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Abstract: The world population currently stands at about 7 billion amidst an expected increase in
2030 from 9.4 billion to around 10 billion in 2050. This burgeoning population has continued to
influence the upward demand for animal food. Moreover, the management of finite resources such as
land, the need to reduce livestock contribution to greenhouse gases, and the need to manage inherent
complex, highly contextual, and repetitive day-to-day livestock management (LsM) routines are
some examples of challenges to overcome in livestock production. The Internet of Things (IoT)’s
usefulness in other vertical industries (OVI) shows that its role will be significant in LsM. This work
uses the systematic review methodology of Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) to guide a review of existing literature on IoT in OVI. The goal is to identify
the IoT’s ecosystem, architecture, and its technicalities—present status, opportunities, and expected
future trends—regarding its role in LsM. Among identified IoT roles in LsM, the authors found that
data will be its main contributor. The traditional approach of reactive data processing will give way
to the proactive approach of augmented analytics to provide insights about animal processes. This
will undoubtedly free LsM from the drudgery of repetitive tasks with opportunities for improved
productivity.

Keywords: IoT technologies; IoT ecosystem and architecture; artificial intelligence; big data; cloud
computing; 5G nexus; PRISMA methodology

1. Introduction

The world population currently stands at about 7 billion. This number is bound to
increase according to projections between 9.4 billion and 10.1 billion in 2030 and 2050,
respectively [1,2]. In this rapidly growing world population, the upward demand for
animal food (UDfAF) is inevitable. On the one hand, the inherently complex nature
of livestock farming, the gradual reduction in the global workforce, and the increasing
production cost of food [2] would increasingly make it difficult to meet the UDfAF. On
the other hand, there is the management of finite resources like land, the need to reduce
livestock contribution to greenhouse gases, and the need to manage highly contextual and
repetitive day-to-day routines in livestock management (LsM) as additional challenges to
overcome in livestock production. With this burgeoning population, more challenges are
likely to join this list.

Interestingly, the world is at the cusp of witnessing another phenomenon that will
rely on IT. Named “the fourth wave of human life” [3]. This fourth wave or “cyber-age”
would usher on the Internet of Things (IoT) through which almost everything would be
controlled [3–5]. Progress regarding its emergence has culminated in the birth of disruptive
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and retrofit technologies such as sensors, actuators, and other IoT-compliant technologies.
These sensors and actuators are retrofittable. In the information and communication envi-
ronments, networks, objects, or “Things” become smart and evolve into IoT technologies
(IoTTs) that interact with each other and act autonomously. Smart farming in the literature
is inclusive of precision livestock farming (PLF) that is conceptualized as the farm manage-
ment approach that support the use of IoT [2]. In [6–8], as in other related literature, the
role of IoT in the management of livestock to overcome the type of challenges (and more)
highlighted earlier regarding animal food production is not clear. Additionally, the barriers
to overcome the adoption of IoT has not been addressed in the literature regarding LsM.
The purpose of this paper is to fill this gap using a systematic review methodology.

There is a significant body of literature on IoTT from several sources, such as wikis,
blogs, proceedings from conferences, forum posts, journal papers, etc. For example, [2]
used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
methodology to survey the use of IoT within the agriculture economics context with a
specific focus on hydroponics. In comparison with [2], this study focuses on LsM instead
of hydroponics. While the survey carried out by [8] was about the next generation of PLF
technologies, [7] reviewed the aspect of commercializing PLF technologies, and [6] apprised
PLF regarding the technologies that are available for the swine industry. In contrast to [6–9],
this study emphasises the possibilities and opportunities for LsM when IoTT work with
technologies such as the ones re-counted in [6–9]. This paper used the systematic literature
survey (SLS) methodology—PRISMA to survey existing literature to identify the role of
IoTT in LsM and its adoption barrier in LsM.

This paper makes its contribution by explaining the model of IoT. This model is
typified as illustrated in Figure 1. The diagram depicts the use of a multi-layer smart
method to manage livestock.

Figure 1. Illustration of a multi-layer smart Internet of Things (IoT) approach for livestock management.
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The smart method is made up of four layers, namely the cloud, edge, physical, and
network layers. The cloud layers is made up of the virtual server with the presence of
big data analytics. There is also the presence of database clusters with potential for data
visualization and enabled machine learning (ML) and artificial intelligence (AI) potentials.
The edge layer is where the users’ computational activities are enabled with the existence
of ML and AI models and data processing capability, among other features (See Figure 1).
The physical layer is the layer responsible for enabling the sensors that are retrofitted
into animal far equipments and placed strategically on the animals to collect data and
make them available computation and sundry feedback. The network layer performs the
function of offering the gateway to allow data communication and sundry connectivity.
This is where the 5G and the soon coming 6G network operates to allow a faster Internet.

