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Abstract: This paper identifies four common misconceptions about the scalability of volunteer
computing on big data problems. The misconceptions are then clarified by analyzing the relationship
between scalability and the impact factors including the problem size of big data, the heterogeneity
and dynamics of volunteers, and the overlay structure. This paper proposes optimization strategies
to find the optimal overlay for the given big data problem. This paper forms multiple overlays to
optimize the performance of individual steps in terms of MapReduce paradigm. The optimization
is to achieve the maximum overall performance by using a minimum number of volunteers, not
overusing resources. This paper has demonstrated that the simulations on the concerned factors can
fast find the optimization points. This paper concludes that always welcoming more volunteers is an
overuse of available resources because they do not always bring benefit to the overall performance.
Finding optimal use of volunteers are possible for the given big data problems even on the dynamics
and opportunism of volunteers.

Keywords: bigdata; optimization; simulation; volunteer computing

1. Introduction

Data that are either of scientific projects to produce answers to scientific hypotheses or
generated by business transactions or social events have become a huge size. Nowadays,
the generation of big data is also extended to the areas where data are continuously
collected from sensors such as those used in horticulture and farming fields or from
cameras or telescopes such as those used in the search for extraterrestrial intelligence. No
matter how they are generated, big data analysis has become pillars to support business
operations or intelligence and scientific research [1]. In terms of computing a global result,
big data are too big to be processed by a single commodity computer in a reasonable
amount time. Ideally, big data are processed by a dedicated data center, where a high-
performance cluster consisting of reliable computing nodes connected by fast networks,
fuses, analyses and synthesizes the data for real-time response or warehousing. However,
the reality is that small or medium business or scientific projects are unable to invest
such a data center. What they can make use are existing commodity computers in the
organization. To make use of these computing facilities, the corporate desktops or laptops
are unreliable and are not dedicated for a single task. When this situation is extended to
the Internet scale, the donated compute cycles are even dynamic and opportunistic. Both
situations are the same in terms of a distributed, heterogeneous, dynamic and opportunistic
environment. Harnessing millions of commodity computing resources together in such
an environment to cope with large scale compute-intensive or data-intensive problems is
termed volunteer computing (VC) [2]. Volunteer computing is a practical and cheaper way
for big data processing, which has been already evidenced by scientific projects such as
ATLAS@Home [3], Asteroids@Home [4] and Einstein@Home [5].
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Our previous work [6] has classified the dynamics and opportunism of volunteer
computing environments by eight impact factors: heterogeneity, download /upload speed,
round trip time, churn rate, start position, occurrence interval, map/reduce ratio and
redistribution factor. The previous work has also confirmed the scalability of volunteer
computing for big data processing under the impact factors. The confirmation is promising
as the idle compute and storage capacity of an organization or the donated capacities
from the Internet can be utilized for big data processing, which traditionally can only be
processed by using a dedicated data center. At the same time this previous work has also
demonstrated that the dynamics and opportunism of volunteers impair the overall perfor-
mance. That means the scalability is not a linear increase vs. the number of volunteers.

This paper takes our previous work further to investigate how the scalability goes with
different numbers of volunteer and how the overall performance converges vs. the number
of volunteers. We use the term overuse to refer to the situation of using more than necessary
volunteers to bring very little benefit for the overall performance, while the resources can
be used for other computing. The research goal of this paper is an optimal use of available
volunteers, i.e., the least number of volunteers, for achieving the convergence performance.
To achieve the goal, we need to construct a simulation/evaluation platform to:

1.  Assess the behavior dynamics and opportunism of volunteers;
2. Process generic MapReduce big data problems;
3. Record system performance.

When the platform is available, we need an algorithm to operate big data. There are
a number of big data algorithms [7], among which MapReduce [8] has been a successful
algorithm widely used in a variety of field applications. As long as the application data
can be organized into the form of <key, value> pairs, it can be processed in one or multiple
rounds of three sequential steps: map, shuffle and reduce in a distributed environment. The
local results are gained in parallel in the map step; the local results are sorted out in the
shuffle step and finally the global results are synthesized in the reduce step. If multiple
rounds are used, the system tries to speed up the production of local results by parallel
computing in map steps and to decrease the data exchange between computing nodes
in the shuffle steps. Reduce steps are necessary to synthesize the final global results. To
integrate with the <key, value> pair representation of MapReduce and to accommodate
the dynamics of volunteers, the selection of distributed protocols for the construction
of the evaluation platform goes to distributed hash table (DHT). As a DHT protocol, the
dynamics and opportunism of each volunteer are tolerated, and the overall overlay is
guaranteed reliable at a certain cost such as O(jp¢n) for lookup a data item and O( logz n) for
stabilization on dynamics as in Chord [9]. For a given big data problem, the integrated
platform and algorithm support our research methodology, which consists of the following
investigations on how scalability goes and converges vs.:

1. The number of volunteers;

2. The heterogeneity of volunteers;

3. A single overlay or multiple overlays;

4. The varying workload and/or varying volunteer numbers.

The platform has been designed on Chord DHT protocol and implemented on the
Open Chord APIs [10]. The aforementioned investigations (simulations and evaluations)
have been conducted by using a generic MapReduce big data application on the imple-
mented platform. Based on the evaluation results and analysis, the contribution of this
paper includes:

1.  Compilation of a multiple factor profile to synthesize dynamics (free join, leave or
crash) of large-scale volunteers and its impact on a large part of the overlay and on a
large number of tasks.

2. Confirmation of scalability of volunteer computing for big data processing goes
logarithm-like scale in terms of speedup and in reciprocal inverse-like scale in terms
of speedup growth rate.



Big Data Cogn. Comput. 2021, 5, 38

30f18

«®

Identification of the convergence points of speedup growth rate.
4. Proposal of strategies to plan the optimal overlay size, the overlay numbers and the
overlay structures for a given problem scale and given dynamics of volunteers.

The organization of this paper is as follows: related work is reviewed in Section 2.
A preamble about the discussion of the concerned issues is given in Section 3. Section 4
proposes and clarifies the misconceptions on the scalability of VC on big data problems.
In Section 5, optimization strategies are proposed, and a study case is detailed. Section 6
concludes that optimal use of volunteers can achieve the possible maximum performance
without overusing resources.

