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Abstract: Brain connectivity is studied as a functionally connected network using statistical methods
such as measuring correlation or covariance. The non-invasive neuroimaging techniques such as
Electroencephalography (EEG) signals are converted to networks by transforming the signals into
a Correlation Matrix and analyzing the resulting networks. Here, four learning models, namely,
Logistic Regression, Random Forest, Support Vector Machine, and Recurrent Neural Networks
(RNN), are implemented on two different types of correlation matrices: Correlation Matrix (static
connectivity) and Time-resolved Correlation Matrix (dynamic connectivity), to classify them either
on their psychometric assessment or the effect of therapy. These correlation matrices are different
from traditional learning techniques in the sense that they incorporate theory-based graph features
into the learning models, thus providing novelty to this study. The EEG data used in this study
is trail-based/event-related from five different experimental paradigms, of which can be broadly
classified as working memory tasks and assessment of emotional states (depression, anxiety, and
stress). The classifications based on RNN provided higher accuracy (74–88%) than the other three
models (50–78%). Instead of using individual graph features, a Correlation Matrix provides an initial
test of the data. When compared with the Time-resolved Correlation Matrix, it offered a 4–5% higher
accuracy. The Time-resolved Correlation Matrix is better suited for dynamic studies here; it provides
lower accuracy when compared to the Correlation Matrix, a static feature.

Keywords: EEG; emotional states; working memory; depression; anxiety; graph theory; classification;
machine learning; neural networks

1. Introduction

Electroencephalography (EEG) is a commonly used neuroimaging tool. Its application
ranges from clinical capacity such as sleep disorder studies, to seizure detection, to com-
mercial circumstances such as EEG-controlled games [1]. The EEG data is represented as a
two-dimensional matrix, which consists of electric potentials on one axis and the electrode
number on the other axis. This form of EEG data makes it easy to use in machine learning
models [2]. With its high temporal resolution, EEG data can provide information regarding
the functional connectivity within the brain, thereby providing a topological understanding
of the functioning of the human brain [3]. This is usually carried out by transforming the
electrical potentials into a Correlation Matrix [4].

Functional connectivity is time dependent and to understand the functional aspects of
the brain under conditions of executive functions and emotional states viz. depressive or
anxious, it is vital to study them in terms of networks and the best way to do it, with the help
of EEG signals, which have the highest temporal resolution in the field of neuroimaging
techniques. At present learning, models use either the properties of the EEG signal such as
amplitude, frequency, and event-related potentials as features or graph properties such as
centrality measures which are nodal metrics or edge metrics such as shortest path length.

Network analysis and learning models on neuroimaging data have enabled researchers
to study the human brain’s functional and structural connectivity [5]. Here, graph metrics
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are used as features for a deep learning model, apart from the standard spectral and
temporal characteristics that are traditionally used [6]. Different static and dynamic features
are studied to understand which features are best suited for visual working memory
tasks [7]. Both Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) are tested and validated for their performance on the datasets.

Previous work on emotional states such as depression and anxiety in the space of EEG
and machine learning was carried out using signal features such as power or frequency
bands [8]. Learning models such as probabilistic, nearest neighbor, neural network, and
tree-based have been implemented on DASS scores, here the Random Forest model pro-
vided accuracy in classification of three states, i.e., depressive anxious or stressed at 84%,
85%, and 84% [9,10].

A study on clinically depressed patients and normal controls with the implementation
of learning models on EEG signals using features such as frequency bands and non-
linear features such as detrended fluctuation analysis (DFA), Higuchi fractal, correlation
dimension, and Lyapunov exponent provided an 83.3% accuracy while using Logistic
Regression [11]. Similarly, visual and verbal working memory studies using EEG have
been carried out using event-related potentials (ERPs) and the subsequent construction of
functional connectivity of these ERPs [5]. Studies using EEG and deep learning models
involve EEG signals broken into smaller windows for training and testing [12]. The high
temporal resolution being the nature of EEG signals adds an additional step in curating
these smaller datasets for analysis. This step can induce a bias based on cognitive noise
between participants. An SVM implementation to classify Schizophrenic patients and
healthy controls based on a working memory task yields an accuracy of >74% [13].

