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Abstract: In quality evaluation (QE) of the industrial production field, infrared thermography (IRT)
is one of the most crucial techniques used for evaluating composite materials due to the properties
of low cost, fast inspection of large surfaces, and safety. The application of deep neural networks
tends to be a prominent direction in IRT Non-Destructive Testing (NDT). During the training of the
neural network, the Achilles heel is the necessity of a large database. The collection of huge amounts
of training data is the high expense task. In NDT with deep learning, synthetic data contributing
to training in infrared thermography remains relatively unexplored. In this paper, synthetic data
from the standard Finite Element Models are combined with experimental data to build repositories
with Mask Region based Convolutional Neural Networks (Mask-RCNN) to strengthen the neural
network, learning the essential features of objects of interest and achieving defect segmentation
automatically. These results indicate the possibility of adapting inexpensive synthetic data merging
with a certain amount of the experimental database for training the neural networks in order to
achieve the compelling performance from a limited collection of the annotated experimental data of
a real-world practical thermography experiment.

Keywords: automatic defect detection; infrared thermography; deep learning algorithms; Non-
Destructive Evaluation (NDE); supervised learning; image processing; data augmentation; Finite
Element Models (FEM)

1. Introduction

Quality evaluation is playing a fundamental role for modern industrial production
and manufacturing processing. The demand for the inspection of materials with respect to
the possible presence of defects, damage, and flaws has increased due to the wide use of
composite materials and metals in industries such as aerospace. The method used to inspect
defects via manual, visual evaluation involving humans can be hampered by the human
fatigue and subjectivity. In order to meet the need of high-quality production and maintain
the stringent high-quality level, an advanced inspection system is becoming more and more
essential for structural health monitoring and production lines application. Automated
quality control [1] can be applied in the industrial field to facilitate the consistent and
efficient inspection. The high inspection rate and the inspection procedure without human
involvement are the main advantages of automated inspection systems [2].

Non-Destructive Testing (NDT) [3] encompasses a group of inspection techniques that
are intended to assess the integrity of an object without causing any kind of modification
or permanent damage. Infrared testing (IRT) is an NDT technique in which the differences
in thermo-physical properties between the inspected object sound material and possible
surface and/or subsurface defects are exploited through the use of an infrared camera.
However, automatically identifying defects in materials via IRT still remains an ongoing
and challenging task in the image processing domains.
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For the defect identification and detection, several state-of-the-art defect detection
algorithms have been proposed in previous literature. These included Faster-Region
based Convolutional Neural Networks (Faster-RCNN) [4], YOLO-V3 [5], Autoencoders
structured neural network [6], and conditional monitoring (CM)-based feature learning
methods [7,8]. Faster-RCNN and YOLO-V3 detectors were used to automatically localize
flaws in a thermography diagnosis system. These methods show satisfied performance
on the defect localization when multi-properties were contained in defect information.
However, some issues still need to be improved for the whole marking process in these
methods. For example, bounding boxes from YOLO-V3 and Faster-RCNN offer some
restrictions in most cases, although they are fast and easy to localize. The area of non-defect
always occupied a high percentage of area from bounding boxes, which may possibly
introduce multiple errors during the whole training process. The Autoencoders structured
neural network [6] was proposed as an unsupervised learning method to automatically
extract features from intelligent faults. This method has made impressive research progress
during the thermography data processing. However, the encoder–decoder format (Autoen-
coders structured) algorithm may have unavoidable limitations in faults extraction from
thermographic data processing due to weakness signals, complex noise interference, data
limitation, etc. The regular CM based-feature learning methods derived from the idea of
Convolutional Neural Network (CNN) feature transformations and transfer learning [9],
which have shown strong capability as a pattern to detect the flaws or defect location
naturally and obtained an excellent performance. Due to the data limitation as well as
high noise inference from the experimental infrared thermal databases, it is still quite
complicated to train a model that has strong robustness to detect irregular and complex
flaws in the CM defect diagnosis system.

Therefore, in this research, an automatic instance segmentation and identification al-
gorithm in deep learning (Mask-RCNN) [10] is introduced for defect segmentation in an
automatic infrared detection system. The defect detection procedure can be regarded as either
an object detection task [11] or object segmentation task [12]. In the object detection task,
the objective is to fit the bounding box localized around each defect in the image. In the
object segmentation task, the objective is based on pixel-level classification to distinguish each
pixel if it is detected. Compared with the earlier segmentation strategies [13,14], the Instance
segmentation associated each pixel of an image with an instance label [15]. It can predict a
whole segmentation mask for each of those objects and predict accurately which pixel in the
input image corresponds to each object instance. It also reduces the restriction concerning the
position of defects rather than predicting a group of bounding boxes for the defects.