2. Related Work

The existing work that is related to this paper has focused on two aspects: the im-
pact of dynamics and opportunism on big data performance and various optimization
approaches to coping with the uncertainties. In the area of data-intensive computing, the
early study on the impact on the performance of computing include Fadika et al. [11] and
Dede et al. [12]. Fadika et al. [11] studied the impact caused by certain data operations
of MapReduce, the number of tasks, the replication of data and the network bandwidth.
Dede et al. [12] studied the impact of heterogeneity, unreliability or unstable comput-
ing power of computing nodes. Both of them contrasted different implementations of
MapReduce in a heterogeneous cluster, a homogeneous but load-imbalanced cluster and
a cluster with unreliable nodes. Their evaluation results demonstrated the key impact
factors on the algorithm implementations in processing data-intensive, CPU-intensive and
memory-intensive applications.

Cheng et al. [13] proposed an adaptive task tuning to assign tasks to computing nodes
based on their profiles. The profiling included monitoring task execution and nodes perfor-
mance. The core of the model was a genetic algorithm to adjust workload in the course of
computing. Based on the profiles, the algorithm could dynamically balance the workload
in the whole cluster by fine-tuning 109 parameters of Hadoop [14] and MapReduce in
cluster level, job level and task level. The model was evaluated on both a physical cluster
and a virtual cluster. The results demonstrated a 11% to 31% improvement compared with
default Hadoop and Starfish and Rules-of-Thumb optimizers. The model was limited to
multiple round MapReduce applications as the genetic optimization algorithm must be
multiple rounds. However, most of the real-world applications are single round in terms
of minimizing data exchange in the course of computing.

Jothi and Indumathy [15] assumed that the compute capacities of computing nodes
were different but certain. On the basis, they studied the impact of the heterogeneity of
computing nodes on the overall performance of MapReduce in a distributed environment.
They classified computing nodes based on compute capacity and split data into different
sizes. To balance the workload, they proposed to use a centralized scheduling to assign
larger data sets to faster computing nodes. They demonstrated the effectiveness of the
approach, but the experimental environment or problem scales that the approach could be
applied to, were not clearly given in the paper.

To reduce the impact of dynamics in distributed environments. Yildiz et al. [16] pro-
posed a model to recover failure of computing nodes. The key idea was to prioritize tasks
and to allow the prioritized tasks to pre-empt other tasks in failure recovery. The model
tried to achieve recovering important tasks in certain time. In a dynamic environment, the
model was able to alleviate the impact of node failures and demonstrated a reduction in the
overall completion time. Their experimental environment including 17 GB and 56 GB data
sets on a cluster of 19 nodes of 8-core Intel Xeon CPUs connected by a 10 Gbps Ethernet
network was small to reflect a data-intensive application on the internet scale in terms of
volunteer computing.

Singh et al. [17] stated that Hadoop [14] data locality could overwhelm load balanc-
ing and slow down the overall performance. They demonstrated that the heterogeneity
of computing nodes was a key impact factor, and workload balancing was the critical
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way to optimize system performance in such a heterogeneous environment. They stated
that the impact on big data processing could be from two aspects: algorithm-specific or
cluster-specific. They proposed a number of strategies, including using a combiner to
maximize intra-node processing and minimizing inter-node data exchange; sacrificing
redundancy or fault tolerance by disabling speculative execution to increase efficiency;
removing slow nodes to decrease the overlay size, to improve the overall performance.
Their optimization goal was to integrate MapReduce-based Apriori (a very efficient data
analyzer) and Hadoop, but it was partly solved as reported in Singh et al. [17].

Ardagna et al. [18] stated two factors that need to be considered for the cost of a big
data processing on a public cloud. First, an appropriate size of cluster was important to
predict the budget to run Hadoop for applications in a public cloud. Second, the execution
time of a MapReduce job was critical as well. In order to estimate MapReduce job execution
time in Hadoop clusters that was managed by YARN, they used Petri-net-like models to
provide performance analysis at design-time. They tested their analysis models on a public
cloud Amazon EC2 (120 CPUs supporting 240 containers) and an Italian supercomputing
center CINECA (120 cores with a container). The test results confirmed that the accuracy of
the estimation was high in terms of that the relative error between the estimation and the
actual measurement was 14% to 32%.

Work stealing, i.e., fast nodes steal work from slow nodes in order to balance work-
load, is a traditional optimization against the heterogeneity of distributed environments.
Perarnau and Sato’s [19] study was a distributed memory environment, consisting of
8192 nodes. They compared a number of algorithms, named Deterministic Selection and
Random Selection with Skewed Distribution and with or without Half-Stealing, for vic-
tim selection strategies. A victim was the one that was identified to be stolen for work.
Among the algorithms, Random Selection with Skewed Distribution and Half-Stealing was
demonstrated overperforming others. Vu and Derbel [20] dealt with the heterogeneity of
distributed nodes in terms of compute capacity and network speed. They introduced some
adaptive control operations to the existing Probabilistic Work Stealing (PWS) and Adaptive
Cluster-aware Random Stealing (ACRS) algorithms, aiming at increasing work locality and
decreasing the cost of work stealing. They demonstrated a 30% save in the computing time
of the algorithms on a 128-node cluster. In the distributed environment they studied, the
dynamics of computing nodes was not considered. Zhang et al. [21] regarded the equity
task allocation as the main reason of poor performance of MapReduce in heterogeneous
environments. They stated that by holding tasks, the straggler nodes could slow down the
completion of map step, preventing the reduce step from starting, or they could slow down
the reduce step to affect the overall progress. They improved the situation by allowing
faster nodes to steal some work from the stragglers. Their study was for heterogeneous
environments but did not touch the dynamics or unreliability of the environments. Our
previous work [22] has proposed two versions of work stealing to algorithmically optimize
the processing for compute-intensive or data-intensive applications in consideration of the
dynamics and opportunism of volunteer environments.