The IoT ecosystem is also presented along with its driver and enabling technologies.
The context of disruptive technology and the five-layered IoT architecture instead of the
three layers identified in [2] are presented as contributions in this paper regarding IoTTs’
management potentials (i.e., role) in LsM. Emphasis was also particularly given to the
barriers that could hinder the adoption of IoTT in LsM that [2,6–8] and others excluded
in their surveys. The elements of IoT (i.e., features) are highlighted as the key factors that
make IoT uniquely positioned to drive LsM in the 21st century. On the one hand, the
review offers information, which stakeholders can rely on to understand IoT’s use within
the context of LsM to encourage further research towards better services in LsM. On the
other hand, the methodology of PRISMA offers a benefitting and useful tool to study the
critical role of a favoured method in a review that seeks to enlighten and encourage the
rethinking of classic methods. This paper also sheds light on the state of IoT knowledge
to clarify possible contradictions and pioneered the stimulation of broad unanimity (i.e.,
consensus) regarding the use of IoT for LsM.

This review is structured as follows. Section 2 presents IoT concepts, and Section 3
shows the review methodology used for the survey. Section 4 introduces IoT as a cyber
physical system and example algorithms to drive its potentials. Section 5 presents the
application of IoT and its usefulness in LsM. Section 6 discusses IoT’s opportunities for
LsM. Section 7 summarises some possible future directions, the role of IoTs, and the barriers
to its adoption in LsM. In Section 8, the cost implication of using IoTs to manage livestock
is discussed, while Section 9 concludes the paper.

2. Concepts

It is important to enlighten on the basic concepts of IoT to help understand the role
and use of IoT in LsM in this 21st century. Hence, IoT as a paradigm, its ecosystem, and
architecture are presented in this section to indicate its role regarding the possible solution(s)
it will provide in LsM. IoT’s supporting and main technologies (i.e., the technologies
that enable it to be a paradigm) as well as its technicalities in the livestock context are
also presented.

2.1. IoT Ecosystem and Players

In the deployment of IoTTs concerted technical assistance (CTA) is required. This
brought about the existence of IoT ecosystem (IoT-E) (see Figure 2). The IoT-E is a concep-
tion that captures the key players that are responsible for providing the CTA. The result
of a desk research review of the literature on IoT-E of which a summary is captured in
Figure 2a showing that the ecosystem is made up of five key (industry) players. These
players make both technical and device contributions in relation to the technical needs
that are captured in the IoT five-layer architecture shown in Figure 2b. The big circle
in Figure 2a seeks to show the possible areas of IoT application generally. The area of
application is, however, not limited to what is listed within the big circle, since as more
disruption occurs in the use of IoT, more areas are bound to be included. Example of
some key players are Microsoft, IBM, Amazon, and Google, etc. In the depicted IoT-E in
Figure 2a, these players fall within two types of players—application and solution provides
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(A&SP) and developers of software platforms (DoSP)—because of the type of services they
offer within the ecosystem. These services are provided at affordable costs with minimal
technological barriers and within simplified IoT application development processes [10].
The other three key players’ categories are: developers of hardware platforms (DoHP),
developers of network technology (DoNT), and users and consumers (U&C). These services
are captured using contribution in Figure 2a. IoT-E is meant to encourage and strengthen
standards globally and make IoT easy to adopt for use at different scale.

Figure 2. (a) A typical IoT ecosystem with (b) architecture.

The IoT architecture (see Figure 2b) helps stakeholders (players) to see what services
and possible solutions are available for easy adoption. It also highlights the possible
services key players in the IoT-E could provide. This makes the IoT-E interesting in that it
has a lot of service components to focus on, which, however, makes it difficult for all the
services to be provided by a single player (i.e., company) in the IoT-E. For example, cloud
based solution(s) will be provided by the key players

In the DoSP, key player category is used in the processing layer. The DoHP key player
category will be responsible for providing gateway device solutions to satisfy the need
for devices to handle raw data transmission and processing issues [11]. It is worth noting
that there are several players in each key player category. For example, in the A&SP
key player category, there are industry partners and collaborators involved in providing
IoT user-based application; some are involved in data analytics solution, while others
provide frameworks and solution for system integration. Similarly, in the U&C key player
categories, customer experiences are enhanced through service provisioning that includes
billing, logistics, customer support, and marketing at B2B scale. Security platforms are
built within the DoSP player category into IoT solutions either at the hardware, service,
firmware, and software level. This way it is possible to stay ahead of any threat [10–12].