Meanwhile, as discussed in the state-of-the-art approach [7,8], deep learning’s Achilles
heel is the training dataset. The training dataset must be accurate enough and contain
enough images and exceptions (e.g., occlusions) so as to allow the algorithm to learn
reliable features of interest. If the dataset does not contain enough images and cases of
possible situations or if the data contain too much noise or artifacts, the algorithm may
not be accurate enough or even may learn to identify the wrong features (in the cases of
CM feature learning methods). During recent years, the exploitation of synthetic data [16]
during the training and validation of deep neural networks has emerged as a popular topic.
In this work, synthetic data generated with Finite Element Models (FEM) is used during
the training process to greatly reduce the high expenses involved in real experiments in
infrared thermography. The synthetic data generated by the simulator are based on the
same parameters with real specimens in non-realistic ways, being able to force the neural
network to learn the essential features of the object of interest [17]. The generated features
from synthetic data can cover or overlap the amount of data distribution that are not
sufficiently represented in the original experimental dataset [18]. The results also show the
possibility of using inexpensive synthetic data for the deep neural network training but
avoiding the necessity of collecting large amounts of hand-annotated experimental data.

In this research, a small amount of IRT experimental data together with FEM syn-
thetically generated IRT data will be used to train a deep spatial characteristic model
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(Mask-RCNN) for the segmentation of defects. This proposed method can effectively
achieve the defect identification and segmentation with the cases of data limitation. The
contribution of this work can be illustrated in the following:

(1) By adapting a data augmentation strategy through the Synthetic Data Generation
Pipeline (Finite Element Modeling), the proposed method effectively improves the
performance of segmentation (capability for feature extraction as well as reducing the
noise interference).

(2) An instance segmentation is introduced for defects segmentation and identification
for each object of defects with different specimens to predict each irregular shape of
defects instance in the input images at the pixel’s level.

The remainder of the paper is structured as follows: Section 2 provides the pulsed
thermography and related experimental set-up. Section 3 gives a detailed explanation
of the Mask-RCNN defects detection system and the synthetic data generation pipeline.
Section 4 describes the main features and dataset for evaluation. Section 5 provides the
experimental results and implementation stages, including the comparison with states-of-
the-art object detection algorithms (YOLO-V3; Faster-RCNN). Section 6 furtherly discusses
and analyzes experimental results. Section 7 concludes this paper.

2. Thermophysical Consideration

In pulsed thermography (PT), the surface of the inspected specimen is exposed to a
heat pulse using an energy source such as photographic flashes, as indicated in Figure 1. A
heat pulse can be represented as the combination of several periodic waves having different
frequencies and amplitudes. After the thermal front reaches the surface of the specimen, a
thermal front travels from the surface through the specimen. As time elapses, the normal
path of the thermal front changes due to the presence of the subsurface discontinuity, and
leads to the thermal contrast at the specimen’s surface, which can be monitored with an
infrared (IR) camera. The one-dimensional solution of the Fourier equation of conduction
for a Dirac heat pulse propagating through a semi-infinite isotropic solid has the form [19]:

T(z, t) = T0 +
Q√
kpct

e
(
− z2

4αt

)
(1)

where Q
[
J/m2] is the energy absorbed from the surface, and the initial temperature

is T0 [K]. p
[
kg/m3] is density. The specific heat at constant pressure is c [J/kgK].

K [W/mK] is the thermal conductivity that indicated the energy transformation rate by the
materials. α[m2/s] is the thermal diffusivity to measure the material ability to conduct heat,
and Z [mm] is the depth of the defect. At the surface (z = 0), the temperature evolution can
be written as follows [20]:

T(0, t) = T0 +
Q√
kpct

(2)

From Equation (2), it can be concluded that the temperature evolution at the surface
following a Dirac heat pulse follows a monotonous decrease with a slope of −1/2 for areas
without defects, whilst areas with defects will diverge more or less from this behavior
depending on their actual thermo-physical properties.

3. Automatic Defect Segmentation Strategy

As indicated in Figure 2, a detection system training with, for most intents and pur-
poses, data generated by a computer simulation can be seen as synthetic data; experimental
data has been proposed to segment and identify defects in thermal images. This design
of this detection system is based on Mask R-CNN. The infrared thermal sequences are
acquired by pulsed thermography (PT). Then, both the raw and synthetic sequences are
preprocessed with the bilateral filtering and the thresholding technique. Therefore, two
different characteristic datasets (raw data; synthetic data) are generated respectively, to be
trained with Mask-RCNN in different combination cases. In the final step, delamination is
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identified through the deep region convolutional neural network and then visualized with
the bounding box or instance segmentation map.
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3.1. Mask-RCNN