Learning models on EEG data recorded during visual short-term memory task in-
cluded SVM and Random Forest, which used raw EEG signals and the psychometric as-
sessment scores and reaction times which provided an accuracy of approximately 90% [14].
Other implementations of SVM using frequency bands as features on similar psychological
tests yield a 98% accuracy [15]. While using ERPs in the time domain, power spectra and
eye-tracking as features provided accuracy in the range of 40% to 60% [7].

The intermediate step between EEG signal analysis and functional connectivity anal-
ysis is the use of a Correlation Matrix. This has been used for understanding the brain
connectivity in the narrow band signals [16]. The drawback to using the matrix is that it
does not address the volume conduction problem or explain the association in different
frequency bands. Variations of this method have proved to be helpful to understanding
the brain connectivity previously [17,18]. In this study, we explore the utility of the same
along with a Time-resolved Correlation Matrix for a comparative learning model study.
We compare the two correlation matrices and above all the four learning models: Logistic
Regression, Random Forest, Support Vector Machine, and Recurrent Neural Networks,
which can shed some light on the nature of EEG activity in these emotional and cogni-
tive states. Using the Correlation Matrix provides a non-directed graph. These kinds of
graphs aim to understand the interaction between signals. This enables one to understand
the dominant influence at a specific time in the brain signals [19]. Here the EEG data
for working memory and emotional states are used from a total of 359 (25(DASS21), 122
(Selection Task), 29 (WM-Lab), 27 (Visual-WM+drug), and 156 (Verbal-WM)) participants.
Both EEG data and associated psychometric assessment scores are used for the learning
model study. Two high-accuracy models, i.e., recurrent neural network and Random Forest,
belong to the neural networks method and ensemble methods. Furthermore, two high
interpretable models, a kernel-based method- Support Vector Machine and the Logistic
Regression model, are examined and compared.

2. Materials and Methods
2.1. Datasets

In this study, five EEG datasets are used, of which two were recorded in house,
and three are from a public database. Among the two recorded in-house, 25 partici-
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pants are from Sternberg Visual Working Memory Task, and 29 participants are from the
DASS 21 questionnaire (Figure 1) (approved by the Institute Research Ethics Committee
(IHEC-40/16-1)) using a 32 Channel(bipolar montage) EGI geodesic system (Appendix A
Figure A1). From the OpenNeuro dataset, 122 participants from Probabilistic Selection
Task (OpenNeuro Dataset Accession Number: ds003474) is recorded using a 64 channel
Synamps system, 156 participants from verbal working memory Task (OpenNeuro Dataset
Accession Number: ds003565) is recorded using a 19 channel 10-20 system Mitsar-EEG-202
amplifier, and 27 participants from visual working memory task (OpenNeuro Dataset
Accession Number: ds003519) are used. A total of 359 participants’ EEG data is used here
(Table 1).

Figure 1. DASS 21 questionnaire example.

DASS 21 questionnaire is a 21 item self-administered test; this test contains seven
sets of questions to assess the three emotional states; depressive, anxious, and stressed.
A participant responds with a score ranging from 0 to 3, with 0 meaning never and three
meaning almost always. Scores for each category are cumulative; a rating between normal
to severe is provided at the end of the test. These scores are then used in classifying
participants for the training dataset (Figure 1). Preprocessing of the EEG files are carried
out on EEGLab toolbox [20] on MATLAB. Here the data is filtered using the Basic filter
option; this option uses the “pop_eegfiltnew()” function from MATLAB. The function
filters the data using Hamming windowed sinc FIR filter. The filter order/transition band
width is estimated with the following heuristic in default mode: transition bandwidth is
25% of the lower passband edge, but not lower than 2 Hz, where possible (for bandpass,
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highpass, and bandstop) and distance from passband edge to critical frequency (DC,
Nyquist) otherwise. Window type is hardcoded to Hamming. Furthermore, decomposition
of data using Independent Component Analysis (ICA) [21], the filtering and ICA is carried
out on the MARA toolbox [22], where the option of automatic removal of components is
selected. Following which the data is exported as .set files.

Table 1. Overview of EEG datasets.

Sl.
No.

