as finding
trending topics vs. detecting communities), a stream of tweets can be processed either
online or off-line. We proposed techniques that can be used to analyze off-line as well as
near-real-time batches of data stream to uncover temporal active communities using the
SCC algorithm and motif finding in Spark.

4.1. Active Communities Definition
Based on our observation of Twitter users’ posts, we learned that during certain pe-

riods of time (such as weekly) lots of users either send tweets or respond to other users’
tweets in ways that show patterns. Only tweets that draw other users’ interest were re-
sponded to with retweet, reply or quote tweets. Thus, based on their interests that lead to
frequent responses, Twitter users may form temporal active communities without intent.
To form graphs that can be used to uncover these communities, the Twitter users are de-
fined as vertices, while their interactions (reply and quote) become the edges. The number
of interactions can be included as an edge attribute (such as weight), which then may be
used to select the frequent vertices (vertices who communicate to each other frequently)
by applying a threshold value.

For a certain (relatively short) period of time, we define three types of active commu-
nities (see Figure 6):

Big Data Cogn. Comput. 2021, 5, 46 15 of 30

(1) Similar interest communities (SIC): A group of people responding to the same event.
Real world examples: (a) Twitter users who frequently retweet or reply or quote a
user’s tweets, which means that those users have the same interest toward the tweet
content; (b) forum users who frequently give comments or reply to posts/threads
posted by certain user/users, which means those users have the same interest in dis-
cussion subjects.

(2) Strong-interacting communities (SC): A group of people who interact with each other
frequently in a period of time. Real world example: a group of people who re-
ply/call/email/tweet/message each other.

(3) Strong-interacting communities with their “inner circle” neighbors (SCIC): The ex-
tension of SC, where SC members become the core of the communities, added by the
“external” people who are frequently directly contacted by the core members, as well
as “external” people who directly contact the core members. Real world example: as
in the aforementioned SC, now also including the surrounding people who actively
communicate with them.

Figure 6. Illustration of active communities formed from a weighted-directed graph with threshold
of edge weight = 4.

4.2. Proposed Algorithms
Based on the previous definition, we propose three techniques to process weighted

directed graphs, G. G = (V, E) where V = vertices, E = edges. E must have one or more
attributes, including its weight. V may have one attribute or more, thus E(Id, at1, at2,…),
where Id is the Id of the vertex, followed by its attributes. E(srcId, dstId, a1, a2,…,w), where
srcId = Id of the source vertex, dstId = Id of the target vertex, ai = i-th attribute, w = weight
of edges, denoting the count of srcId interacts to dstId.
(a) Detecting SIC from directed graphs

The proposed algorithm (Algorithm 1) is simple, in that it is only based on dataframe
queries.

Algorithm 1: DetectSIC
Descriptions: Detecting SIC from a directed graph using GraphFrame
Input: Directed graph G, thWC1 = threshold of w; thIndeg = threshold of vertices
 in-degree
Output: Communities stored in map structure, comSIC = map(CenterId, list of
 member Ids); a vertex can be member of more than one community.
Steps:
(1) Graph preparation: (a) filteredE = E in G with w > thWC1 //Only edges having
 w > thWC1 is used to construct the graph; (b) GFil = (V, filteredE)
(2) Compute inDeg for every vertex in GFil, store into dataframe, inD(Id, inDegree)
(3) selInD (IdF, inDegree) = inD where inDeg > thIndeg

Big Data Cogn. Comput. 2021, 5, 46 16 of 30

(4) Find communities: (a) dfCom = (GFil where its nodes having Id = selInD.IdF) inner
join with E on Id = dstId, order by Id; (b) Collect partitions of dfCom from every worker
(coalesce) then iterate on each record: read Id and srcId column, map the pair value of
(Id, srcId) into comSIC

(b) Detecting SC using motif finding

In this proposed algorithm (Algorithm 2), the data preparation is performed for re-
ducing the number of vertices in the graphs. Only vertices passing the filter with a thresh-
old of degree that will be further processed. In this algorithm, strongly connected sub-
graphs, which are further processed into communities, are detected using motif findings
described in Section 2.2 and Section 3.

Algorithm 2: DetectSC-with-MotifFinding
Descriptions: Detecting SC using motif finding
Input: Directed graph G; thWC1 = threshold of w ; thDeg = threshold of vertices degree;
motifs = {motif1, motif2, . . . , motifn} where motif1 = 1st pattern of SC, motif2 = 2nd pattern of SC,
motifn = the nth pattern of SC
Output: Communities stored in map structure, comSCMotif = map(member_Ids: String,
member_count: Int) where member_Ids contains list of Id. A vertex can be member of more
than one community.
Steps:
(1) Graph preparation: (a) filteredE = E in G with w > thWC1; (b) GFil = (V, filteredE)
(2) Compute degrees for every vertex in GFil, store into a dataframe, deg(Id, degree)
(3) selDeg (IdF, degree) = deg where degree > thDeg
(4) Gsel = subgraph of GFil where its nodes having Id = selInD.IdF
(5) For each motifi in motifs, execute Gsel.find(motifi), store the results in dfMi, filter rec-
ords in dfMi to discard repetitive set of nodes
(6) Collect partitions of dfMi from every worker (coalesce), then call findComDFM(dfMi)

In step 5: As motif finding computes the SC using repetitive inner join (of node Ids),
a set of Ids (for an SC) exists in more than one record. For an SC with n member, the set
will appear in n! records. For instance, an SC with vertex Id {Id1, Id2, Id3} will appear in
six records, where the attributes of the nodes are in the order of {Id1, Id2, Id3}, {Id1, Id3,
Id2}, {Id2, Id1, Id3}, {Id2, Id3, Id1}, {Id3, Id1, Id2} and {Id3, Id2, Id1}. Thus, only one record
must be kept by filtering them.