Convolutional Neural Networks (CNN) are utilized as a supervised feature extractor
to analyze the defect localization and segmentation from materials. The Region based-CNN
(R-CNN) [21] move toward the object bounding box detection method based on each region
of interest (ROI). Faster-RCNN [11] have further advanced the network via learning the
attention mechanism with a Region Proposal Network (RPN). Mask R-CNN [4] extends
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from Faster-RCNN through a mask branch construction. It is an instance segmentation
algorithm, which recognizes object boundaries at the pixel level and designs pixel-wise
segmentation with alignment of pixel-to-pixel among the input and output. Mask R-CNN
adopts the same two-stage with Faster-RCNN architecture. During the first stages, the
input images were scanned, and the proposals were generated via the Region Proposal
Network (RPN). In the second stage of detection, it included two total branches. At the
first branch (the blue line box at the top in the Figure 3), it predicted classification scores
to tell what is the category corresponding to that region of proposal (whether or not it is
background). Each of the bounding box coordinates that regressed off the region proposal
coordinates was indicated. At the second branch (the red line box at the bottom in the
Figure 3), it added a binary mask regarding each ROI as a mini semantic segmentation
network [22] to classify for each pixel in that input region proposal whether or not it is an
object. Mask R-CNN is intended to address the instance segmentation task and aims at
adjusting the plentiful hyper-parameters from the neural network. This model predicts a
certain number of bounding boxes for the defects, while each defect region is segmented
within the bounding boxes at the same time. The architecture is shown in Figure 3. The
loss function of Mask-RCNN in Equation (3) consists of five different terms:

1. RPN_class_loss: The performance of objects can be separated from background via
RPN;

2. RPN_bounding_box_loss: The performance of RPN to specify the objects;
3. Mrcnn_bounding_box_loss: The performance of Mask R-CNN specifying objects;
4. Mrcnn_class_loss: The performance of classifying each class of object via Mask R-

CNN;
5. Mrcnn_mask_loss: The performance of segmenting objects via Mask R-CNN.
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In these five terms, when the cost loss values are smaller, then performance improves.

Lcost = L_(rpn_class) + L_(rpn_bbox) + L_(mrcnn_bbox) + L _(mrcnn_class) + L_(mrcnn_mask) (3)

3.2. Synthetic Data Generation Pipeline

Synthetic data are computed information rather than data collected from real-word
events [16]. The main application involves using synthetic data as a training dataset. The use
of synthetic data provides several benefits; one of the most interesting is that it is possible to
generate large databases to train, modify, and create new variables and features on individual
data cases. Another advantage is that labeling is quite straightforward and precise.

Finite Element Modeling (FEM) has become a practical tool to evaluate the thermal
response of pulsed thermography. It is also intended for predicting and simulating the results
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of Thermal NDT (Non-Destructive Testing) experiments and allows the solving of three-
dimensional heat conduction problems in samples containing surface and subsurface defects.
This plexiglass sample (30 cm × 30 cm) was designed with 25 flat bottom holes (FBH), which
are located at increasing depths in either circles or square shapes, as indicated in Figure 4a.
Figure 4b shows the pulsed thermography result of a plexiglass synthetic sample from FEM
simulation at t = 106.5 s after heating, which indicates defects more distinctly compared to
the corresponding experimental frame at the same time shown in Figure 4c. A good corre-
spondence temperature of the region is observed, which verifies that synthetic modeling in
FEM is in outstanding accordance with the real experiment [23]. The detailed implementation
procedure for using deep neural networks with FEM is described in Figure 5. The training of
synthetic data generated by FEM provides clean and automated supervision data compared
to the other numerical methods such as boundary element methods [24] and finite volume
methods [25], where most other numerical computational methods are highly non-linear
and have uncertainty issues with respect to quantification and simulation. In addition, the
learning process can be abundantly simplified since both synthetic and experimental data are
governed by the same heat transfer principles. Specific feature positioning and extraction for
less visible defect regions can be referenced from the synthetic data.
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3.3. Automatic Preprocessing Stage

The main purposes of the preprocessing stage (Figure 6) are to make defects more
distinguishable from the cluttered background of the thermal sequence and to normalize
data. The bilateral filtering and thresholding techniques present in [26] were adapted for the
preprocessed stage in this work so as to be the reference database. In step 1, the bilateral
filtering removes noise from the thermal image while preserving feature edges. Secondly, two
thermal criteria are applied in a thermal image sequence acquired from pulsed thermography:
(1) 1st thermal criterion: automatically determine the instant just before the appearance of
the first thermal footprint belonging to a defect (reference point); (2) 2nd thermal criterion:
automatically find the intersection point between the overlap of each of the thermal image
histograms after the reference point and the thermal image histogram corresponding to the
reference point. In the end, the pixel values above the corresponding intersection point are
equal to this value. Pixel values corresponding to the thermal images after the reference point
are multiplied by a scale in Equation (4). The final result of this method is believed to be fitted
with the convolutional neural network stage thereafter.