Name of the
Dataset

EEG
Recording System

Acquisition
Parameters

1
Visual
Working Memory
(n = 25)

32 Channel
EGI geodesic

impedance < 50 kΩ,
1000 Hz sampling rate,
band-pass filter 0.1–70 Hz,
50 Hz notch filter

2
Visual
Working Memory
(n = 27)

64-channel
Brain Vision system

500 Hz sampling rate,
Band-pass filter 0.1–100 Hz

3
DASS 21
Questionnaire
(n = 29)

32 Channel
EGI geodesic

impedance < 50 kΩ,
250 Hz sampling rate,
band-pass filter 0.1–70 Hz,
50 Hz notch filter

4
Probabilistic Selection
and Depression
(n = 122)

64 Ag/AgCl electrodes
Synamps2 system

impedance < 10 kΩ,
500 Hz sampling rate,
band-pass filter 0.5–100 Hz

5
Verbal Working
Memory
(n = 156)

19 electrodes
10–20 system
Mitsar-EEG-202
amplifier

500 Hz sampling rate,
band-pass filter 1–150 Hz
50 Hz notch filter

The task, Probabilistic Selection and Depression (public database), has two tests, the
Becks Depression Inventory and the State-Trait Anxiety Inventory [23]. The scores of
these tests again range from normal to severe. For the Probabilistic Selection Task [24]
the participants were administered the Beck Depression Inventory (BDI) and State-Trait
Anxiety Inventory (STAI). Here, BDI scores that are less than or equal to 19 are considered
zero and greater than or equal to 20 as one; likewise, for STAI scores, equal to and lesser
than 55 are considered as zero and greater than or equal to 56 as one. Bad channels and
bad epochs were identified using a conjunction of the FASTER algorithm [25] and the
pop_rejchan from EEGLab [20] toolbox and were subsequently interpolated and rejected,
respectively. The FASTER algorithm has epoch sensitivity of 97.54%, removes 3.1% of the
epochs, and has eye blinks sensitivity of 99.07%. Eye blinks were removed following ICA.
Data were re-referenced to averaged mastoids.

Visual working memory (in-house recording) is a modified Sternberg working memory
task (Designs, 2021), which involves a visual chart that needs to be memorized/committed
to memory, followed by tasks to complete based on the recollection of the chart from
memory. Preprocessing of the EEG files are carried out on EEGLab toolbox [20] on MATLAB.
Here the data is filtered using the Basic filter option. Decomposition of data using ICA [21]
is performed, following which the data is exported as .set files. The recollection of the
participant is tested by presenting seven questions on the basis of the visual chart: a score
of 50% or less is considered as zero and above as one.

Visual Working Memory and Cabergoline (1.25 mg) Challenge [26], here a drug
that can improve memory functions and placebo, is administered to a small group of
participants. The placebo and drug groups are used for classification. For the Visual
Working Memory and Cabergoline [27] challenge data [28], two sessions are carried out
for each participant, one with a placebo and the other with the drug. Here the placebo is
treated as zero and drug administered session as one. Data was visually inspected for bad
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channels to be interpolated and bad epochs to be rejected. Time-frequency measures were
computed by multiplying fast Fourier transformed (FFT) power spectrum of single trial
EEG data with the FFT power spectrum of complex Morlet wavelets. The end result of this
process is the same as time-domain signal convolution.

Finally, verbal working memory (public database) [29] consists of the EEG recorded
in a modified Sternberg working memory paradigm with two types of tasks, with mental
manipulations (alphabetization), simple retention (TASK), and three levels of load and 5, 6,
or 7 letters to memorize (LOAD). When the participant is able to answer greater than 50%
of the time in the trial it is considered one and below 50% is considered zero. First, ocular
activity artifacts were addressed using ICA using AMICA algorithm [30]. Second, epochs
containing artifacts were visually identified and discarded [31]. EEGLab [20] was used for
data preprocessing.

Apart from exploring the utility of the Correlation Matrix, a comparison between the
data recorded in-house and the public database is carried out using the accuracy of the
models. EEG artifacts suppression and removal was conducted in the following two steps.

2.2. Computation of Correlation Matrix and Time Resolved Correlation Matrix Using
Brainstorm Toolbox

The .set files are then imported onto the Brainstorm toolbox [32]. Here, using the
Editor pipeline, the connectivity option is used for computing the Correlation Matrix and
Time-resolved Correlation Matrix.

In this connectivity analysis, the following points are considered:

• The EEG sensors data is used from each of the datasets.
• Trail based data is drawn on.
• Full networks are calculated.
• In terms of temporal resolution, both static and dynamic are studied.
• The output data has a 4-D structure: Channels X Channels X Frequency Bands X Time.