In step 6: The size of dfMi, where its partitions are stored in the workers, generally
will be a lot smaller than G, therefore this dataframe can be collected into the master and
computed locally using non-parallel computation.

Algorithm 3: findComDFM
Descriptions: Formatting communities from dataframe dfMi
Input: dfMi
Output: Communities stored in map structure, comSCMotif: map(member_Ids: String,
member_count: Int). member_Ids: string of sorted Ids (separated by space) in a commu-
nity, member_count: count of Ids in a community
Steps:
(1) For each row in collected dfMi:
(2) line = row
(3) parse line and find every vertex Id in str with space to separate between Id,
 with the count of Ids store in member_count
(4) sort Ids in str in ascending order
(5) add (str, Id) into comMotif // as str is the key in comMotif, only unique value of
str will be successfully added

Big Data Cogn. Comput. 2021, 5, 46 17 of 30

(c) Detecting SC using SCC algorithm

Given the complexity of the SCC algorithm computation (see Section 2.2.2), the num-
ber of vertices in the graph will be reduced by filtering those having a threshold of degree.
The SCC algorithm in Spark returns a dataframe of sccs(Id, IdCom), where Id is a vertex Id
and IdCom is the Id of the connected component where that vertex is being grouped. Thus,
for obtaining the final SC, that dataframe is further processed in Algorithm 4.

Algorithm 4: DetectSC-with-SCC
Descriptions: Detecting SC using SCC algorithm
Input: Directed graph G; thWC1 = threshold of w ; thDeg = threshold of vertices degree;
thCtMember = threshold of member counts in an SCC
Output: Communities stored in map structure, comSIC = map(CenterId, list of member
Ids). A vertex can be member of more than one community.
Steps:
(1) Graph preparation: (a) filteredE = E in G with w > thWC1; (b) GFil = (V, filteredE)
(2) filteredG = subgraph of GFil where each vertex has degree > thDeg
(3) Find strongly connected components from filteredG, store as sccs dataframe
(4) Using group by, create dataframe dfCt(idCom,count), then filter with count > thCt-
Member // The SCC algorithm record every vertex as a member of an SCC (SCC may
contain one vertex only)
(5) Join sccs and dfCt on Id = IdCom store into sccsSel // sccsSel contains only records in a
community having more than one member
(6) Collect partitions of sccsSel from every worker, sort the records by idCom in ascend-
ing order, then call findComSC(sccsSel)

Algorithm 5: findComSC
Descriptions: Formatting communities from sccsSel
Input: Dataframe containing connected vertices, sccs(id, idCom)
Output: Communities stored in map structure, comSCC: map(idCom: String, ids_count:
String). idCom: string of community Id, Ids_count: strings of list of vertex Ids in a com-
munity separated by space and count of Ids.
Steps:
(1) prevIdCom = “”; keyStr = “”; addStatus = false; nMember = 0
(2) For each row in sccsSel
(3) line = row; parse line; strId = line[0]; idC = line[1]
(4) if line is the first line: add strId to keyStr; prevIdCom = idC;
 nMember = nMember+1
(5) else if prevIdCom == idC and line is not the last line: add strId to keyStr;
 nMember = nMember+1
(6) else if prevIdCom != idC and line is not the last line: add strId to keyStr,
 nMember = nMember+1; add (keyStr, nMember) to comSCC;
 keyStr =””; nMember = 0; addStatus = true;
 //Final check
(7) if addStatus == false and line is the last line: add (keyStr, nMember) to comSCC;
addStatus = true;

(d) Detecting SCIC
The members in an SCIC are the vertices in SCC and the neighbor vertices (connected

to the vertices in a SCC by “in-bound” or “out-bound” connection). After the dataframe
containing the SCC vertices is computed using Algorithm 4, the steps in Algorithm 6 are
added with dataframe join operations. In Algorithm 8, steps of Algorithm 2 are added
with more steps to process the SCC neighboors vertices as well.

Big Data Cogn. Comput. 2021, 5, 46 18 of 30

Algorithm 6: DetectSCIC-with-SCC
Descriptions: Detecting SCIC using SCC algorithm
Input: Directed graph G; thWC1 = threshold of w ; thDeg = threshold of vertices degree;
thCtMember = threshold of member counts in an SCC
Output: Communities stored in map structure, comSCIC = map(idCom: String, ids_count:
String). A vertex can be member of more than one community.
Steps:
Step 1 to 6 is the same with the ones in DetectSC-with-SCC.
(7) Join sccsSel with filteredE based on sccsSel.id = filteredE.dst store as dfIntoSCC with src
column renamed as friendId //neighbor nodes contact SCC nodes
(8) Join sccsSel with filteredE based on sccsSel.id = filteredE.src store as dfFromSCC with
dst column renamed as friendId // neighbor nodes contacted by SCC nodes
(9) Merge dfIntoSCC and dfFromSCC into dfComExpand dataframe using union operation
(10) Collect partitions of dfComExpand from every worker, sort the records by IdCom in
ascending order, then call findComSCIC(dfComExpand) // The schema is: dfComEx-
pand(id, idCom, friendId)

Algorithm 7: findComSCIC
Descriptions: Formatting communities from dfComExpand
Input: Dataframe containing connected vertices, dfComExpand (id, idCom, friendId)
Output: Communities stored in map structure, comSCIC: map(idCom: String, ids_count:
String). idCom: string of community Id, Ids_count: strings of vertex Ids in a community
separated by space and count of Ids the community.
Steps:
(1) prevIdCom = “”; keyStr = “”; addStatus = false; nMember = 0
(2) For each row in dfComExpand
(3) line = row; parse line; strId = line[0]; idC = line[1]; idFr = line[2]
(4) if line is the first line: add strId and idFr to keyStr; prevIdCom = idC;
 nMember = nMember+2
(5) else if prevIdCom == idC and line is not the last line: add idFr to keyStr;
 nMember = nMember+1
(6) else if prevIdCom != idC and line is not the last line: add idFr to keyStr,
 nMember = nMember+1; add (keyStr, nMember) to comSCC;
 keyStr =””; nMember = 0; addStatus = true;
 //Final check
(7) if addStatus == false and line is the last line: add (keyStr, nMember) to comSCC;
addStatus = true;