Scale Value =
(Max_pixel_value − Min_pixel_value)corresponding to the ′n′ thermal a f ter Step1
(intersection point − Min_pixel_value)corresponding to the ′n′ thermal a f ter Step1

(4)
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4. Dataset and Features

The experimental samples and databases are acquired from two different materials: plex-
iglass and CFRP (carbon fiber-reinforced polymer). Two independent experimental groups were
set up based on these materials. The whole database consisted of 500 images
(446 × 446 pixels each). Six sub datasets were formed respectively from the two materi-
als: plexiglass (A; B; E) and CFRP (C; D; F), which collected specific instants (5 s; 15 s; 25 s . . . )
from 20 different thermal sequences during the temperature evolution in pulse thermography
for both regarding training and validation data in order to avoid redundant information.

Based on the two types of images, 200 synthetic thermal images were generated
with COMSOL, and 200 raw thermal images were collected from pulsed thermography
experiments. Four groups of training databases were created based on the images we
collected in the previous steps:

1. Database A, C: (Original database) 100 raw thermal images from thermal sequences
with corresponding time;

2. Database B, D: (Mixed database) 100 raw thermal images with 100 new synthetic
images; both selected from the same corresponding time;

All thermal images in the four training databases (A; B; C; and D) were preprocessed
by the method in Section 3.3 in order to enhance the defect contrast.

Two raw (without preprocessing) thermal databases (E; F) (each consisting of
50 images) were used to validate the trained model (Mask-RCNN). These sequences,
which have different shapes and depths of defects, were compared with the sequences dur-
ing training. For sake of consistency, the raw thermal plexiglass database E was validated
on the learning model trained on plexiglass (A, B), whilst the raw thermal CFRP database
F was used to validate the learning model trained on CFRP (C, D). The defect labels and
instance are shown in Figure 7, which includes the following shapes: circle, multilateral;
square, rectangle; multi-angle of defect instances. LabelMe Image Annotator [27] was
employed to label each defect region on the images; this allowed giving a simple and
standard manual annotation for all of the images.
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5. Experimental Results and Implantation Details
5.1. Evaluation Metrics (Average Precision (AP) and Probability of Detection (POD))

Average precision (AP) [28] is introduced to evaluate the performance capability of
the detection model, which is analyzed by Equations (5) and (6).

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

where TP is the true positive rate. FP is the false positive rate, which indicated that defects
are in the non-defects regions and are falsely detected as defects. FN is the false negative
rate, representing a certain number of the defects that failed to be detected during this
experiment. Precision represents the accuracy of the prediction from the performance of
the model. Recall represents the performance of the model to find all the possible positive
cases in top priorities predictions.

In this work, a definition of Probability of Detection (POD) [29] (Equation (7)) also
has been introduced to measure how reliable the non-destructive texting automatic in-
spector will be for a given case. POD is a specific metric especially for characterizing and
quantifying defect analysis in NDT methods.

POD =
TP

TP + FN
(Con f idence score = 0.75) (7)

The mathematical equation of POD keeps the same mathematical format as Recall
in Equation (6), but they have different descriptions and explanations. In Equation (7) of
POD, TP refers to true positive cases, which represent flaws in the system that the method
can identify; FN refers to a false negative case, which indicates that the system has a flaw
but the method cannot identify it. As a result, POD indicated how many flaws can truly be
detected in a system from the whole amount of positive detected flaw cases.
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In addition, we also introduced a definition herein for the further discussion of POD
and defect classification-confidence score [30]. The confidence score can illustrate to which
degree it is possible that the actual region boundaries overlap with the predicted defect
region boundaries. In this work, our confidence score is set up as 0.75, which was selected
as an acceptance criterion to define the percentage of the ground truth boundaries overlap
with the predicted defect region boundaries for segmentation.

Therefore, the Probability of Detection (POD) assesses the performance of the Mask-
RCNN (with synthetic data/without synthetic data) from the non-destructive evaluation-
based inspection (NDE), which could determine the capability of the detection as a function
of defect type. The probability of detection can form a core mathematical equation for
examining and evaluating of the materials, which is also recognized as the quantitative
evaluation tool involving the human factor and the various inspection parameters.

5.2. Main Results Analysis and Discussion

The operating system is set as Ubuntu 14.04; CPU: i7-5930k; Memory: 64GB. Each
training processing was conducted on a GPU (NVIDIA GeForce GTX 1080Ti) and required
approximately 30 min. Some main hyper-parameters and training parameters are set as
below: (1) The Network training used Resnet101 as a backbone; (2) The learning momentum
is 0.9 and learning rate is 0.0003; (3) The first 30 epochs were trained on network heads;
then, all network layers were trained for 1030 epochs, the model weight (in h5 format)
used was COCO (could be replaced with the original weight model file). This could be
improved if a similar binary segmentation weight model was used; (4) The weight decay is
0.0001 and mini mask size is 56 × 56.

5.2.1. Segmentation Results and Learning Curves

As shown in Figure 8 below, the segmentation results of five examples Figure 8a–e from
the Mask-RCNN model are indicated. The segmented results in the middle column were
the validated results from the model trained on raw images after preprocessing (Database
A, C). The segmented results in the right column were the validated results from the model
trained on raw images merged with synthetic images after preprocessing (Database B,
D). Meanwhile, in the first three rows, the results from plexiglass specimens (Validation
Database E) are shown. The last two rows show the results for CFRP specimens (Validation
Database F). The segmented defects from obtained images clearly show the improvement
when trained on raw images merged with synthetic images after preprocessing in Figure 8.
Although each segmented region has different color, all the colorful regions in the images
represent true positive detective cases.