The motivation of generating datasets is similar between [23] and this paper in that
both believe that the off-the-shelf real-world datasets have some limitations, and the
generation of richer and more synthetic datasets is necessary for the study of the concerned
issues. For this paper, the big size of datasets, the map/reduce ratio and redistribution
factor of map results are the concerns of data generation against the dynamics and the
large number of volunteers.

The aforementioned review concludes that the optimization comes from a variety of
considerations but has not been well explored for the dynamics and opportunism. This
paper takes the effort in this direction, aiming at an adaptive overlay structure to the prop-
erties of big data problem and the dynamics and opportunism of volunteer environments
for optimizing data-intensive applications.
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3. Preamble of Discussion

To ease the discussion of the complex issues, a number of conditions about the dy-
namics and opportunism of distributed environments, MapReduce workflow, the problem
scale of big data and the measurement of performance is presented in this section.

3.1. MapReduce Workflow in Dynamic and Opportunistic Environments

When MapReduce is the most commonly used big data processing paradigm and
DHT is a successful protocol to construct dynamic but still reliable overlay of internet
volunteers, the integration of them has natural advantages to construct a big data processing
platform. The nature is the use of <key, values> pairs by both MapReduce and DHT. Based
on the CRUD operations on <key, value> pairs of DHT, the three steps of MapReduce are
constructed as follows.

Assumption: a map task mt; or a reduce task rt; is identified by a key mk; or rk;, where
i€fl,2,...,ml,j={1,2,...,r}, and m is the number of map tasks and r is the number
of reduce tasks. A map task or a reduce task is a self-satisfied object, which includes the
executable code and data that are encapsulated in a data structure that is appropriate to a
particular MapReduce application. The data set of a map task is filled at the beginning of
computing but the data set of a reduce task needs to be filled in the course of computing by
using the results of map tasks.

Map Step: a volunteer looks up <mik;y, mt;> by using the key mk;, for an available map
task, wherei € {1, 2, ..., m}. If <mk;y, mt;> is available, the volunteer changes it to <mk;;,
mt;, mts;>, where mts; is the timestamp of the task. Once a task is found, it is downloaded
and put into execution. If the volunteer leaves before finishing the task, it will change it
back to <mk;y, mt;>. When a map task is in execution, the volunteer will need to update
the timestamp mts; in a regular time interval ui. If failed with looking up <mk;y, mt;>, a
volunteer looks up <mk;;, mt;, mts; > by using the key mk;; for an available map task that
satisfies the condition: (the current time—mts;) > ui. Such a map task was in execution by
another volunteer that is treated as crashed already.

Shuffle Step: for the result set of a map task, the shuffle step is to redistribute it into a
number of reduce tasks. The procedure is that all the <key, value> pairs with the same key
in the result set will be merged together in the form of <key, a list of values>. The merged
<key, a list of values> will be distributed into a reduce task by using a hash function so that
the pairs emitted by different map tasks but with the same key must be distributed into the
same reduce task. The redistribution is dependent on both the application features and the
original data set in terms of the number of redistributions for each map result set.

Reduce Step: a volunteer looks up <rkjy, rt;> by using the key rkjy for an available
reduce task, wherej={1,2,... v}l If <rk]-0, rtj> is available, the volunteer changes it to <rk]-1,
rtj, ris;>, where rts; is the timestamp of the task. Once a task is found, it is downloaded and
put into execution. If the peer leaves before finishing the task, it will change it back to <rkj,
rtj>. When a reduce task is in execution, the volunteer will need to update the timestamp
rts; in a regular time interval ui. If failed with looking up <rkjo, rt;>, a volunteer looks up
<rkj1, rt;, rts;> by using the key rk;j; for an available reduce task that satisfies the condition:
(the current time—rts;) > ui. Such a reduce task was in execution by another volunteer that
is treated as crashed already. The result set of a reduce task is simply uploaded onto the
volunteer overlay.

The dynamics and opportunism of the volunteers is that a volunteer can join freely
at any time, and in each operation of looking up a task, downloading a task, computing
a task or uploading a result set, the volunteer can leave or crash. The dynamics and its
impact on MapReduce workflow are summarized in Table 1 and explained as follows.
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Table 1. The dynamics and its impact on MapReduce workflow.

Workflow for Each Task
Dynamics
Lookup Download Compute Upload
Join or re-join No impact - - -
Leave No impact No impact Checkpointed Must be done
Crash No impact No impact Must be redone ~ Must be redone

A volunteer starts looking up a task when newly joining or re-joining (i.e., completing
the current task and asking for another task) the overlay. A volunteer can leave from or
crash on the overlay when looking up or downloading a task, but this has no impact on the
task itself. When a volunteer leaves in the course of computing a task, the uncompleted
task must be checkpointed so that it can be picked up by another volunteer in the future.
When a volunteer leaves in the course of uploading results, it must finish the uploading
before leaving. When a volunteer crashes in the course of computing or uploading the
results, the computing on the task is fully wasted and the task must be redone by another
volunteer in the future.

3.2. The Measurement of Performance

In addition to the completion time that can be directly used to measure the overall
performance, we define two measurements to make a quantitative investigation. Speedup is
used to measure the overall performance of a volunteer overlay; Speedup Growth Rate is to
measure the change rate of speedup upon the change of an impact factor on the overlay,
e.g., number of volunteers, the heterogeneity of volunteers or map/reduce ratio, etc.

The total time to complete the entire problem by a volunteer overlay

Speedup = The total time to complete the entire problem by a single volunteer

The speedup of value 2 — The speedup of value 1

The speedup of value 1 x 100%

Speedup Growth Rate =

Speedup growth rate is finer than speedup to reflect the overall performance because
the former is able to check whether the scalability converges to a particular value.

3.3. The Setting of Dynamics and Workload

Our previous work [6] has confirmed that the following factors have significant impact
on the overall performance of a volunteer overlay on processing big data problems. We
borrow the factors for the discussion of this paper, and we need to base the evaluation
settings of this paper on the factors.

1. Heterogeneity (H) reflects the difference of volunteers in compute capacity. If we
assume that the base capacity is tier 1, then a two-fold slower volunteer is of tier 2.

2. Download/Upload Speed (DUS) reflects the internet speed of a volunteer. For example,
if we assume a moderate internet speed of 25/10 Mbps for download/upload, the
DUS is 20/51 s for a 64 MB data.