Algorithm 8: DetectSCIC-with-Motif
Descriptions: Detecting SCIC using motif finding
Input: Directed graph G; thWC1 = threshold of w ; thDeg = threshold of vertices degree;
thCtMember = threshold of member counts in an SCC
Output: Communities stored in map structure, comSCICMotif = map(IdCom, list of mem-
ber Ids). A vertex can be member of more than one community.
Steps:
Step 1 to 6 is the same with the ones in DetectSC-with- Motif
(7) Initialize an array, arrCom(IdCom, IdM) where IdCom is Id of the community, IdM is
Id of the member; IdC = 0
(8) for each pair of (member_Ids, member_count) from comSCMotif:
(9) IdC = IdC + 1
(10) parse member_Ids then for each Id add(IdC, Id) into arrCom

Big Data Cogn. Comput. 2021, 5, 46 19 of 30

(11) create a dataframe, dfCom(IdCom, id) from arrCom
(12) Join dfCom with filteredE based on dfCom.id = filteredE.dst store as dfIntoSCC with src
column renamed as friendId //neighbor nodes contact SCC nodes
(13) Join dfCom with filteredE based on dfCom.id = filteredE.src store as dfFromSCC with
dst column renamed as friendId // neighbor nodes contacted by SCC nodes
(14) Merge dfIntoSCC and dfFromSCC into dfComExpand dataframe using union opera-
tion
(15) Collect partitions of dfComExpand from every worker, sort the records by IdCom in
ascending order, then call findComSCIC(dfComExpand) // The schema is: dfComEx-
pand(id, idCom, friendId)

5. Experiments and Results
In this section, we present some results of the experiments of our proposed methods.

All of the experiments discussed below were conducted on a Spark cluster, which is phys-
ically located in our laboratories. It consists of ten machines (one as a driver and nine as
workers), each with CPU i7-9700K running at 3.6 GHz and has eight cores, with RAM of
32 Gb. The cluster ran Apache Spark 2.4.5, Java 1.8.0_292, Hadoop 3.1.3 with YARN and
Scala 2.11.12. While performing the experiments, we used nine workers, each with four
cores.

5.1. Public Big Graphs
To obtain the data, we looked for suitable examples from large network datasets,

which are available at https://snap.stanford.edu/data/(accessed on: 19 March 2021) There
are many groups of datasets, such as social, citation, road, Amazon, online reviews, etc.
The graph types are also categorized into undirected and directed. Among those datasets,
we identified the ones that are directed and can be preprocessed (by aggregating the ver-
tex interaction count then adding weight on the edges) such that there was a possibility
that active communities could be uncovered from those datasets. Among those datasets
we found only two, both of which consist of social circles: Google+ [28] and Twitter.

The first, the social circle dataset from Google+, ego-Gplus, is a directed graph dataset
with 107,614 nodes and 13,673,453 edges. After a dataframe was created and the weight
of edges (denoting the number of interactions between nodes) is aggregated, the distribu-
tion (range of weight:count) were as follows: 1–9: 13,291,770; 10–18: 319,710; 19–27: 48,409;
28–36: 11,413; 37–70: 2151. The average weight was 2.23, the minimum weight 1, and the
maximum weight 70. Since there was no information on how long the data were recorded
for (which would determine the weight threshold), we used a threshold of weight based
on that distribution, (thW) = 9. Thus, only edges (with nodes connected with these edges)
having weight = 10 and more were selected. After filtering the edges using this threshold,
there were 381,683 edges passing this filter, with 515,322 vertices connected by those
edges.

Given the large size of the graphs, the visualization of the graphs did not clearly show
the patterns of SCCs. Therefore, discovering SCIC was performed using Algorithm 6. Al-
gorithm 6 was run by varying the value of thDeg and thCtMember from 2 to 10. By using
this algorithm, we only discovered two SCICs with unbalanced members. The first com-
munity had a very large number of members (such as 515,041) while the second had only
a small number of members (such as 75). As each community had only member IDs, we
could not interpret the pattern of the communities. If the time of each interaction among
users was given, perhaps the graph could be divided periodically, and interesting com-
munities uncovered from each period. On every run, Spark created 52 jobs and 171 stages,
and the execution time was between 82.1 to 119.93 s; with larger threshold values, which
led to smaller or less complex graphs, there was also faster execution.

The second dataset was of social circles from Twitter, ego-Twitter. It had 81,306 ver-
tices and 1,768,149 edges. After a dataframe was created and the weight of edges

Big Data Cogn. Comput. 2021, 5, 46 20 of 30

aggregated, the distributions (ranges of weight:count) were as follows: 1–9: 1,760,054; 10–
18: 7314; 19–27:612; 28–36: 80; 37–70: 89. The weight average was 1.369, minimum 1 and
maximum 78. After filtering with thW = 9, there were only 8095 vertices connected by
those edges.

Algorithm 6 was run by varying the value of thDeg from 2 to 36 and thCtMember from
1 to 3; we were able to discover three to eight SCICs. The members of each SCIC varied
from small (20 s–30 s) to medium (300 s) and large (>4000). For instance, using thDeg = 10
and thCtMember = 2, we discovered three communities with members of 4016, 361, and
4912, and using thDeg = 5 and thCtMember = 2, we discovered four communities with mem-
bers of 4380, 386, 5100, and 31. Unfortunately, as each community had only member IDs,
again we could not interpret the pattern of the communities. The number of jobs and
stages on every run varied, ranging from 42 to 65 jobs and 124 to 200 stages; with more
complex or larger graphs, more jobs and stages were created by Spark. With more jobs
and stages, execution times were longer. The execution time with 42 jobs and 124 stages
was 57.1 s, whereas with 65 jobs and 200 stages it was 126.37 s.