In addition, we can see the segmented results from the last column in Figure 8. When
the model is trained with raw images (in the middle column), then the model is able to
detect 12 defects out of 25 defects in the whole specimen with limited raw images during
the validation. Each detected defect is covered by a solid mask. It is notable that the model
produces one false positive defect case by highlighting one non-existing defect on the image
and 13 false negative defects (less visible defects, which are difficult to detect). Further, in
the right column, when the training of the databases was increased with synthetic data, the
trained model is able to detect 17 defects in total. However, four false positive and false
negative cases still appear on the image.

The learning loss indicated how well the learning model performed. In this experi-
ment, Figure 9a,b showed the acquired average loss curve of the training and validation on
Database A, B. The loss has a certain range of oscillation during the first 800 epochs in both
Figure 9a,b; then, it decreases less rapidly after 800 epochs until it flattens out. The cost
curve is decreasing as the batch number increases and converges approximately from 0.25.
Correspondingly, Figure 9b,c indicate the learning curve with training and validation on
Database C, D. The learning curve of the training and validation for Database D became
more stable compared with the curves in Figure 9c. Although the validation loss from
Figure 9c is instantly unstable around the point of the 380th epoch, the learning curves
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of training and validation (Database C, D) eventually converge around 0.2 around the
1000th epoch. Meanwhile, the model accuracy of the validation from Database A, B, C, D
in this experiment is respectively 0.990, 0.996, 0.98738, and 0.98738. We obtained the model
accuracy from four different training databases: B (0.996) > A (0.990) > C (0.987) = D (0.987).
As a result, the obtained model accuracy from four groups of databases is impressive and
shows the good performance during the training and validation when the Mask-RCNN
model is used for defect segmentation of plexiglass and CFRP specimen in this project.

5.2.2. Precision–Recall Curves (PR Curves)

Precision–recall curves [31] for the Mask-RCNN architectures trained on four different
groups of databases are shown in Figure 10. This figure indicated two PR curves for
training sets of plexiglass specimens (preprocessed raw images database (A); synthetic
images merging with raw images database from preprocessing (B)); an independent pure
raw images validation set without preprocessing (E)) and two PR curves for training sets of
CFRP specimens (preprocessing raw images database (C); synthetic images merging with
raw images database from preprocessing (D); an independent pure raw images validation
set without preprocessing (F)). The mean average precision (mAP) values in databases A,
B, C, and D respectively reach 68.66, 76.40, 70.29, and 72.68 as shown in Figure 10.
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During the training of Database (B, D), Mask-RCNN has seen limited preprocessed
raw thermal images (100 images) merging with preprocessed synthetic data (beyond
pretraining of the early layers on COCO [32]). The mAP values in the mixed database (B,
D) are higher than those of Databases (A, C) (B (76.40) > A (68.66); D (72.68) > C (70.29)).
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From the plot of the PR curves, Database B achieves higher precision than Database A
consistently for all of the recall values in the Mask-RCNN model. On the other hand,
database D consistently obtained lower precision than database C between the recall values
from 0.5 to 0.55. This helps explain that the plexiglass database obtained the higher mAP
difference compared with CFRP between the training of raw images and the training from
databases merging with synthetic data.

In each region of interest (ROI), this experiment obtained better results with the
performance metric of precision and recall values compared with another cited deep
learning IRT project [5,33]. Especially, the plexiglass obtained a superior performance of
mAP from Mask-RCNN when it was merged with synthetic data for training compared
with the highest mAP value obtained from previous research. This compelling performance
also illustrates the ability of synthetic data to bridge the reality gap and demonstrates
that merging with synthetic data for training can improve the accuracy in both types of
material (CFRP; plexiglass). As a result, the training model merged with synthetic images
could be able to outperform databases with pure raw thermal databases in deep learning
IRT projects.