To realise intelligent-based tasks (I-bTs), IoTTs would communicate and share in-
formation [13] with every single “thing” if they have attribute and unique identity. In
real-life, these I-bTs include perception, positioning, tracking, monitoring, identification,
and management [13,14]. These are basically the same tasks that are entailed in livestock
management (LsM). Based on these entailments, IoTTs would perform these I-bTs in the
management of livestock. This implies that livestock management would be done more
intelligently to maximize livestock yield potentials while minimizing the challenges of rear-
ing them [15]. LsM demands animal-specific attention (A-sA). During animal maturation
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for instance and other sundry individual animal developmental comportments A-sA are
required. This underscores the need for eyes to be on ground to monitor, track as well as
identify each animal on a one on one basis to cater for their uniqueness even within the
same species. These activities and processes are regimented and quite complex and do not
succeed with a one size fit all, hence burdensome and arduous, approach [16,17]. However,
breeding practices such as knowing when an animal is ready to mate and give birth and
the prevention of the loss of a new calf will be improved through the sensing potentials of
IoT. The wherewithal to respond to the foregoing is evident in the IoT-E, since there are
players that are already positioned to respond regarding the provision of solution to drive
each entailment.

2.2. The Paradigm of IoT

IoT is a paradigm that allows numerous sensing and actuating devices to interconnect
through the Internet, as such data are collected, shared, and analyzed for innovative
application. As the next evolution of the Internet, IoT will make it possible to collect–
transmit–distribute, sense, and analyze data on a massive scale. Unlike the current Internet,
the IoT’s Internet will be pervasively inclusive and allow ubiquitous computing with
layers of interconnectivity and interactions. As an all-inclusive interaction platform that
uses both hardware and software, data will be its common denominator as depicted in
Figure 3. Data generation will also be the most critical part of its process. The strength of
IoTTs will drive this paradigm. By sensing, identification of “things” and the enforcement
of communication and interaction with “things” will be done better than humans. This
is because unlike humans, IoTTs will not be limited in context and in the number of
tasks to perform. The IoT’s goal is to collect data in huge volume from different contexts
and domains and support their processing [18]. These processed data will be used to
make informed decision and take valuable actions to stay competitive with improved
efficiency [19].

Figure 3. Data as a common denominator and possible integrator with sundry domains.

A major characteristic of IoT as a paradigm is proliferation. Based on the literature
search, different use of the concept of IoT were identified as the reason why it has many
aliases, which also reveal its area of specific application [20–22]. Some of such aliases are
Internet of Underground Things (IoUT), Industrial Internet of Things (IIoT), Livestock
Internet of Things (LIoT), Internet of Space Things (IoST), Internet of Underground Rail
(IoUR), Agricultural Internet of Things (AIoT), and Internet of X-Things (IoXT), etc. [22–24].
While some are still at the proposal stage, some are at the prototype phase with other
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awaiting full implementation. There are different stakeholders with varied interest in
IoT that include the scientific research community, sales strategists, and even marketing
agents. Part of what has advanced the different perspectives and visions that are evident
about the paradigm of IoT is the varied and continuous interest in IoTT. Similarly, there
is also the continuous evolvement of IoT thematic, in which proliferation is due to the
incessant change in the ideas and technologies that drives IoTT [25]. Interestingly, despite
these varied areas of application data as earlier mentioned, it will still remain the common
interest and denominator for the different stakeholders. This will motivate the collection of
domain specific data with context given attention as a major reason for the data collection,
thus necessitating the customisation of IoT to suit such purpose.

With the paradigm of IoT data will be generated on a large scale and such data will
inevitable exhibit the Incompleteness and Heterogeneity (I&H) as well as privacy and
timeliness data characteristics. Additionally, this data generation will increase rapidly.
While timeliness will focus on data acquisition rate, privacy will deal with the protection
of sensitive data attributes and personal identities during analytic processes. The focus
of I&H will be using big data technologies despite the possibility of missing out (some)
attributes in the face of data heterogeneity. How stakeholders would cope and handle
these data characteristics will determine the proportion and scale of IoT-based innovations.
In the literature, this has been identified as capable of driving the creation of innovative
opportunities to resolve challenges with novel innovations. Beside these novel innovations
digital convergence will thrive. For example in [26], computing, IoT big data storage and
processing, and data abstraction were identified as potential drivers of digital convergence.
This has implications, which are development at several different fronts with the most
relevant being cloud computing and the 5G network. While cloud computing is summarily
primed to decentralise the power of computing along networks with guaranteed reliability
and response time, the 5G network will facilitate access to application and services in the
cloud with guaranteed quality of experience [27].