Two series of experiments have been performed using big graphs found in public
literature. The results show that the DetectSCIC-with-SCC algorithm is able to find com-
munities in big graphs. Certain values of threshold inputs may lead to different counts of
SCCs.

5.2. Real Tweets
Active communities can be detected from Twitter users by using their reply and

quote statuses (in their tweets). As discussed in Section 1, a group of Twitter users who
frequently interact with each other during a period of time forms an active community.
The more frequently a group of Twitter users interact with each other, the more potential
there is that a community will be formed. As a case study, real tweet datasets were col-
lected and analyzed as follows.

5.3. Data Collection and Preparation
We previously built a streaming system on Spark using the Spark Streaming API

with ZooKeeper and Kafka. Based on our past results in experiments comparing their
performance [10], we found that the first is best for near-real time processing, including
non-iterative computation. The second is suitable for collecting and storing preprocessed
stream periodically, after the batch dataset is processed using a more complex algorithm
which may adopt iterative computation.

With the objective of periodically detecting communities from tweets, we used the
second system (Figure 7). In Kafka, we created a topic, namely Covid_twits, for collecting
tweet streams with the keyword “covid” and the language “id” (Indonesian). The cap-
tured streams are processed into two groups of files, representing vertices and edges, then
the files in each group are saved (as parquet files) in a different HDFS folder:

/graph/twitter_covid/edges/Year = NNNN/Month = NN/Day = NN and

/graph/twitter_covid/nodes/Year = NNNN/Month = NN/Day = NN

The preprocessed streams are saved every half-hour, each into seven partitions.
Thus, each folder (in a day) contains 24 × 48 × 7 parquet files.

Big Data Cogn. Comput. 2021, 5, 46 21 of 30

Figure 7. The architecture of data collection system.

Among all of the attributes of each tweet (as described in https://developer.twit-
ter.com/en/docs/twitter-api/v1/data-dictionary/overview) (accessed on 15th March 2021),
the program module run in Kafka Connect selects several attributes for each record in
vertices and edges as follows:

Vertices attributes: CreatedAt: DateTimeOffset; TweetId: String;Text: String; Screen-
Name: String; FollowersCount: Int32; FriendsCount: Int32; FavouritesCount: Int32; Sta-
tusesCount: Int32; Verified: Boolean; Lang: String; RetweetObject: String; QuoteObject:
String.

Edges attributes: Src: String of ScreenName; Dst: String of ScreenName; CreatedAt:
DateTime; Interaction: String with value of “reply”, “retweet” or “quote”.

From the collected vertices and edges data stored in HDFS, we then prepared the
graphs for every period, with the following steps:
(1) Create a dataframe (edgesDF) from half-hourly tweet streams (48 x 7 parquet files per

day)
(2) Filter the edgesDF to include only quote and reply tweets
(3) Clean edgesDF by removing tweets having self reply/quote or screennames with null

values.
(4) Create a dataframe of edgesWDF from edgesDF using

edgesDF.groupBy(“src”,”dst”).count()
(5) Filter edgesWDF to include only records having count > thWeight, which means that

only users who have actively replied or quoted tweets in the period are included as
graph vertices. Here, the threshold used is three. Thus, all users that reply or quote
tweets more than three times a week are considered active users. The statistics of the
data preparation are depicted in Table 2.
To check whether there were opportunities to find communities, we called the

GraphFrames function to compute the number of connected components (CC) from the
clean graphs. The counts of CCs from every period are presented in Table 2 as well. As
can be seen, there are many CCs, so there is a chance that communities can be uncovered
from the clean graphs.

Table 2. Statistics of the raw and reduced (filtered) tweet datasets.

Weekly Period #Tweets #Quote & Re-
ply Tweets

#Clean
Edges(*)

#Weighted
Edges/WE(**)

#Filtered
WE (***)

#Vertices Graph Cre-
ated

#CC

24–30 Jan 21 470.250 56.764 47.800 44.655 198 261 gTweets-1 81
21–27 Feb 21 321.927 37.235 30.875 28.682 130 190 gTweets-2 65

28 Feb-6 March 21 266.743 58.490 46.961 28.037 839 750 gTweets-3 92
7–13 March 21 199.613 63.234 50.782 20.373 1.172 1027 gTweets-4 103
14–20 March 21 225.231 35.846 29.947 25.880 205 264 gTweets-5 70

Big Data Cogn. Comput. 2021, 5, 46 22 of 30

Note of Table 2:CC = connected component. (*) attribute value of src and dst are not null, not self-reply/quote (src = dst).
(**) group by distinct pair of src-dst attribute. (***) filtered by thWeight = 3, which means every record of edges representing
user interacting (by replying or quoting tweets) at least four times in a week.

The most user interactions (via reply and quote) occurred between 7–13 March 2021.
During this period, Indonesian badminton teams were rejected at All England tourna-
ments. They were quarantined upon arrival in UK because they flew in one flight with
other passengers detected with COVID-19. This sparked lots of reactions from Indonesian
netizens.

To learn the results of data preparation, we computed aggregates of the degree,
indegree, outdegree and neighborhood connectivity; the results are depicted in Table 3. It
is shown that each graph complies to the power law in graphs [18], in which only a few
users are active. We also visualized the weighted-cleaned-directed-graph; the examples
of graphs 24–30 January 2021 (gTweets-1) and 7–13 March 2021 (gTweets-4) are displayed
in Figure 8 and Appendix A, Figure A2. Table 3, Figure 8 and A2 show that SIC, SC and
SCIC can be discovered from the prepared graphs.