5.2.3. Evaluation with Probability of Detection

The Probability of Detection has been successfully applied for analyzing the detection
capability of materials from Mask-RCNN. In this study, the POD was classified as a function
of an aspect ratio r = diameter (D)/depth (d). Each POD point on the curve corresponds
to a specific aspect ratio from a particular diameter (D) and depth (d). As indicated in
Figure 11a, the red POD curve (Database B) maintained the highest POD curve from the
whole aspect ratio, which indicated that the Mask-RCNN with synthetic data detected the
largest percentage of defects in plexiglass specimens. Simultaneously, the POD of Database
B is better than the corresponding POD curves (Database A), confirming that synthetic
data merged with raw data can contribute to achieve better performance as compared to
the model trained with raw data only. Based on these results, the POD of the databases
that merged with synthetic data (B; C) has a better detection capability than any other
database without synthetic data (A; D), revealing that merging the raw databases with
synthetic data could be a reliable procedure for a deep learning model (Mask-RCNN),
enhancing the capability of automatic defect segmentation and identification. The pink
POD curve (C), which represents the CFRP database training with synthetic data, has
an overall higher detection probability than the blue curve (D) (CFRP database training
without synthetic data). However, in comparison with the POD curve (A; B), the POD
curve (D) shows a lower detection performance than the POD curve A due to data diversity
and data augmentation capability (different defect shapes and multiple angles, diverse
formatted defects) that PLEXI databases have. As a result, PLEXI databases outperformed
CFRP databases on the probability scores in this case.

5.2.4. Defect Classification Analyses

As indicated in Table 1 below, the detection with defects in each training database (A,
B, C, D) by the Mask-RCNN algorithm in pulse thermography has been investigated with
the objective to measure the global accuracy in each database [34]. Four confusion matrixes
from training databases A, B, C, and D have been indicated, where TP = True Positive,
FP = False Positive, TN = True Negative, and FN = False Negative. Each column of the
matrix stands for the objectives in the actual class; simultaneously, each row of the matrix
stands for the objectives in the predicted class.
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Table 1. Class mark list—comprehensive results.

Database A/E * B/E *

Actual Class

Class Defect Non-defect Defect Non-defect

Predicted Defect TP: 1785 FP: 229 TP: 2060 FP: 199
Class Non-defect FN: 456 TN: 291 FN: 181 TN: 321

Database C/F * D/F *

Actual Class

Class Defect Non-defect Defect Non-defect

Predicted Defect TP:1442 FP: 257 TP: 1610 FP: 225
Class Non-defect FN: 358 TN: 296 FN: 190 TN: 328

* Training database/Testing database.

The results from detection have shown an excellent performance when the original
database was merged with synthetic data based on the number of well-classified labels.
The approximately average prediction of each database is shown in the Table 1. We set up
the confidence score threshold as 75% of probability of detection to distinguish TP, FP, TN,
and FN cases.

As mentioned earlier, the objective in this research is to automatically extract and
segment the features (i.e., defects) that could be found in each thermal frame. Each
classification may either be a defect or a non-defect region in this task. In data science,
an effective metric to validate the performance of a detection algorithm widely used in
the deep learning applications is the confusion matrix [35]. In the confusion matrix, each
matrix is set up 2 × 2, where 2 is the number of classes in the dataset. The row elements of
a confusion matrix represent the classes to which the features of the image belong, either to
the feature region of a defect or a non-defect. Its columns, on the other hand, represent the
classes given by the Mask-RCNN during the segmentation process.

Generally, in this case, based on Table 1 (confidence score = 75%), the testing Database
E with the training Database A, 1785 defects were segmented correctly, 456 were missed,
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229 non-defect regions were detected as defects, and 291 non-defect regions were correctly
labeled as non-defects in this experiment. In the case of testing Database E with the train-
ing Database B, 2060 defects were detected correctly, 182 were missed, 199 non-defect
regions were detected as defects, and 321 non-defect regions were correctly labeled as
non-defect in this experiment. In the case of the testing Database F with the training
Database C, 1442 defects were detected correctly, 358 were missed, 257 non-defect regions
were detected as defects, and 296 non-defect regions were correctly labeled as non-defect
in this experiment. In the case of the testing Database F with the training Database D,
1610 defects were detected correctly, 190 were missed, 225 non-defect regions were detected
as defects, and 328 non-defect regions were correctly labeled as non-defects in this experi-
ment. Then, it can be concluded from the confusion matrix that after merging with synthetic
data, Mask-RCNN leads to a superior performance in defects detection than the results
obtained previously.

In addition, the global accuracy Acc given in the corresponding training databases (A–D)
and test databases (E, F) in Figure 12 is defined in Equation (8). The implementation of the
deep leaning model (Mask-RCNN) used for the whole validation process is set according to
the principle as follows: the specific testing Dataset (E) corresponding to the training data (A,
B); the specific testing data (F) corresponding to the training data (C, D) respectively.

Acc = Average total accuracy =
correctly classi f y regions

Total number o f evluated regions
(8)
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5.2.5. The Comparisons with State-of-the-Art Deep Learning Detection Algorithms

In this session, YOLO-V3 and Faster-RCNN have been selected as the state-of-the-art
object detectors to compare with the performance of Mask-RCNN when it is merged with
the synthetic data or without during the training. A CFRP specimen has to be validated
on four different training situations from Database C, D in Section 4 for three types of
object detectors in Figure 13, which included (a) Mask-RCNN training with Database C;
(b) Mask-RCNN training with Database D; (c) YOLO-V3 training with Database C; and
(d) Faster-RCNN training with Database C.