3. Round Trip Time (RTT) reflects the time to establish an internet connection before or
close the connection after a communication between volunteers. A reasonable RTT
should be no more than 8 for a moderate speed internet.

4. Map/Reduce Ratio (MRR) reflects a big data application, being a data aggregation
(input > output), data expansion (input < output), data transformation (input ~ output)
or data summary (input >> output) [23]. The most common big data applications are
data aggregation. For example, a 20% MRR means that the workload and data scale
of reduce tasks will be 20% of map tasks.

5. Redistribution Factor (RF) reflects the difference of the keys of an intermediate result
set. For example, a RF of 200 means that an intermediate result set from the map step
needs to be redistributed into 200 reduce tasks in the shuffle step.
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6.  Churn Rate (CR) reflects the percentage of total volunteers who behave dynamics or
opportunism in terms of leave or crash in the course of computing.

7. Start Position (SP) reflects how long a volunteer stays on the overlay before committing dynamics.

8. Occurrence Interval (OI) reflects the time period within that a volunteer could commit churn.

The three factors CR, SP and OI work together to represent the churn of volunteers.
For example, a churn of CR of 30%, SP of 250 K and OI of 30 reflects that there are 30%
volunteers committing dynamics. For each churn volunteer it will stay at least 250 K long
on the overlay after joining, and it could commit churn between 250,000 to 250,030 time
period. The three churn factors together determine the churn occurrence pattern. The
selections of the three churn factor values must make the churn pattern as random as
possible. As shown in Figure 1, the churn happens once for the map and shuffle step and
once for the reduce step. The ascending lines represent the joins of volunteers, and the
descending lines represent the leaves or crashes of volunteers. The flat lines represent that
the overlay is stable without dynamics.

w
o \/ f \/
£ v J\[ \A\
=2
K=l
% ] Map & Shuffle Step || Reduce Step
o
o
E N
b= L
{J ‘ [Jom \, Leave or Crash — Stable

LS
Time

Figure 1. The random churn patterns.

Instead of using real world datasets such as Word Count or TeraSort, the datasets
used by this paper is generated and independent of or not restricted by any real world
applications. The generality /flexibility of dataset generation allows to apply any comput-
ing and communication intensities to the quantitative evaluations. A dataset is generated
by applying:

The number of map tasks (NMT) and the number of reduce tasks (NRT);
The computing load of each task (CLET);

The size of a map or a reduce task or a map or a reduce result set;

The lookup time of a map task or a reduce task on the overlay;

The communication speed.

Ol =

The aforementioned parameters can produce and vary:

1.  The compute intensity, e.g., if the NMT is 1,400,000 (1.4 M) and NRT is 280,000 (0.28 M)
and the CLET is 8000 (8 K) time units, the overall computing load is (1.4 M + 0.28 M)
x 8000 =11.2 G + 2.24 G = 13.44 G time units.

2. The problem scale, e.g., if the size of a map or a reduce task or a map or a reduce
result set is 64 MB, the overall data size to be processed is 1,400,000 x 64 + 280,000 x
64 = 107,520,000 MB ~ 108 TB.

3. The communication intensity, e.g., if the communication speed is 5 download /upload
speed (in Mbps) tiers: 12/1, 25/5, 25/10, 50/20 and 100/40 as provided by Australia
National Broadband Network (NBN), the download /upload speed (in seconds) of a
64 MB dataset is 5 tiers: 43/512, 20/102, 20/51, 10/26, 5/13.

4. The problem property. By varying NMT and NRT, the data aggregation (input > output),
data expansion (input < output), data transformation (input ~ output) and data sum-
mary (input >> output) [24] can be configured, e.g., if NRT/NMT = 20%, a data aggre-
gation application is set.

The proposed dataset generation allows selecting and combining various characteris-
tics, mitigating the existing datasets, which captured narrow slivers of a rich space of work-
load, and fitting for the dynamic and opportunistic environments that this paper concerns.
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We define the following settings to reflect a general situation of volunteer overlays
and a general situation of the workload of big data problems.

1.  Opverlay setting: in the format of (H, DUS, RTT, CR, SP, OI, MRR, RF), the overlay
dynamics setting is (6 tiers, 20/51, 8, 30%, 250 K, 30, 20%, 200).

2. Workload setting: for 1,400,000 (1.4 M) map tasks, 280,000 (0.28 M) reduce tasks (if
20% MRR is assumed) and the computing load of each map or reduce task of 8000,
the computing workload is 13.44 G in total.

3. Data setting: for each map or reduce task or a result set of 64 MB, the total amount of
data to be processed is about 108 TB (89.6 TB of map + 17.92 TB of reduce if 20% MRR
is assumed).

4. Misconception and Clarification

This section proposes four common misconceptions about the scalability of volunteer
computing for big data problems. The misconceptions are to be clarified with the support
of quantitative evaluations based on the dynamic settings, workflow settings and workload
settings, and performed on the simulation platform as detailed in Section 3. The clarification
is the foundation of the optimization strategies as proposed in Section 5.

4.1. Misconception 1

The scalability of volunteer computing is unlimited, i.e., the more volunteers, the faster comput-
ing. This misconception results in a general practice: always welcoming more volunteers
for a computing. This misconception is a faulty thought that the overall performance
of the whole overlay is proportional to the number of volunteers on the overlay. This
misconception is caused by the instinct in real life: wisdom of the crowds, saying that
wisdom of the crowds exceeds that of any individual. In real life, taking the average of a
large number of responses is able to cancel the effect of the noise that is associated with
each individual judgement. However, it is questionable how far this phenomenon can go
in the context of volunteer computing.

To quantitatively clarify the misconception, we conduct the following evaluation. The
overall performance is evaluated by the overlay, workload and data settings as detailed in
Section 3.3 with the initial number of volunteers of 5000. We increase volunteer numbers
by 5000 each time and record the speedup and speedup growth rate accordingly. The
evaluation results are shown in Figures 2 and 3.