Table 3. Statistics of the graphs.

Graph
Degree Indegree Outdegree Neighborhood Connectivity

Ma Mi Av Ma Mi Av Ma Mi Av Ma Mi Av
gTweets-1 21 1 1.52 21 0 0.76 8 0 0.76 21 1 4.69
gTweets-2 11 1 1.37 6 0 0.68 11 0 0.68 11 1 2.50
gTweets-3 139 1 2.39 139 0 1.27 12 0 1.13 139 1 23.02
gTweets-4 92 1 2.34 92 0 1.20 92 1 22.72 13 0 1.15
gTweets-5 23 1 1.64 23 0 0.87 23 1 5.16 5 0 0.79

Legend of Table 3: Ma = maximum, Mi = minimum, Av = average.

Figure 8. Some part of the clean and filtered-weighted-directed graph, gTweets-1.

Big Data Cogn. Comput. 2021, 5, 46 23 of 30

5.4. Finding and Discussion of SICs
We detected SIC using various in-degree threshold (thInDeg). As there were many

SICs discovered, we present the sample SIC obtained using thInDeg = 5 and thInDeg = 10
(counts with users who are the center of communities) in Table 4. The execution times of
the first to fifth graphs are 1.51, 1.98, 1.86, 1.24, and 1.63 s. This shows that the GraphFrame
parallel query employed in the algorithm is efficient.

As shown on Table 4, many SIC communities are found in the graphs of 28 Feb-6
March (gTweets-2) and 7–13 March 2021 (gTweets-4). This is in line with Table 3, where
there are many nodes having a high in-degree and out-degree.

Table 4. Description of few SICs.

Graph thInDeg #SICs
Sample of SICs

Center Id #Members

gTweets-1 5 5

DamaiLamongan 21
silentreadeer 7

energitodayID 12
CNNIndonesia 16

RETHA_Monicaa 6
gTweets-2 5 1 restulungagung 6

gTweets-3 10 21

PolisiInfo 15
humas_restuban 19

Polres_Bwi 12
Hpanunggalan 14

HumasPolres_Bjn 24

gTweets-4 10 32

DitreskrimumK 33
HumasPoldaAceh 30

MatesihPolsek 11
poldajateng 92
poldasulsel_ 30

gTweets-5 5 4

PolisiInfo 12
HumasPolres_Bjn 16

1trenggalek 10
poldajateng 23

Discussion and Analysis of the SICs
The active communities may change from period to period. At the end of January

2021, the communities were news users (CNN), while in March 2021, there were many
police officers from many provinces that formed the communities. Further observation of
each member of the communities shows that each center of the “police SIC” received lots
of reply or quote tweets from either civilians or other police offices. This shows the insight
that in Indonesia, police officers are active Twitter users and gain lots of responses when
they send tweets related to COVID-19. Based on these findings, further analyses can be
performed (such as using NLP to mine the tweet texts for each period) in order to find
linkages between the communities and the tweets’ content.

5.5. Finding and Discussion of SCs and SICs
There are many SCs and SCICs uncovered from the prepared graphs, as depicted on

Table 5 and Appendix A, Table A.1. For detecting SCs, we ran Algorithm 2 using six pat-
terns, shown in Figure 3 (Section 3). For detecting SCICs, we ran Algorithm 8 using 2 SC
patterns found in SCs, which are Cyclic_2(“(a)-[e1]->(b); (b)-[e2]->(a)”) and Cyclic_22 (“(a)-[e1]-
>(b); (b)-[e2]->(c); (c)-[e3]->(b); (b)-[e4]->(a)”).

Our proposed techniques are based on dataframe query, SCC algorithm, and
GraphFrames motif findings on Spark, which have been fully tested. To evaluate the SC

Big Data Cogn. Comput. 2021, 5, 46 24 of 30

and SIC results, we simply compared the communities’ and the graphs’ visualization as
generated with Cystoscape (https://cytoscape.org/, accessed on 6th April 2021), as pre-
sented on Figures 8 and A2. All of the computation results (Tables 5 and A1) match with
the graphs’ visualizations. For instance, six SCs and SCICs of gTweets-1 (with members
shown on Table 5) comply with the graphs shown in Figure 8.

The execution times of those two algorithms in processing each graph are depicted
in Figures 8 and 9. Algorithm 2 (DetectSC-with-MotifFinding) ran faster compared to Algo-
rithm 4 (DetectSC-with-SCC). Using motif findings, as more patterns were used to dis-
cover, execution was slower, because Spark performed more hash-join operations
among dataframes. By comparing Figures 9 and 10, it can be observed that on running
Algorithm 4, most of the execution time was needed to find the strongly connected sub-
graphs; the hash-join operations for finding vertices’ neighbors (Step 7–10) needed a lot
less execution time.

Figure 9. Execution time of detecting SCs.

Figure 10. Execution time of detecting SCICs.

Table 5. SC and SCIC discovered from 2 graphs.

Graphs/#Communi-
ties

SC:
#Members: Id Members

SCIC:
#Members: Id Members

gTweets-1/
6

2: penyejuk_hati_ DariusSastro;
2: RETHA_Monicaa silentreadeer;
3: mhd_arisashari Ndrews1162011 dewis207;
2: HandriAs8 CrbSira,
3: AProletarian anakodok2009 hadifi-
anwidjaja;
2: Korban_Rezim Tarida_Indah

2: penyejuk_hati_ DariusSastro,
8: orangdesadamai SwanLakee8 KIMLIE_8 RETHA_Monicaa keevan03 silen-
treadeer Chaterinee_08 perahukertas97;
4: mhd_arisashari arits_0301 Ndrews1162011 dewis207;
2: HandriAs8 CrbSira;
3: AProletarian anakodok2009 hadifianwidjaja;
4: Panglima_Minal Korban_Rezim Tarida_Indah Oposisi_Kecil

gTweets-2/
3

2: akundihackmulu jtuvanyx;
2: sek_pemalang polres_pemalang;
2: Fido_Dildo emha_baraja