Big Data Cogn. Comput. 2021, 5, 9 16 of 20

Big Data Cogn. Comput. 2021, 5, x FOR PEER REVIEW 16 of 21 
 

5.2.5. The Comparisons with State-of-the-Art Deep Learning Detection Algorithms 

In this session, YOLO-V3 and Faster-RCNN have been selected as the state-of-the-art 

object detectors to compare with the performance of Mask-RCNN when it is merged with 

the synthetic data or without during the training. A CFRP specimen has to be validated 

on four different training situations from Database C, D in Section 4 for three types of 
object detectors in Figure 13, which included (a) Mask-RCNN training with Database C; 

(b) Mask-RCNN training with Database D; (c) YOLO-V3 training with Database C; and 

(d) Faster-RCNN training with Database C. 

(a) without synthetic data (Master-RCNN) (b) with synthetic data (Master-RCNN) 

  
(c) YOLO-V3 (d) Faster-RCNN  

  

Figure 13. Detection results on a reprehensive CFRP specimen provided by different objective 

detection algorithms or scenarios (a) Master-RCNN without synthetic data; (b) Master-RCNN 

with synthetic data; (c)YOLO-V3; (d) Faster-RCNN. 

It can be seen from the Figure 13 that when Mask-RCNN was only training with ex-

perimental data in Figure 13a, it obtained similar accuracy based on comparing the results 

those of with YOLO-v3 in Figure 13c and Faster-RCNN in Figure 13d. However, after the 

training databases merged with synthetic data in Figure13b, the results from Mask-RCNN 

outperformed the other three different situations.  

On the other hand, frames per second (fps) [36] has been introduced as a concept to 

verify how many pictures can be processed in a unit time (one second) by an objective 

detector in order to evaluate the running time complexity for each detector. In Table 2, the 

time complexity of three deep learning algorithms have been illustrated. In this experi-

ment, during the training processing being conducted on GPU (NVIDIA GeForce GTX 

1080Ti YOLO-V3, three deep learning detectors YOLO-V3, Mask-RCNN, Faster-RCNN 

running are 15 fps, 5fps, and 1fps, respectively. As a result, comparing with Mask-RCNN 

and Faster-RCNN, YOLO-V3 has the highest running time speed to process images due 

to the reason that YOLO-v3 is a one-stage real-time detector, and it has a much faster 

speed than other detectors (Mask-RCNN; Faster-RCNN), which are two-stage procedures 

Figure 13. Detection results on a reprehensive CFRP specimen provided by different objective detection algorithms or
scenarios (a) Master-RCNN without synthetic data; (b) Master-RCNN with synthetic data; (c)YOLO-V3; (d) Faster-RCNN.

It can be seen from the Figure 13 that when Mask-RCNN was only training with
experimental data in Figure 13a, it obtained similar accuracy based on comparing the
results those of with YOLO-v3 in Figure 13c and Faster-RCNN in Figure 13d. However,
after the training databases merged with synthetic data in Figure 13b, the results from
Mask-RCNN outperformed the other three different situations.

On the other hand, frames per second (fps) [36] has been introduced as a concept to
verify how many pictures can be processed in a unit time (one second) by an objective
detector in order to evaluate the running time complexity for each detector. In Table 2, the
time complexity of three deep learning algorithms have been illustrated. In this experiment,
during the training processing being conducted on GPU (NVIDIA GeForce GTX 1080Ti
YOLO-V3, three deep learning detectors YOLO-V3, Mask-RCNN, Faster-RCNN running
are 15 fps, 5fps, and 1fps, respectively. As a result, comparing with Mask-RCNN and
Faster-RCNN, YOLO-V3 has the highest running time speed to process images due to the
reason that YOLO-v3 is a one-stage real-time detector, and it has a much faster speed than
other detectors (Mask-RCNN; Faster-RCNN), which are two-stage procedures (Region
Proposal Network (RPN); ROI pooling). However, as indicated in Figure 14, Mask-RCNN
still obtained higher POD scores during the whole validation process when it merged with
synthetic data based on the different ratio values (size/depth).

Table 2. Running time complexity comparison with state-of-the-art methods.

Running Time Complexity YOLO-V3 Mask-RCNN Faster-RCNN

Frame per second (FPS) 15 5 1
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6. Result Analysis and Discussion

The main objective of synthetic data in this project is to enlarge the datasets when you
only have limited raw experimental data. Synthetic data can more easily generate a dataset
with a large amount of variety. Small raw training databases merging with synthetic data
can help detect most of the defects successfully while avoiding expensive experiments.
As we can see from Section 5.2.2, Figure 10, which shows the performance of the definite
and regularly used evaluation metric (precision and recall), higher average precision gives
better results when trained on the data merging with synthetic data than when trained on
the raw data only. Therefore, we are able to boost the model performance by feeding the
synthetic data to merge or replace the actual one.