2.2.1. Correlation Matrix Computation

The editor pipeline for computing the Correlation Matrix, the connectivity option
for Correlation Matrix, provides three option windows as follows: Input options, Process
options, and finally Output options. These options are presented in a nutshell below:

1. The Input option has three input fields, namely:

(a) Time window.
(b) Sensors types or names.
(c) Checkbox to include bad channels.

2. The process option has a checkbox to allow for computing the scalar product instead
of correlation.

3. Finally, output options, which has two checkboxes: (1) for saving individuals’ results
(one file per input file) and (2) for saving the average connectivity matrix (one file).

2.2.2. Time Resolved Matrix Computation

In case of Time resolved matrix, the editor has two main options: Input options and
Process Options which are described briefly below.

1. Input option has three input fields:

(a) Time window.
(b) Sensor types or names and a checkbox to include bad channels.

2. Process option has:

• Estimation window length (350 ms).
• Sliding window overlap (50%).
• Estimator options: computing the scalar product instead of correlation.
• Output configuration (enables addition of comment tag).
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2.3. Methods
2.3.1. Data Processing

Given the sensitivity of the EEG signals, it is imperative to preprocess them before
any other analysis of the data is carried out. Therefore, the EEG data is filtered to remove
line noise (50 Hz), band-pass filters, removal of bad channels, and artifact removal (please
refer to Section 4.1 datasets for details), and this data is converted into a Correlation Matrix
(NxN), each matrix corresponds to each EEG session file and time resolved Correlation
Matrix (NxN), with a 50% sliding window overlap and 350 ms window length. The matrix
is square and symmetrical, where each cell entry is the correlation between any two EEG
electrodes; these operations are carried out on the Brainstorm package [33] on MATLAB.

Principal Component Analysis (PCA) is carried out with the help of scikit-learn [34]
before using the data as input. This helped in two ways: it reduced the dimension of data
while preserving the features and is a standard method for removing multicollinearity.

2.4. Learning Models

After preprocessing and feature extraction of the original EEG data, the Correlation
Matrix (feature) is used as input to different classifiers, including traditional machine
learning algorithms and neural networks tuned in line with our data. The models used
are Logistic Regression, Random Forest, Support Vector Machine, and Recurrent Neural
Networks (RNN) to classify the EEG data. The performance evaluation of the different
classifiers is examined using a confusion matrix, whose components are T.P., TN, F.P., and
F.N. Further, the accuracies are calculated using these measures, using the formula:

Accuracy = (TP + TN)/(TP + FP + TN + FN) ∗ 100 (1)

T.P.: True Positives T.N.: True Negatives F.P.: False Positives F.N.: False Negatives.
Overfitting/underfitting: In this study the problem of overfitting did not pose an

obstacle in these datasets. Hence, the results were not unusually accurate. Regularisation
factors are applied to reduce overfitting. Finally for underfitting, varying the hyperparam-
eters over a large range is carried out and the best fitting set of values is appropriated.

2.4.1. The Logistic Regression Model (LR)

A Logistic Regression model with Gaussian Kernel and Laplacian Prior is used for
classification. The Gaussian kernel optimizes the separation between data points in the
transformed space obtained in preprocessing, while the Laplacian Prior enhances the
sparseness of learned L.R. regressors to avoid overfitting [8]. A multinomial L.R. model
where the probability that an input feature xi belongs to class k is given by:

p(yi = k|xi, w) =
exp(w(k)h(xi))

∑K
k=1 exp(w(k)h(wi)

, (2)

xi: feature vector
k: class
h(xi): linear transformation function of xi
w: logistic regressors.

2.4.2. Support Vector Machine (SVM)

Apart from the application of SVM on EEG data, implementation of SVM on MRI data
to classify between major depressive disorder and bipolar disorder provided accuracy up
to 45% to 90% [35]. The main reason behind using SVM is to leverage its relatively less
computational power to produce a significant accuracy and to reduce possible redundant
information (which is very common in EEG datasets) residing in the data. The input data
is mapped to a higher dimensional vector space using a linear kernel function to find a
hyperplane for classification (Figure 2).
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w ∗ z− b = 0 (3)

w: normal vector
b: bias of separation of hyperplane.