2: akundihackmulu jtuvanyx;
2: sek_pemalang polres_pemalang;
2: Fido_Dildo emha_baraja

Big Data Cogn. Comput. 2021, 5, 46 25 of 30

Discussion and Analysis of the SCs and SCICs
Compared to the SICs found (Table 4), the number of SCs and SCICs found were far

smaller; there were only a few members in each community. However, since these com-
munities conducted intense communication (via replying and quoting tweets), each com-
munity had a stronger relationship. By checking the corresponding username and attrib-
utes, we uncovered that the SC formed for each period could be characterized as follows:
(1) 24–30 January and 14–20 March 202: civilian-only communities were formed.
(2) 21–27 February 2021: civilian-only and police officer-only communities were formed.
(3) 28 Feb–6 March and 7–13 March 2021: civilian-only and civilian-police officer com-

munities were formed.
Thus, in Indonesia, there were times when police officers interacted (via reply and

quote) with each other frequently, forming temporal active communities.
On the other hand, each of the SCICs formed (that include SCs and their neighbors,

if any) had either civilian members only or police officers and civilians together. This
means that tweets from police officers on particular topics also attracted civilians, so that
they drew intensive responses.

Following discovery of SCs and SCICs, further analysis can be conducted using other
techniques (i.e., Natural Language Processing) to find the tweets’ discussion topic or con-
tent which draw intense responses in the community.

These findings give insights into the response to the COVID-19 pandemic, as sug-
gested in [29]. The Indonesian Special task force includes military and police forces; these
findings regarding communities from tweets prove that the police have been successful
in attracting lots of users to respond to their information, which is sent via tweet.

There are potential uses for these findings. As discussed in [30], Taiwan is an example
of a country that responded quickly to the pandemic crisis. Through early recognition of
the crisis, daily briefings to the public, and simple health messaging, the government was
able to reassure the public by delivering timely, accurate, and transparent information
regarding the evolving epidemic. Having found those active communities with their “core
members”, in this case, the core members can be employed or targeted to help distribute
the information more effectively.

The Scalability Issue

As the overall time complexities of our proposed algorithms cannot be derived yet
due to the lack of SCC algorithm complexity, the execution times (Figures 9 and 10) have
not been analyzed using their complexities. The scalability of the proposed algorithms has
not been discussed based on time complexities. Rather, our view of this issue is as follows:
it is known that large networks follow power law distributions (there are few nodes with
high interactions and the rest are nodes with less or low interactions). In our proposed
algorithms, this property is adopted in the data preparation step (Step-1), which produces
smaller sizes of graphs. Using dataframes and Spark SQL, the parallel filtering in the data
preparation is performed with approximately O(n/p). The complex computations are
performed in the next steps that call motif finding or SCC algorithms. By feeding smaller
graphs than the original raw graphs to the parallel motif finding and SCC algorithms, we
expect that these graphs can be handled to detect communities.

6. Conclusions and Further Works
In Spark, simple queries can be used to find SICs from weighted directed graphs, and

its computation is fast. GraphFrames motif finding and a strongly connected component
algorithm can be employed to discover active communities, SCs and SCICs, from the
graphs. Pros and cons include: (1) the motif finding approach has limitations in that the
subgraph patterns (representing the core community members) should be defined in ad-
vance, but its computation is fast if only a few patterns are used to find strongly connected

Big Data Cogn. Comput. 2021, 5, 46 26 of 30

subgraphs; (2) the parallel strongly connected component algorithm is complex, requires
more machine and network resources, and is slower, but it is able to find strongly con-
nected subgraphs with previously unknown connection patterns. Thus, when fast graph
processing is needed, the algorithm can be run towards sample graphs; after the subgraph
patterns are found, these can be used to process the whole graphs, or the next graphs if
the dataset is processed periodically.

From the case study, we have demonstrated that directed weighted graphs can be
prepared from streams of tweets, which can then be mined to find useful temporal active
communities. Similar approaches can be applied to other cases, where data representing
peoples’ interactions from time to time (such as via comments, messaging and so forth)
are recorded.

The unresolved issue in this research is deriving time complexity for each of the pro-
posed algorithms. Further work is needed to analyze the algorithms’ scalability using
their complexities. With its speedy computation in finding connected components,
GraphFrames motif finding possesses the potency to be used for uncovering active tem-
poral communities from batches of data stream coming in with high velocity, when results
are needed in near-real time. It is possible to avoid delay that can accumulate between a
batch and the next batch in processing, which is an important issue in processing big data
streams. In such a system, Structured Streaming, which is a stream processing framework
built on the Spark SQL engine [6], can be used together with GraphFrames motif finding.

Author Contributions: Conceptualization, V.S.M. and M.T.A.; methodology, V.S.M. and M.T.A.;
software, V.S.M.; validation, V.S.M.; formal analysis, V.S.M. and M.T.A.; investigation, V.S.M. and
M.T.A.; resources, V.S.M. and M.T.A.; data curation, V.S.M.; writing—original draft preparation,
V.S.M.; writing—review and editing, M.T.A.; visualization, V.S.M..; supervision, M.T.A.; project ad-
ministration, V.S.M.; funding acquisition, V.S.M. and M.T.A.. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Direktorat Sumber Daya, Direktorat Jenderal Pendidikan
Tinggi, Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi, Indonesia through Penelitian
Dasar Unggulan Pergurutan Tinggi scheme in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Listing A1. The Scala codes used in experiments discussed in Section 3.