2.3. IoT and Its Architecture and Enabling Technologies

IoT has the potential to effect transformation wherever it is deployed for assistance.
However, this is not without a good understanding of its architecture and enabling tech-
nologies [28,29]. As a bespoke technology, this understanding is needed and can be realized
through the knowledge of its architecture and enabling technologies. This section, therefore,
discusses this in terms of IoT’s functionalities within the context of LsM.

2.3.1. IoT Architecture

IoT’s implementation require the use of several devices and applications (D&Apps) [30].
This makes it tricky to manage a typical IoTT implementation. Some of the issues with
this include the problem of localization (i.e., what D&Apps should do what in a func-
tional area), and how to accommodate and maximize the emergence of newer techniques
and technologies when the need arises. As much as possible, these challenges should be
managed to allow the creation of innovative services, hence the use of an IoT architecture
(IoTA). Although, the IoT ecosystem is responsible for providing the technological plat-
forms to creatively implement what is entailed in a typical IoT architecture (IoTA); the
IoTA’s importance is still overreaching, since it provides the wherewithal to maneuver the
tricky management of the characteristic IoTT implementation. The absence of a consensus
architecture to implement the IoT in sundry area of application in the literature still makes
this maneuvering a lot difficult. What obtains is the use of a multi-layered approach [31]
that fosters a function-oriented perspective (FoP) of IoTT application. The FoP makes it
possible to drop and/or add functions when the need arises. In [10], this was explained
as the capability to continuously update, commission, and decommission IoT assets and
services. This current flexibility of accommodating newer technique(s) that IoTA offers
makes it imperative to consider IoT as a huge resource to manage livestock.
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The spread of IoT is inevitable and has resulted in the proliferation of architecture
with various novel standards with interoperability being one of its resultant challenges [32].
The attempt to resolve this yielded the arrowhead framework (AHF), which is one of the
several solutions to solve the problem of interoperability and, by extension, integration [32].
The AHF has been useful for the discovery of operation and inclusion of sundry services
within the service-oriented architectures (SOA). This potential makes it possible to integrate
proprietary and legacy systems, thus making AHF an important framework to consider
in LsM. For example, AHF has been used to achieve the acquisition of data from sensors
within the context of a typical industrial environment. The AHF as an architecture has
service delivery orientation, which is, hence, considered a viable option to guide the
implementation of systems that are tailored for different purposes. Its ability to utilize the
SOA comes with benefits in respect of security, good use of engineering time, latency, and
scalability among others. AHF operation is possible through reliance on three systems—
the Service-Registry, Orchestration, and Authorization System. These are the core and
mandatory systems that make it possible for AHF to achieve its basic functionalities [32,33].
There are other open-source frameworks (or protocols) like AHT such as Eclipse, FIWARE,
BaSyx, and IoTivity, which details are found in the literature e.g., [34] for interested redears.

Usually, systems that are arrowhead compliant do collaborate, and when it happens,
they become a system-of-systems (SoS). SoS also do collaborate and are built from several
subsystems at the level of application based on SOA patterns with AHF offering intercon-
nectivity requirements. Thus, AHF naturally enables complex solutions. Arrowheads are
reconfigurable for all kinds of architectures and manages to fix and cover all security gaps
in applications with real-time configuration. Detailed information about AHF, SoS, SOA,
and how they converge to address issues of interoperability and interconnectivity while
ensuring quality of service, service consumers, and producers versus late binding and
loose coupling, etc., are out of the scope of this review abound in the literature [32,35,36].
Nevertheless, there are different types of architecture and framework proposed to imple-
ment different aspects of the IoT [37,38]. Tables 1 and 2 contain a summarized comparison
of architecture and framework based on their contributions to the deployment of IoT. In
Table 1, the comparison is presented based on the standard practice of classifying IoT archi-
tecture, which is the layered, domain-specific, and industrial architecture in orientation [38].
In the comparison presented in Tables 1 and 2, while architecture is intended to capture
IoT devices and implementation scenario, the framework captures a summary of solution
proposed to address operational concerns with IoT deployment. This comparison followed
the practice in [27,39].