Figure 2. Support Vector Machine algorithm with the construction of different hyperplanes that
separates the different classes. The most optimal hyperplane is the one that maximizes this separation.

2.4.3. Random Forest (RF)

A Random Forest classifier (Figure 3) that uses an ensemble learning approach towards
prediction is used. R.F. classifier works in a similar way as the decision tree classifier, only
with an ensemble learning approach added to it. The first step is the creation of many
random decision trees, each predicting a particular class according to the features given to
it. Once each tree predicts a class, voting is carried out to take into consideration the final
class according to a majority. The output is then the class that has the majority voting.

Figure 3. Ensemble method implemented by the Random Forest Algorithm. The ensemble consists
of different trees fitted on the data with a range of hyperparameters. The tree which fits the data
most optimally is then chosen by the algorithm by majority voting method.

2.4.4. Recurrent Neural Network (RNN)

Previous work on the implementation of neural networks on EEG signals has been
fruitful, which provided accuracy in the range of 81% to 94% [36]. RNN was a good
model for studying both working memory [37,38] and emotional state [39] EEG data when
compared to other models such as SVM or deep belief networks [40]; on that note the
following RNN model is implemented. The RNN is implemented through a Long Short
Term Memory (LSTM) model [6,41], producing exemplary results on sequential data, such
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as EEG data. A sequential model is used to build the LSTM, which is a linear stack of layers.
The first layer is an LSTM layer with 256 memory units, and it defines the input shape.
This is done to ensure that the next LSTM layer receives sequences and not just randomly
scattered data. The next layer is a Dense layer with a “sigmoid” activation function. A
dropout layer is applied after each LSTM layer to avoid overfitting of the model. The model
is then trained and monitored for validation accuracy using loss as “binary cross-entropy”,
optimizer as “adam”, and metrics as “accuracy” (Figure 4).

H(q) = −1/N ∑ yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) (4)

H(q): binary cross entropy
p(yi): probability of belonging to class yi.

Figure 4. Recurrent Neural Network (RNN), representing the skeleton on which every RNN is built.
The output of each layer acts as the input to the next and modifies the hyperparameters of the layer
in each epoch, thus implementing the learning part of the algorithm.

3. Results

The performance of RNN classifiers shows up to 94.50% and 88.64% accuracies for each
of the working memory tasks, which outperforms most of the previous works reviewed.
The performance of R.F. and L.R. classifiers are relatively sub-par compared to RNNs but
still comparable to previously obtained results. The poor performance of SVMs highlights
the shortcomings of the method adopted in this study in algorithms that are sensitive to
the dimensions of the data. The impressive performance of RNNs can be attributed to their
innate ability to extract correlated features, which are not visible in traditional statistical
methods, within the data with the help of their stacked networks and activation functions.
The standard performance of R.F. and L.R. algorithms highlights the validity of the method
adopted in this study and the enormous scope it provides for further improvement.

Further, the data from the public database provides higher accuracy (Tables 2 and A2)
in all four models when compared to the in-house data (Tables 3 and A3). On average there
seems to be a difference of 40–60% accuracy between the two groups.

Table 2. Accuracy of Classifying Emotional States from the Probabilistic Selection Task Data.

Emotional State/
Learning Model Accuracy

Logistic
Regression

Random
Forest SVM RNN

Depression 71.33% 73.46% 61.78% 88.64%

Anxiety 64.56% 78.66% 65.27% 80.75%
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Table 3. Classifying Emotional States from the DASS 21 Data.

Emotional State/
(% Accuracy of Model)

Logistic
Regression

Random
Forest SVM RNN

Depression 35.06% 28.60% 27.60% 34.75%

Anxiety 28.40% 34.45% 30.85% 38.85%

Stress 31.10% 33.20% 31.70% 36.40%

4. Discussion

The current adaptation of learning models for studying brain connectivity with EEG
dataset involves feature extraction from the signal itself, such as the power spectral density
or event-related potentials (ERP). Or, when the EEG data is transformed into a graph, graph
features such as nodal/edge metrics need to be calculated first before the machine learning
process (which is done for some of the datasets that were obtained from OpenNeuro [26,42]).
These steps require a dossier containing the experimental paradigms, the brain regions
involved in the testing condition, specifics of band frequencies, Transition Frequency, and
ERPs. This entails added/newer steps to various stages of the data processing. This
translates to increased time and not to mention the myriad of statistical analyses that need
to be carried out.