6,000 T T T T T T T T T T T T T T T T T T

5,000

4,000

3,000

Speedup (times)

2,000

1.000

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5K 10K 156K 20K 25K 30K 35K 40K 45K H0K 55K GOK 65K 7OK 7oK 80K B5K 90K 95K 100K
Number of Volunteers

Figure 2. The speedup vs. the size of volunteer overlays.
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Figure 3. The speedup growth rate in response to overlay size growing.

The growing rate of overlay size is 5000 volunteers each time. That is, each time
there are 5000 more volunteers joining the overlay. It is evident that after a certain size,
continuously growing overlay size by increasing the number of volunteers brings little
benefit for the overall performance as shown in Figures 2 and 3. To clarify the results,
in terms of speedup, the overall performance is increasing slowly for the overlay of
40,000 volunteers or more. In terms of speedup growth rate, the performance is improving
slower and slower, and it is less than 10% from the overlay of 40,000 volunteers or more.
This concludes that although the overall performance is scalable in response to the growing
overlay, but for the same growing size, e.g., 5000 more volunteers each time, the growing
brings little benefit after a certain overlay size, e.g., 40,000. Finally, the scalability converges
at the speedup growth rate of 1% from 70,000 or more volunteer overlays. The working
cost increasing on larger overlays is the key reason of the convergence of speedup growth
rate. This conclusion is not conflicting with the scalability of volunteer computing for big
data processing, but it breaks the misconception that the same number of volunteers brings
the same or similar amount of benefit at any time.

4.2. Misconception 2

A volunteer always contributes positively to the overall performance no matter what compute
capacity/power it can provide. This misconception results in a general practice: always wel-
coming any volunteers without considering their compute capacities. This misconception
is caused by the illusion when the numbers of tasks and volunteers are both very large, the
workload of millions of tasks is naturally balanced between millions of volunteers. The
real situation is that once a task is assigned to a volunteer, it is held by the volunteer unless
it is completed, or the volunteer leaves or crashes. At that time, the result can be collected,
or the task can be reassigned. However, if the volunteer compute capacity is very low and
keeps active, it becomes a straggler. Thus, the overall performance is finally controlled by
stragglers rather than the fast volunteers. For example, assume that there are two tasks and
there are two volunteers: v; and v,, and v; is 5 time slower than v;. If v; completes a task
in t, the 2 tasks will be complete in 2 t by v; only. However, if the 2 tasks are assigned to vy
and vy, respectively, the completion time will be 5 t. This situation happens when there are
no available tasks for the fast volunteers to do, but at the same time there is a large number
of tasks that are held by stragglers. This situation happens when the tasks as a whole have
already progressed a large part, then the stragglers have obtained the chance to control the
progress of remaining computing. In other words, there exists a turning point in terms of
compute capacity, welcoming volunteers that are slower than the turning point will bring
little benefit.
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To quantitatively clarify the misconception, we conduct the following evaluations.
First of all, we do not include churn to cancel possible noises that churn may bring to the
evaluation results. We use 6 tiers of compute capacity and 40,000 volunteers as the median
point. Other settings on workload and data are the same as given in Section 3.3. We assume
that increasing or decreasing the number of volunteers will increase or decrease the tiers of
compute capacity of the volunteers proportionally. The rule is that increasing /decreasing
the number of volunteers by 1/6 will increase/decrease the heterogeneity of compute capac-
ity for 1 tier. Based on this rule, the 15 rounds of experimental evaluation of heterogeneity
are listed as follows in the format: HV; (tier;; number of volunteers), where i is the sequence
number of an evaluation pairand i € {1, 2, ..., 15}.

HV4(1; 6666), HV,(2; 13,333), HV3(3; 20,000), HV4(4; 26,666), HV5(5; 33,333),
HV4(6; 40,000), HV(7: 46,666), HV(8; 53,333), HV9(9; 60,000), HV1,(10; 66,666),
HVy1(11; 73,333), HV15(12; 80,000), HV15(13; 86,666), HV14(14; 93,333), HV 15(15; 100,000).

The fourteen changes of the HV evaluation pairs are listed as follows in the for-
mat: HC;(HV,—HV,), which means that the jth change is from pair HV} to HV},, where
Jkell,2,..., 14/ Amef2,3,...,15}.

HC1 (HV1 —>HV2), HCQ(HVQ —>HV3), HC3(HV3 —>HV4), HC4(HV4 —)HV5), HC5(HV5 —>HV6),
HC6(I—IV6—>HV7), HC7(HV7—>HV3), HCg(HVg—)HVg), HCQ(HV9—>HV10), HC10(HV10—>HV11),
HC11 (I‘IVH _>HV12), HC]z(HVIQ—)HVB), HC13(HV13—)HV14), HC14(HV14—)HV15).

The evaluation results have been reported in Figure 4 for speedup vs. HV pairs and
in Figure 5 for speedup growth rate vs. change of HV pairs.

18,000

16,000 1

14,000

12,000 1

10,000 1

Speedup (times)

8,000 r

6.000 . . . . . . . . . . . . .
HW1 HWVZ HV3 HV4 HVS HVE HV7 HVE HVE HVI0OHVITHVIZ HVI3HV14 HV15

Heterogeneity vs Number of Volunteers

Figure 4. The speedup vs. the evaluation pairs.

Speedup Growth Rate (%)

L 1 L L 1 L L 1 L L 1 1 L J
HC1 HC2 HC3 HC4 HC5 HC6 HCY  HCB HCS HC10 HC11 HC12 HC13 HC14
Change of Heterogeneity and Volunteer Numbers

Figure 5. The speedup growth rate vs. change of evaluation pairs.

As shown in Figures 4 and 5, the evaluation results have confirmed that from the
number of volunteers of 40,000 and compute capacity of 6 tiers (HV; and HC; in the above
lists) forward, the speedup is increasing very slow, and the speedup growth rate is going
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down to 5% or less. From 60,000 volunteers and 9-tier capacity (HV9 and HCg in the above
lists) forward, the speedup growth rate converges to around 1.5%.
To provide another supporting evidence, we record and check:

1. The completion time of a 25% workload vs. the evaluation pairs as shown in
Figure 6, and

2. The weighting of the completion time of a 25% workload vs. the evaluation pairs as
shown in Figure 7.

450,000 T T T T T T T T T T T T T
—— (~25%
400.000 —— 25%~50% | ]
50%~75%
350,000 —=— 75%~100% | 1

300,000

250,000 -

200,000

150,000

Time to Complete a 25% Workload

100.000 1 1 1 1 1 L 1 1 1 1 1 1 L
HV1 HVZ HWV3 HV4 HVS HVE HYT HVE HVI HVIDHWV1THVIZHV13HYV14 HV15

Heterogeneity vs Number of Volunteers
Figure 6. The time to complete a 25% workload vs. evaluation pairs.