//GraphFrame instance creation
val edges1 = spark.read.option(“header”,true).csv(path-csv-file)
val vert1 = spark.read.option(“header”,true).csv(“path-csv-file “)
val g1 = GraphFrame(vert1, edges1)

//Detecting SCCs using SCC algorithm on a graph instance
val scc = g1.stronglyConnectedComponents.maxIter(10).run()

//Motif findings (patterns searched) towards each graph instance
(a)val Cyclic_2 = g1.find(“(a)-[e1]->(b); (b)-[e2]->(a)”)
(b)val Circle_3 = g2.find(“(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(a)”)
(c)val Circle_4 = g3.find(“(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(d); (d)-[e4]->(a)”)
(d)val Cyclic_22 = g4.find(“(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(b); (b)-[e4]->(a)”)
(e)val Circle_5 = g5.find(“(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(d); (d)-[e4]->(e); (e)-

[e5]->(a)”)

Big Data Cogn. Comput. 2021, 5, 46 27 of 30

(f)val Cyclic_222 = g6.find(“(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(b); (b)-[e4]->(a);(c)-
[e5]->(d); (d)-[e6]->(c)”)

//For detecting all motifs, the codes in (a) to (f) are combined.

Figure A1. An example of SCC algorithm DAG for a job with three stages.

Big Data Cogn. Comput. 2021, 5, 46 28 of 30

Figure A2. Some part of the filtered weighted graph of 7-13 March 2021 period.

Table A1. SC and SCIC Communities of 3 graphs.

Graphs/#Communi-
ties

SC:
#Members: Id Members

SCIC:
#Members: Id Members

gTweets-3/
4

2: PolresKra MatesihPolsek;
2: dfitriani1 Trikus2012;
2: sek_pemalang polres_pemalang;
2: putu_ardikabali KakBejo

10: MatesihPolsek polsekcolomadu1 Hanafi0101 PolresKra polda-
jateng_ Rud17833547 Sek_Mojogedang Topage19 agungpurwoko186
cucuk_kurniawan;
3: dfitriani1 HannyValenciaa Trikus2012;
10: Jonatan77875470 Warungpring1 poldajateng_ tyas_aldian Wiekha5
sek_pemalang HumasWatukumpul polres_pemalang Anto60king sa-
kila2021 3_Martha23 TiaraJelita20;
2: putu_ardikabali KakBejo

gTweets-4/
4

2: 3Humas SemarangHumas;
2: Kfaizureen Mat_Erk;
3: HumasPoldaRiau BastianusRicar3
Hans77759603;
2: rokandt Alva47831808

20: 3Humas BandunganH PolsekAmbarawa PedurunganO TeloGod-
hog18 polsek_tengaran PolsekSuruh12 den_tewe SegoAking14 Sema-
rangHumas HumasPolsekSum7 polsekbanyubir2 polsek_tuntang
HPolsekjambu HumasGetasan polsekbawen YanuartaAmbara1 Hu-
masPabelan humassekbringin Semar09644943 MotoPedes,
3: Kfaizureen ffiekahishak Mat_Erk;
3: HumasPoldaRiau BastianusRicar3 Hans77759603;
2: rokandt Alva47831808

gTweets-5/
3

2: ___327____ syarlothsita;
2: tejomament BabylonGate1;
2: equalgame97 chibicatsaurus

4: ___327____ syarlothsita rokandt arifbsantoso;
2: tejomament BabylonGate1;
2: equalgame97 chibicatsaurus

Big Data Cogn. Comput. 2021, 5, 46 29 of 30

References
1. Bae, S.-H.; Halperin, D.; West, J.D.; Rosvall, M.; Howe, B. Howe. Scalable and Efficient Flow-Based Community Detection for

Large-Scale Graph Analysis. ACM Trans. Knowl. Discov. Data 2017, 11, 1–30.
2. Fortunato, S. Community detection in graphs. In Complex Networks and Systems Lagrange Laboratory; ISI Foundation: Torino, Italy,

2010.
3. Makris, C.; Pispirigos, G. Stacked Community Prediction: A Distributed Stacking-Based Community Extraction Methodology

for Large Scale Social Networks. Big Data Cogn. Comput. 2021, 5, 14. https://doi.org/10.3390/bdcc5010014.
4. Yao, K.; Papadias, D.; Bakiras, S. Density-based Community Detection in Geo-Social Networks. In Proceedings of the 16th

International Symposium on Spatial and Temporal Databases (SSTD’19), Vienna, Austria, 19–21 August 2019.
5. Malak, M.S.; East, R. Spark GraphX in Action; Manning Publ. Co.: Shelter Island, NY, USA, 2016.
6. Chambers, B.; Zaharia, M. Spark: The Definitive Guide, Big Data Processing Made Simple; O’Reilly Media, Inc.: Sebastopol, CA,

USA, 2018.
7. Atastina, I.; Sitohang, B.; Saptawati, G.A.P.; Moertini, V.S. An Implementation of Graph Mining to Find the Group Evolution in

Communication Data Record. In Proceedings of the DSIT2018, Singapore, Singapore, 20–22 July 2018,
doi:10.1145/3239283.3239311.

8. Dave, A.; Jindal, A.; Li, L.E.; Xin, R.; Gonzalez, J.; Zaharia, M. GraphFrames: An Integrated API for Mixing Graph and Relational
Queries. In Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems, Redwood
Shores, CA, USA, 24 June 2016, doi:10.1145/2960414.2960416.

9. Tran, D.H.; Gaber, M.M.; Sattler, K.U. Change Detection in Streaming Data in the Era of Big Data: Models and Issues. SIGKDD
Explorations. 2014. Available online: https://www.kdd.org/explorations/view/june-2014-volume-16-issue-1 (accessed on 27
February 2021).

10. Moertini, V.S.; Adithia, M.T. Pengantar Data Science dan Aplikasinya bagi Pemula; Unpar Press: Bandung, Indonesia, 2020.
11. Fung, P.K. InfoFlow: A Distributed Algorithm to Detect Communities According to the Map Equation. Big Data Cogn. Comput.