Methods such as phase coherence, phase locking value, or pairwise phase consistency
which transform the EEG data to a matrix form for network construction, require adding
steps to the analysis which translates to more time spent [19]. These methods and the con-
venience or inconvenience a method can add to the analysis pipeline takes the analysts on
a puzzling path to addressing them with more tools to appreciate or tackle the unexpected
observations or results.

Functional Connectivity using EEG data can be done on the basis of frequency, time
domain, or phase characteristics of the signal. This can further be categorized as static
or dynamic. The various methods under each of these categories have their own advan-
tages and disadvantages, followed by tools/methods that can strengthen or weaken the
said methods of functional connectivity analysis. Some of the common challenges with
EEG-functional connectivity studies include (1) The common Reference Problem: the use
of unipolar reference scheme tends to provide false coherence whereas (2) the bipolar
reference scheme or (3) unipolar with separate reference address the problem inherent with
unipolar reference schemes [19] (note: The EEG datasets used in this study used bipolar
reference schemes).

To address the obstacle of the signal to noise (SNR) ratio, the impedance during the
recordings is maintained and monitored as stringently as possible. Although, the best
practice to address the SNR problem would be to use stratification methods or a suitable
post-hoc method. The sample bias problem is addressed by using each of the trials as an
input to the learning models. To circle back, in this study the main aim is to evaluate the
performance of the four learning models.

To circle back, in this study the main aim is to evaluate the performance of the four
learning models.

Implementation of learning models on imaging data to study emotional states pro-
vided reliable results in the past [43]. With the use of both high accuracy (RNN and R.F.)
and high interpretability (SVM and L.R. model), we can look for non-linear relationships,
non-smooth relationships, and well-defined relationships.

Comparison of learning models on similar paradigm EEG data helps with functional
connectivity study. Here, it is demonstrated that a Correlation Matrix can be used in
learning models and provides exemplary accuracy. Furthermore, it yielded higher accuracy
rates with well-structured data obtained in a controlled environment, as with the working
memory tasks, indicating superior discriminatory performances when assessing mental
tasks. In addition, the present study is discriminatory towards poorly collected and
insufficient data.
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From running the classification models on both types of datasets: correlation and
Time-resolved Correlation Matrices, we find that the two classification models: Random
Forest Classifier and RNN classifier, perform relatively better when the correlation is not
time-resolved. The performance dips across both the Verbal Memory and Working Memory
datasets for time-resolved correlation. This provides scope for further research as to why
dynamic methods may not be a better fit for Neural Networks and Decision Tree based
classification models.

This study sheds some light on brain networks when studying emotion or executive
functions such as working memory. By using the Correlation Matrix as such, this enables us
to study the brain activity as a complete network and not sub-networks or brain regions [44].
Another underlying quality of the participants is their linguistic abilities. The data collected
in-house had participants who were at least bilingual, of the 59 participants only 5 were
bilinguals and the rest either had adequate knowledge of a third language or fourth.
Similarly, the datasets of the probabilistic selection task [45] and the verbal working memory
task [42] consist of participants who know English as well as Japanese (selection task) and
Russian (working memory). The results from this study and the need to understand the
bilingual/multilingual neurocognition [46] of individuals necessitate a deeper study into
the role of language on emotional states and working memory. A comprehensive study
into the static/dynamic metrics under the three categories of time, frequency, and phase
would help in understanding which methods and which parameters can work best for a
particular experimental paradigm.

The engagement of participants in the five experimental paradigms is by nature dy-
namic states of EEG activity. With this in mind, the use of a Time-resolved Correlation
Matrix is explored alongside the Correlation Matrix, both features of the time domain of
the signal. Since the results indicate the use of the dynamic feature is most suitable for
such cognitive states, it sets the stage to explore the other static and dynamic features of
trial-related EEG data. At this stage, this investigation provides a step for exploring the pos-
sibility of using these features as markers for the cognitive footprints of psychopathologies
such as memory and emotional state deficits.

The results indicate that using graph metric for dynamic (Correlation Matrix) features
is optimum. Computerized administration of the test rules out pressure to perform or
dishonesty.