40 T T T T T T T T T T T T T
—e—0w25%
| |7 25%1050% | |
3 50% o 75%
| —=— 75% lo 100% |

30 9

20

The weighting of completion time (%)

15\ 1 L 1 L 1 L L 1 L 1 L 1 L J
HV1 HVZ HV3 HV4 HVS HVE HV7 HVE HVE HVI0 HV11 HV12Z HV13 HV14 HV15
Heterogeneity vs Number of Volunteers

Figure 7. The weighting of the time to complete a 25% workload vs. evaluation pairs.

To check Figure 6, the overall performance is similar for the first (0~25%), second
(25~50%) and third (50~75%) quarter of the entire workload. The completion time goes
down quickly with the increasing of volunteer numbers and compute capacity tiers till
the 6th evaluation pair HV (6; 40,000), which has 40,000 volunteers with 6 tiers compute
capacities. Then, the completion time goes down slowly with the increasing of propositional
volunteers and tiers of compute capacity from HV; forward. The three tendency lines have
demonstrated that for the first three quarters of workload, there are always tasks available
for the fast volunteers; more volunteers can result in a faster computing progress. However,
volunteers with compute capacity of 7 tiers or above contribute little to the overall speedup
although they are still positive. The situation of the last quarter (75~100%) of entire
workload is significantly different. For the volunteer numbers up to 40,000 with compute
capacity of up to 6 tiers, the slow volunteers cannot dominate the overall performance
because they still perform in an acceptable speed. However, with the increasing of compute
capacity tiers from 7 tiers forward, the slow volunteers begin to dominate the computing
progress strongly and in fact slow down the overall performance significantly. They hold
the computing tasks to make the fast volunteers starving. Thus, adding more volunteers
with compute capacity bigger than 7 tiers actually contributes negatively to the overall
performance. The aforementioned results comply with Figure 7, where for the first, second
and third 25% workload, the weighting of completion time of a 25% workload is less or no
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more than 25% of the total workload. However, for the last 25% workload, the weighting
of completion time keeps increasing up to 37% of the total.

The aforementioned are not conflicting with the scalability of volunteer computing
for big data processing, but it breaks the misconception that a volunteer always con-
tributes positively to the overall performance. In fact, a slower volunteer could become
a straggler and contributes negatively to the overall progress and affects performance in
some circumstances.

4.3. Misconception 3

A volunteer always contributes positively to the overall performance no matter what the scale of
a computing problem is. This misconception results in a general practice: the size of overlay is
not considered for the scale of a given big data problem. This misconception is caused by the
illusion that the working cost on an overlay is always trivial compared with the workload
of a computing problem. In fact, the lookups of available tasks, the download/upload
of tasks/results, and the overlay stabilization in response to the dynamics of volunteers
all contribute to the working cost. For example, in Chord DHT protocol, lookups and
overlay stabilization incur the working cost of O(jo1) and O( logz n), respectively, which are
logarithmically proportional to 7, the number of volunteers on the overlay. Consequently,
given a problem scale, there exists a turning point so that overlay size that is larger than
the turning point will bring little benefit for the overall performance. The reason is that the
overall working cost is comparable with the workload of the computing problem from that
turning point.

To quantitatively clarify the misconception, we conduct the following evaluations.
First, we set a reference point in terms of overlay size N (40,000 volunteers) and workload
W (1,400,000 tasks) by using the overlay setting, the workload setting and the data setting
as given in Section 3.3. Then, we conduct the evaluations in two directions: one is to keep
the number of volunteers staying on 40,000 but to increase the workload from 20% to
200%, symbolized as W (—80% to +100%). The other is to keep workload staying at 20%
but decrease the number of volunteers from 40,000 to 5000, symbolized as N (5 K to 40 K).
The evaluation results are reported in Figure 8 for speedup and in Figure 9 for speedup
growth rate.

5,000 .
4,500 [ oA
4,000 1

‘® 3,500 .

E Varying Volunteer Numbers Varying Workload

£ 3,000 1

j=]

9 2,500 1

92

8

¢0 2,000 .

—— \W-B0%, N(5K to 20K} |
1,500 —— W-B0%, N(20K to 40K)
1.000 W(-80% to -0%), N{40K) i
: —h— W(+0% to +100%), M40K)

500 '
Warying Volunteer Mumbers or Varying Workload

Figure 8. The speedup vs. varying volunteer numbers or varying workload.
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Speedup Growth Rate (%)
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Figure 9. The speedup growth rate vs. varying volunteer numbers or varying workload.

It is evident that for the 20% of reference workload (symbolized W-80%), small overlay
from 5000 to 20,000 volunteers speeds up the overall performance from 677 to 2200 times
as shown in Figure 8, but the speedup grow rate keeps dropping from 88% down to 24%
accordingly as shown in Figure 9. The overall speedup increases slower from 2200 to
2752 times for the overlays from 20,000 to 40,000 volunteers as shown in Figure 8, and the
speedup growth rate decreases from 24% to 0.1% accordingly, as shown in Figure 9. We
conclude that for such a 20% of the reference workload, the working cost on a dynamic
overlay of such a size from 20,000 to 40,000 volunteers has cancelled the increase in compute
capacity. Furthermore, the speedup of the reference overlay of 40,000 volunteers bounces
up from 2752 to 4281 times in response to the workload increasing from 20% (W-80%) to
100% (W-0%) as shown in Figure 8. This performance bounce-back is also reflected by
the speedup growth rate bouncing back to 33% as shown in Figure 9. This resilience of
speedup has demonstrated that for the 20% workload (W-80%) to 100% workload (W-0%),
the compute capacity of 40,000 volunteers overlay overwhelms the working cost on the
overlay of such a size. Although there is still speedup increase from 4281 to 4526 times
in response to the workload increasing from 100% (W-0%) to 200% (W + 100) as shown
in Figure 8, but the speedup growth rate is decreasing from 33% down to 3% and finally
converges to around 0.6% as shown in Figure 9. The reason is that the compute capacity of
such an overlay of 40,000 volunteers becomes weaker for such a workload (100% to 200%).
This conclusion is not conflicting with the scalability of volunteer computing for big data
processing, but it breaks the misconception that the working cost on a dynamic overlay is
always trivial compared with the entire workload of computing. There exists an optimal
overlay size for the scale of a given computing problem.