This confirmed that in different situations, when the synthetic data merged with the
sample, it can actually benefit the learning network, enabling it to learn and understand
the pattern by (a) generating more significant samples than the original available data,
which is limited; (b) providing more data of any specific minority cases (for example, the
highly expensive thermal data of the CFRP samples, which is difficult to obtain) in order
to avoid the underrepresentation or underperformance situation for automatic defects
segmentation.

Comparing with the up-to-date CNN defect detection work [4–8] in infrared thermog-
raphy as mentioned in introduction, the Mask-RCNN model merging with synthetical
data has become the most flexible method that has the capacity to obtain the improvable
performance. Especially in pulsed thermography, too little data might be available and
obtained in the realistic experiment. It is always too expensive and time-consuming to
training with the additional thermal data during the training and defect detection by the
deep learning algorithm. Therefore, the generated synthetic data show their ability to
support this case. As indicated in Figure 11 of Section 5.2.3, the POD curve of Database
D exceeds the POD curve of Database C from all aspect ratio values (size/depth), which
illustrated that synthetic data have the potential to immensely improve performance in
regard to defect detection for CFRP and plexiglass specimens. On the other hand, in
the defect classification analysis in Figure 12 from Section 5.2.4, the global accuracy Acc
increasing predominately from the testing results when the trained system performed with
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Database B and Database D, which further demonstrated that a trained system merged
with synthetic data may beneficial for detecting and identifying defects.

As shown in the results from different objective detectors indicated by the POD eval-
uations from Figure 14 (Section 5.2.5), it is obvious that YOLO-V3 obtained comparable
accuracy with the Mask-RCNN method during the whole validation process, while the
Faster-RCNN gave mediocre performance. However, after merging with synthetic data,
our proposed method shows excellent performance because the data augmentation strategy
has a strong effect on the capability of the Mask-RCNN model to capture less visible defects
and separate low-rank non-defect information from the thermal data, after which the mean-
ingful features remain. It is worth mentioning that the proposed method (Mask-RCNN)
maintains the highest accuracy in POD evaluation when it encounters the challenging
and lowest (0–5) aspect ratio value (size/depth). With all task-driven objective detectors
based on the deep learning architecture, the proposed method keeps the highest accuracy
results over the other state-of-the-art algorithms. This excellent performance is thanks to
the capability of the synthetic data generation pipeline’s data augmentation strategy to
segment the defects from the multi feature distribution.

Furthermore, as mentioned in Section 3.2, the COMSOL is capable of creating high-
quality synthetic thermal data from scratch on specific data points and the same heat
transfer principles setting from pulsed thermography. However, based on the results, there
is still some room for improvement. The defects from synthetic data (COMSOL) may still
have blurry boundaries and unclear shapes that influence the training results from learning.
Mask-R-CNN is robust to the limited size of synthetic data and is more likely to overfit
unless the data increase the augmentation (rotating, flipping images, or random Gaussian
noise). We applied the following data augmentation strategy: flip, rotation, scale, crop and
adding the Gaussian noise to each individual synthetic and raw image. We stopped all the
training during the time of the performance, nearly saturating with the overfitting.

In additional, in this task, we used Resnet101 [37] as a feature extractor with weights
initialized from COCO in Mask-RCNN. Since the weights from COCO obtained the features
trained by a group of datasets that contain basic lines and shapes of the objectives (circle,
square, rectangle), it can be beneficial to the defect detection to a certain degree even
without training with thermal images. So, the selection of beneficial initial weights from
the pretrained models could be a key training strategy to apply for the future direction of
research in deep learning IRT.

In future work, the other available thermography methods in the literature will be
implemented with Mask-RCNN and a synthetic data generation pipeline to further exploit
its possibility to enhance its capability of defect detection. A modified version of the
Mask-RCNNN network will be introduced for enhancing its training performance. The
further plan can be also illustrated as follows: (a) enhancing the training performance by
adjusting the key parameters and structure in Mask-RCNN; (b) exploitation of variety
software in Finite Element Modeling for generating synthetical data for defect detections
for comparison with COMSOL; (c) Mask-RCNN with a synthetic data generation pipeline
test with other NDT techniques to evaluate the performance of defect analysis.

7. Conclusions

In summary, we present a method where the deep learning architecture is combined with
a small amount of synthetic thermal data for defect segmentation. The proposed architecture
is based on a Mask-RCNN that has been applied in natural image segmentation. We collected
our thermal database from the experimental results and synthetic data in the Finite Element
Model (COMSOL). The network yields a better performance when it is fused with synthetic
data for training. Meanwhile, different types of composite materials (CFRP; plexiglass) with
defects have been validated via the proposed method to reveal the performance of detection.
The proposed algorithm, Mask-RCNN without modification, is in line with the main objective
in this work, which is to assess whether synthetic data can improve the detection accuracy
of defects on the CFRP or plexiglass composite samples. Further quantitative analysis of the
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diameter/depth ratio with POD evaluation in defect detection with a modified structured
Mask-RCNN network will be carried out in future work.
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