4.1. Limitations

Given that both the positive and negative lag indicates an influence in the network,
the bi-directional interactions that could be occurring are beyond the scope of the current
study [19]. In this regard, it is to be noted that in EEGLab, filtering for connectivity analysis
can be carried out using the “Basic Filter (legacy)”. This applies the filter forward and
then again backward to ensure that phase delays introduced by the filter are nullified.
The “causal filter” (part of the “Basic Filter (legacy)”) is only applied forward, so phase
delays might be introduced and not compensated for. However, causal relationships are
preserved. This introduces the problem of phase distortion. In this study, the common
input problem is not dealt with as it would increase the number of steps involved in the
preprocessing of the EEG data and also increase the run time of the pipeline. The current
study does not have the resolution to examine the salience, executive, and task-related
networks or provide a distinction between the three [44].

Although RNN and Random Forest models provide high accuracy, both these methods
have longer run times when compared to the other two. In the current study, the lack
of defined healthy control groups across the datasets can be addressed, which can help
improve the accuracy of the models. This imbalance can be addressed using larger data
and a robust learning model [47].

Single trials in the case of the in-house dataset and using DASS 21 for the first time as a
computerized test and EEG could explain the lower accuracy across the models associated
with this data. This also applies to the visual working memory data recorded in the lab.
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The EEG data is collected from four different EEG acquisition systems with five different
acquisition parameters. Furthermore, the experimental paradigms are dissimilar along
with the distribution of participants among the two main study areas, i.e., emotional states
(n = 176) and working memory (n = 183) which is uneven.

Using graph features on the EEG data is time consuming because graph features can
range from nodal metrics to local/global network characteristics that need to be considered
features. Simultaneously cherry-picking graph metric(s) can introduce a bias that has to be
considered in the study and addressed at a later point with defined statistical analysis.

5. Conclusions

The time-series nature of the EEG data, which is an effective form of neuroimaging
data for studying the functional connectivity of the brain, is studied for its utility in a
machine learning environment. Although this is not a first of its kind, the use of the
Correlation Matrix/Time-resolved Correlation Matrix makes it one. The previous work
on implementing learning models on EEG data consists of using features from the sig-
nal processing field. These studies provide insight into the possible electrical activity
of each lobe(s) associated with the behavior. However, they fall short while explaining
the possible functional connectivity between the regions of the brain or the whole brain.
Using such EEG datasets recorded on the working memory and emotional state assess-
ment paradigms, a preliminary comparison of the different EEG acquisition systems and
acquisition parameters is attempted.

The application of the Correlation Matrix can be implemented as a first step into
choosing the appropriate learning model for studying the emotional or working memory
EEG data. This study reveals that using a Correlation Matrix instead of a Time-resolved
Correlation Matrix even under trail-based EEG data is a better-suited input for learning
models when compared to a dynamic feature such as the Time-resolved Correlation Matrix.
This brings us to the experiments themselves.

The memory tasks and psychometric assessment tests—BDI, STAI, and DASS 21—
involve different brain regions, given that they have to be functionally connected to respond
to the questions in these tests. This study provides a basis for studying the cognitive
footprints for memory deficits, depression, anxiety, and stress. Further, it is observed that
RNN performs the best compared with the other three models implemented in this study.

Author Contributions: Conceptualization, G.K.B. and V.B.; methodology, B.P.; software, B.P.; valida-
tion, G.K.B. and B.P.; formal analysis, G.K.B. and B.P.; investigation, G.K.B. and B.P.; resources, V.B.;
writing—original draft preparation, G.K.B. and B.P.; writing—review and editing, V.B.; visualization,
B.P. and G.K.B.; supervision, V.B.; project administration, V.B.; funding acquisition, Veeky Baths. All
authors have read and agreed to the published version of the manuscript.

Funding: We thank the Department of Science and Technology, Government of India for the grant
(SR/CSRI/50/2014(G)) and Department of Biological Sciences, BITS, Pilani-K.K. Birla Goa Campus
for the infrastructure support.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Ethics Committee of Birla Institute of
Technology and Science, Pilani (IHEC-40/16-1).

Informed Consent Statement: Informed consent was obtained from all participants involved in the
study. Written informed consent has been obtained from the participants to publish this paper.