4.4. Misconception 4

In terms of overlay structure, the map step and the reduce step are the same for a single
round MapReduce application. This misconception results in a general practice: a single
overlay is used for the whole MapReduce procedure. This misconception is caused by
the illusion that all the volunteers must be on the same overlay so that the global results
covering all the input can be obtained in one round. In fact, the MapReduce paradigm
requires that all the <key, value> pairs with the same key emitted from the map step must
be shuffled into the same reduce task if the application is to be completed in one round.
That requirement equals that all volunteers of reduce step must be on the same overlay for
a global redistribution of the intermediate results emitted from the map step. However,
single round of completion does not require /need that all volunteers are on the same single
overlay for the map step. Based on the aforementioned analysis, volunteers are unnecessary
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to stay on a single plain overlay for the whole MapReduce procedure, i.e., both the map
step and reduce step. Thus, we propose separate overlays: map overlay and reduce overlay.
Multiple map overlays have no impact on the single round completion requirement for
global results. The global results can be obtained in one round as long as the volunteers
are on the same single reduce overlay. The rationale of using smaller multiple overlays
for map step is to decrease the working cost on a larger overlay, which is logarithmically
proportional to the overlay size, i.e., O(joen) for lookup and O( logz n) for stabilization.

To quantitatively demonstrate the benefits of using multiple map overlays, we conduct
the following evaluations. The basic start point is the overlay, workload and data settings as
proposed in Section 3.3. In the three evaluations, the original overlays are a single overlay
of 40,000, 60,000 and 100,000 volunteers, respectively. Each time the number of volunteers
on the overlay is halved to form two equal overlays, and accordingly the original workload
is halved as well for each separated overlay. As the map overlays are independent and the
same in size, we assume that the map step of each separated overlay starts from the same
time and finishes at the same time ¢. Thus, the equivalent speedup will be calculated as: the
whole workload/t. The evaluation results are reported in Figure 10 for equivalent speedup
and in Figure 11 for equivalent speedup growth rate.

18,000

—— Overlays starting from 40K volunteers

16,000 —s— Overlays starting from 60K volunteers

w
g Overlays starting from 100K volunteers
= 14,000
=R
3
2 12,000
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& ]
= 10,000 e
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= 8000 e
= e
= T

6,000 ;,.xf/w

4.000 | | I | | | |
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Figure 10. The equivalent speedup vs. the number of map overlays.
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Equivalent Speedup Growth Rate

0 L L L 1 1 L

2104 4108 8to16 1610 32 32064 6410128 12810 256

Change of the Number of Map Overlays

Figure 11. The equivalent speedup growth rate vs. the change of the number of map overlays.

As shown in Figure 10, the original overlay will finally be separated into 256 map
overlays with each overlay having 1/256 volunteers for the 1/256 of the original workload.
The computing time of each separation keeps decreasing, and the equivalent speedup keeps
increasing for the overlay clusters separated from the original overlay. The equivalent
speedup growth rate keeps drooping as shown in Figure 11, suggesting that the separation
is more efficient for a larger overlay with a higher workload but inefficient for a smaller
overlay with a lighter workload. For example, starting from 100,000 volunteer overlay, the
first separation (2 map overlays) achieves a 38% grow rate; the third separation (8§ map
overlays) achieves 15% growth rate. In the evaluations, staring from either 40,000; 60,000 or
100,000, the separation to 32 map overlays makes the speedup growth rate converged to
around 7% as shown in Figure 11. The results have confirmed that multiple map overlays
bring benefit for the overall performance at the map step. This conclusion breaks the
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misconception that volunteers must stay on a single overlay for the whole procedure
of map and reduce. It opens the window to use different overlay structures for map or
reduce steps.

5. Optimization Strategy

Based on the clarification of misconceptions of Section 4, this section proposes the
optimization strategies on the overlay size and organization in response to a given big
data problem and the dynamics of volunteers. A case study is detailed in this section to
demonstrate the effectiveness of the optimization strategies.

5.1. Optimization Strategy

The optimization strategies that are proposed in this section is based on the assumption
and needs the simulation to achieve the optimization goal as given as follows.

1.  Assumption: the dynamics of volunteers, the workload and the dataset of a big data
problem are given in the format of the three settings in Section 3.3.

2. Simulation: a series of simulations to produce performance results vs. the concerned
variables as shown in Figures 2-11 in Section 4.

3. Goal: an overlay structure that can achieve optimal performance for the given big
data problem and the dynamics of volunteers.

The optimization consists of five steps, as depicted by Figure 12.

: Start Optimization ;

Owerall Performance
w5 1 MISD
MNumber of Volunteers

/ MMT, DUS, ETT, /

CR5P,OLRF,H /[

Convergence Owerall Performance
Spesdup w5 MXMO
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- g

Owerall Performance ! ;
(' MROS
Workload f /

5|

Owezrall F‘vi:furmance . Individual
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Construct
the Optimal Cwerlay

End Qptimization

Figure 12. The optimization steps.
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The first step of optimization is based on the overall performance vs. the number
of volunteers as shown in Figures 2 and 3. Given a convergence speedup growth rate
(e.g., 5%), the minimum overlay size (MIOS) that can achieve the convergence growth rate
can be determined accordingly. Any overlays that are larger than MIOS will achieve a
benefit not bigger than the converged growth rate at the cost of growing the same number
of volunteers; any overlays that are smaller than MIOS can only achieve a smaller overall
performance than MIOS. Thus, MIOS is the preliminary level optimization on overlay size
for the given big data problem and the dynamics of volunteers.