2019, 3, 42, doi:10.3390/bdcc3030042.
12. Bhatt, S.; Padhee, S.; Sheth, A.; Chen, K.; Shalin, V.; Doran, D.; Minnery, B. Knowledge Graph Enhanced Community Detection

and Characterization. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM ’19),
Melbourne, VIC, Australia, 11–15 February 2019, doi:10.1145/3289600.3291031.

13. Jia, Y.; Zhang, Q.; Zhang, W.; Wang, X. CommunityGAN: Community Detection with Generative Adversarial Nets. In
Proceedings of the International World Wide Web Conference (WWW ’19), San Francisco, CA, USA, 13–17 May 2019.

14. Roghani, H.; Bouyer, A.; Nourani, E. PLDLS: A novel parallel label diffusion and label selection-based community detection
algorithm based on Spark in social networks. Expert Syst. Appl. 2021, 183, 115377, doi:10.1016/j.eswa.2021.115377.

15. Zhang, Y.; Yin, D.; Wu, B.; Long, F.; Cui, Y.; Bian, X. PLinkSHRINK: A parallel overlapping community detection algorithm
with Link‑Graph for large networks. Soc. Netw. Anal. Min. 2019, 9, 66, doi:10.1007/s13278-019-0609-3.

16. Corizzo, R.; Pio, G.; Ceci, M.; Malerba, D. DENCAST: Distributed density‑based clustering for multi‑target regression. J. Big
Data 2019, 6, 43, doi:10.1186/s40537-019-0207-2.

17. Krishna, R.J.; Sharma, D.P. Review of Parallel and Distributed Community Detection Algorithms. In Proceedings of the the 2nd
International Conference on Information Management and Machine Intelligence (ICIMMI), Jaipur, Rajasthan, India, 24–25 July
2020, https://doi.org/10.1007/978-981-15-9689-6_70.

18. Sadri, A.M.; Hasan, S.; Ukkusuri, S.V.; Lopez, J.E.S. Analyzing Social Interaction Networks from Twitter for Planned Special Events;
Lyles School of Civil Engineering, Purdue University: West Lafayette, IN, USA, 2017.

19. Karau, H.; Warren, R. High Performance Spark; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017.
20. Holmes, A. Hadoop in Practice; Manning Publications Co.: Shelter Island, NY, USA, 2012.
21. White, T. Hadoop: The Definitive Guide, 4th ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA 2015.
22. Karau, H.; Konwinski, A.; Wendell, P.; Zaharia, M. Learning Spark; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
23. Moertini, V.S.; Ariel, M. Scalable Parallel Big Data Summarization Technique Based on Hierarchical Clustering Algorithm. J.

Theor. Appl. Inf. Technol. 2020, 98, 3559–3581.
24. Gonzalez, J.E.; Xin, R.S.; Dave, A.; Crankshaw, D. GraphX: Graph Processing in a Distributed Dataflow Framework. In

Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI’14), USENIX
Association, Denver (Broomfield), CO, USA, 6–8 October 2014; pp. 599–613.

25. Yan, D.; Cheng, J.; Xing, K.; Lu, Y.; Ng, W.S.H.; Bu, Y. Pregel Algorithms for Graph Connectivity Problems with Performance
Guarantees. In Proceedings of the 40th International Conference on Very Large Data Bases, Hangzhou, China, 1–5 September
2014.

26. Bahrami, R.A.; Gulati, J.; Abulaish, M. Efficient Processing of SPARQL Queries Over GraphFrames. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence (WI’17), Leipzig, Germany, 23–26 August 2017; pp. 678–685.

27. Balkesen, C.; Teubner, J.; Alonso, G.; Ozsu, M.T. Main-Memory Hash Joins on Modern Processor Architectures. IEEE Trans.
Knowl. Data Eng. 2015, 27, 1754–1766.

Big Data Cogn. Comput. 2021, 5, 46 30 of 30

28. McAuley, J.; Leskovec, J. Learning to Discover Social Circles in Ego Networks; Stanford University: Stanford, CA, USA, 2012.
29. Djalante, R.; Lassa, J.; Setiamarga, D.; Sudjatma, A.; Indrawan, M.; Haryanto, B.; Mahfud, C.; Sinapoy, M.S.; Djalante, S.; Rafliana,

I.; et al. Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020. Prog. Disaster Sci.
2020, 6, 100091, doi:10.1016/j.pdisas.2020.100091.

30. Wang, C.J.; Ng, C.; Brook, R.H. Response to COVID-19 in Taiwan, Big Data Analytics, New Technology, and Proactive Testing.
JAMA 2020, 323, 1341, doi:10.1001/jama.2020.3151.

	1. Introduction
	2. Literature Review
	2.1. Related Works
	2.2. Spark, GraphX and GraphFrames
	2.2.1. Apache Spark
	2.2.2. GraphX and GraphFrames

	3. Comparing SCC Algorithm and Motif Finding on Spark
	4. Proposed Techniques
	4.1. Active Communities Definition
	4.2. Proposed Algorithms

	5. Experiments and Results
	5.1. Public Big Graphs
	5.2. Real Tweets
	5.3. Data Collection and Preparation
	5.4. Finding and Discussion of SICs
	Discussion and Analysis of the SICs
	The active communities may change from period to period. At the end of January 2021, the communities were news users (CNN), while in March 2021, there were many police officers from many provinces that formed the communities. Further observation of ea...
	5.5. Finding and Discussion of SCs and SICs
	Discussion and Analysis of the SCs and SCICs
	The Scalability Issue
	As the overall time complexities of our proposed algorithms cannot be derived yet due to the lack of SCC algorithm complexity, the execution times (Figures 9 and 10) have not been analyzed using their complexities. The scalability of the proposed algo...

	6. Conclusions and Further Works
	Appendix A
	References