Big Data Cogn. Comput. 2021, 5, 39 12 of 16

Data Availability Statement: The data presented in this study are openly available in OpenNEURO
repository-

• EEG: Visual Working Memory + Carbergoline Challenge Dataset
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Appendix A

Reproduction of the Research Shown

1. in-house EEG datasets please follow the steps provided below

• import the files to EEGLab on MATLAB
• filter the files using the MARA Toolbox using band-pass filter 0.1–70 Hz and 50 Hz

notch filter
• please select automatic ICA rejection
• export the files as .set format
• import the files (create a study for each dataset) on to brainstorm toolbox on MAT-

LAB.
• use the connectivity editor for computing Correlation Matrix

2. For the OpenNEURO datasets

• import the files(create a suitable study protocol for each dataset) on to brainstorm
• use the connectivity editor for computing Correlation Matrix
• In case the files on OpenNEURO are RAW files, follow the steps provided on the

readme file for preprocessing of the EEG recordings.

Please follow the link-https://github.com/bhargavPrak/eeg_classification, accessed
on GitHub (accessed on 26 August 2021) for brief description of the skeleton of the machine
learning models implemented in this study.

Note: Please refer to the articles for each of the OpenNEURO datasets, since each of
them have implemented specific and distinct preprocessing techniques which were best
suited for the experimental paradigm. Any deviation from the methods used would impact
the overall accuracy obtained from the machine learning models.

https://openneuro.org/datasets/ds003519/versions/1.1.0
https://openneuro.org/datasets/ds003474/versions/1.1.0
https://openneuro.org/datasets/ds003655/versions/1.0.0
https://tinyurl.com/cvd729p8
https://tinyurl.com/2z6ms7p6
https://github.com/bhargavPrak/eeg_classification
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Figure A1. EEG Sensor Placement, the signals of each sensor helps in studying the activity of the
particular region of the brain. This further helps in functional connectivity studies of the brain.

Table A1. Accuracy of Classifying Placebo vs. Drug induced Memory Task conditions.

Condition
Logistic

Regression
(% Accuracy)

Random Forest
(% Accuracy)

SVM
(% Accuracy)

RNN
(% Accuracy)

Placebo 73.60 80.40 73.50 90.20

Drug 71.80 81.60 76.80 92.80

Table A2. Accuracy of Classifying Verbal Memory Task Conditions 5, 6 or 7 letters.

5 6 7

M
an

ip
ul

at
io

n Logistic
regression–66.66%
Random
forest–65.50%
SVM–60.15%
RNN–75.86%

Logistic
regression–59.40%
Random
forest–69.40%
SVM–59.80%
RNN–70.40%

Logistic
regression–61.10%
Random
forest–76.70%
SVM–54.70.10%
RNN–71.50%

R
et

en
ti

on

Logistic
regression–68.70%
Random
forest–70.60%
SVM–55.60%
RNN–74.80%

Logistic
regression–66.40%
Random
forest–65.80%
SVM–50.20%
RNN–70.60%

Logistic
regression–63.40%
Random
forest–68.30%
SVM–53.30%
RNN–79.60%
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Table A3. Participants of Modified Sternberg Working Memory Task.

Logistic Regression
(% Accuracy)

Random Forest
(% Accuracy)

SVM
(% Accuracy)

RNN
(% Accuracy)

Participant 01 12.5 37.5 28.60 12.5
Participant 02 25 28.30 28.60 28.60
Participant 03 14.30 37.5 14.30 14.30
Participant 04 50 12.5 25 25
Participant 05 25 25 25 28.60
Participant 06 25 12.5 12.5 14.30
Participant 07 14.30 42.90 12.5 50
Participant 08 12.5 25 12.5 12.5
Participant 09 50 28.60 22.22 25
Participant 10 75 50 14.60 14.60
Participant 11 12.5 12.5 28.60 22.22
Participant 12 37.5 50 11.11 12.5
Participant 13 28.60 14.30 25 28.60
Participant 14 12.5 12.5 37.5 14.30
Participant 15 25 25 37.5 25
Participant 16 25 12.5 12.5 12.5
Participant 17 28.60 25 50 33.33
Participant 18 12.5 37.5 25 14.60
Participant 19 50 12.5 37.5 25
Participant 20 14.30 14.30 14.30 12.5
Participant 21 25 37.5 14.30 12.5
Participant 22 12.5 25 22.22 14.30
Participant 23 14.30 25 28.60 25
Participant 24 25 12.5 12.5 28.60
Participant 25 50 28.60 12.5 12.5
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