The second step of optimization is based on the overall performance vs. the number
of map overlays as shown in Figures 10 and 11. Given a convergence speedup growth rate
(e.g., 5%) and use the MIOS obtained from the first step as the starting point, the maximum
number of map overlays (MXMO) can be determined accordingly. Any separations that
are more than MXMO will not achieve a bigger benefit than the convergence grow rate,
but will increase the risk for fault tolerance for storage because of the fewer volunteers on
the overlay; any separations that are less than MXMO can only achieve a smaller overall
performance than MXMO. Thus, MXMO is the second level optimization on overlay size
for the map step for the given big data problem and the dynamics of volunteers.

The third step of optimization is based on the overall performance vs. workload as
shown in Figures 8 and 9. Given an MRR (e.g., 20%), the workload of reduce step can be
determined accordingly. Based on the convergence speedup growth rate (e.g., 5%) on the
workload, the minimum reduce overlay size (MROS) can be determined. Any overlays that
are larger than MROS will achieve a benefit not bigger than the convergence growth rate
at the cost of growing the same number of volunteers; any overlays that are smaller than
MROS can only achieve a smaller overall performance than MROS. Thus, the MROS is the
third level optimization on overlay size for reduce step for the given big data problem and
the dynamics of volunteers.

The fourth step optimization is based on the overall performance vs. the heterogeneity
of volunteers as shown in Figures 4-7. Given the compute capacities of volunteers and the
MROS obtained from step 3, chose MROS volunteers from the pool of MXMO volunteers
for compute capacities of tier 1 and then of tier 2 and so on. The chosen volunteers will
form the reduce overlay; the non-chosen volunteers will leave after the map step. The
MROS volunteers of the higher tiers will be the fast speedup for the reduce step for the
given big data problem and the dynamics of volunteers.

The last step is to use the output of the optimization from the previous four steps,
including the minimum overlay size (MIOS), the maximum number of map overlays
(MXMO), the minimum reduction in overlay size (MROS) and the selected individual
volunteers, to construct an optimal overlay, achieving the maximum speedup against the
dynamics of volunteers using the minimum number of volunteers.

5.2. Case Study

This case study is to demonstrate the benefit that the proposed optimization strategies
can bring with the support of simulations. Given:

1. A workload 1,400,000 map tasks and an MRR of 20% as in the workload setting in
Section 3.3;

2. The volunteer dynamics of 30% churn and heterogeneity of 6 tiers as in the overlay

setting in Section 3.3;

The dataset of 108 TB as in the data setting in Section 3.3;

4.  The preliminary simulation of scalability as shown in Figures 2 and 3.

@

A MIOS of 40,000 volunteers can be determined for an overall speedup of 4267 times
with a speedup growth rate not less than 9%.

For the determined MIOS of 40,000 volunteers overlay, a simulation of performance
for multiple map overlays starting from 40,000 volunteers can be conducted. Based on
the simulation results as shown in Figures 10 and 11, the MXMO of 32 map overlays can
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be determined for an equivalent overall speedup 6038 (1,854,767 steps for a workload of
11,200,000,000) with a speedup growth rate not less than 5%.

For the given MRR of 20%, the reduce step needs to perform 280,000 tasks. Starting
from the MIOS of 40,000 volunteers, a simulation on performance vs. number of volunteers
can be conducted as shown in Figures 8 and 9. Based on the simulation results, the MROS
of 20,000 volunteers can be determined for an overall speedup 2200 times with a speedup
growth rate not less than 24%.

For the MROS of 20,000 volunteers, chosen tier 1 to tier 3 volunteers only from the
entire pool of 40,000 volunteers to form the reduce overlay. Revise the overlay setting
of Section 3.3 to include tier 1 to tier 3 volunteers only and perform a simulation for
the overall performance on the reduce step only as shown in Figures 4-7. The result is
5415 (413,697 steps for a workload of 2,240,000,000). Thus, the final performance will be
as follows:

1. The overall speedup is: (11,200,000,000 + 2,240,000,000)/(1,854,767 + 413,697) = 5925 times;
2. The overall speedup growth rate is: ((6925 — 4267)/4267) x 100% = 38.86%;
3.  The overall improvement is: 5925 — 4267 = 1658.

If we assume

—_

The compute capacities of volunteers are evenly distributed between tiers, and
The compute capacities of volunteers can be evenly distributed into each overlay,

N

the construction of the overlays is to construct 32 map overlays and 1 reduce overlay.
For each of 40,000 volunteers, it is on one of 32 map overlays. For the 20,000 tier 1 to tier
3 volunteers, they are on the reduce overlay. The other 20,000 volunteers will leave on
completion of the map and shuffle steps.

6. Conclusions

The misconceptions on the scalability of volunteer computing for big data processing
have been clarified from four aspects. First, always welcoming volunteers onto the same
overlay brings little benefit in terms of speedup growth rate. The cause is that the working
cost on such a growing overlay cancels the increase in compute capacity that the new
volunteers can bring in. Second, the very slow volunteers can contribute to or at least
to impair the overall speedup when there are still available tasks for the fast volunteers.
However, as the overall progress approaches to the end of computing, the slow volunteers
will become stragglers, holding the tasks to starve the fast volunteers so that the overall
performance is impaired. Third, there exists an optimal overlay size for a certain problem
scale; neither a too small nor a too big overlay achieves the maximum speedup for the
given problem scale. Fourth, a single round MapReduce application does not necessarily
require a single overlay; multiple overlays can still maintain the one round requirement
but bring opportunities for optimization of overall performance. Based on the clarification,
the optimization strategies are four folds. The first step is to find a turning point of overlay
size in terms of overall performance for a given problem. The second step is to form a
certain number of map overlays and keeps a single reduce overlay. The third step is to
determine an optimal overlay size for the reduce step in response to the MRR of the given
problem. The last step happens before the start of reduce step in order to shrink the reduce
overlay to the optimal size by dismissing the unnecessary slow volunteers. This paper
has demonstrated that fast simulations help find these optimal points for a given big data
problem and the dynamics of volunteers.
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