The nature of LsM makes it a domain to always try new methods in managing the
many and sometimes inexplicable pattern of animal behaviours. The IoTA is significant in
this regard because of its flexible and accommodative nature to allow the adoption of new
technological practices. This has implications for LsM, especially in the context of the IoT.
The consequence is the flexible application of newer techniques such as the AI in confluence
with IoT. IoT-AI-driven technology, for example, when built on algorithms, can analyze
and learn from data to improve over time by adjustments with no human intervention.
The IoTA support in the deployment of IoT-AI-driven technology will dramatically effect
incremental improvements against what has been known over the last century [40,41].

2.3.2. IoT’s Enabling Technologies

In [42], the use of a middleware to resolve the challenge of heterogeneity when
deploying IoT’s enabling technologies was highlighted. These enabling technologies are
enablers of real-time communication in [43]. The 5G mobile network will drive a fast
Internet that is better than what it is now. This role will allow the broader use of IoT
sensors and actuators [44]. Unlike the previous generation network, 5G will rely on
the potentials of its features to play this role. The features include the enhanced mobile
broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable
and low-latency communications (URLLC).
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Table 1. A summarized comparison of IoT architecture based on its layered, domain-specific, and industrial orientation.

Architecture Type Objective/Features Comment Cit.

Layered

• To highlight the services to be delivered
with the intention of addressing them
separately and emphasizing integration
before performance as a system.

• At the moment, the IoT architecture has
been extended from the initial:

• (i) Three layers (of application, network,
and perception layers) through five
layers (of business, application,
processing, network, and perception
Layers) to seven layers (of collaboration
and processes, application, data
abstraction, data accumulation,
Edge–Fog computing, connectivity, and
physical devices and ontrollers layers).

• It offers the prospect of conceptualizing
IoT scenarios within levels of complexity
and integration of several types of
technologies and services so as to
manage the complexity of IoT systems.

• The layered approach allowed the
components that are required for the
continuous, coherent, and uniform
adoption of IoT.

• It helps to track the growth in IoT
research primarily based on the
requirements and needs of corporations.

• By this classification using the layered
approach, what framework(s) and how
to implement them and sort out issues
are understood.

• It also helps to understand IoT devices
that are enabled to provide collaborative
and cooperative services.

[38].

Domain-
Specific

• Health-based IoT architecture was
proposed and composed of two sub-parts: the
part that handles data concerns and the one
that handles security issues between the fog
and cloud layer.

The scenario covered include:
• Different target groups;
• The monitoring of vital signs and health

status with the provision of statistic and
predictive analysis;

• Meet critical requirements (e.g.,
real-time processing with high accuracy
and availability).

[45,46]

The other domain-specific architecture
include (but are not limited to this list) that of
Internet of vehicle, agriculture, smart city, and
manufacturing, etc.

These architecture provide a solid backbone to
deploy intelligent solutions in these domains. [45–47]

Industrial/
commercial

• Industry-basedIoT architecture has
been proposed with consumer-based
systems orientation.

• It is based on interconnected intelligent
devices of industry proportios and the
framework to use IoT-focused
digitalization.

• Applicable in many scenarios with
industrial inclination like livestock
farming.

• The architecture framework assumes the
viewpoints of usage, business, function,
and implementation

[46,47]

• Generally:
IoT Architectures seeks to shed light on what technology to incorporate into IoT scenarios as the need arises. This can be either
bidirectional and/or unidirectional with expanding use to several diverse real-life scenarios.
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Table 2. Presents a summarized comparison of IoT framework.

Papers’ Objective/Advantage Limitation Comment Cit.

• A double 3-dimensional framework that helps to
explore the adoption of networking technologies
such as 5G, M2M communication, software-defined
networking, computing in I-IoT, cloud, hybrid cloud,
and edge computing platforms was presented.

• The perspective of Cyber Physical System was
adopted with a focus on networking, control, and
computing.

• The framework did not fully capture
the requirements for resilience to
handle multi-dimensional
disturbances.

• The techniques to improve the
resilience of control system
disturbances are needed.

• Network routing optimization and
deployment issues need further
attention.

• Low-latency requirements and the
seamless integration of edge
computing and industrial IoT are
limited/excluded.

• The work informed on the
possibility of exercising system
control using industrial devices such
as actuators, sensors, retro-fitted
equipment, etc., on a massive scale for
productive gains.

[47]

The survey highlighted the following:

• IoT framework guide the deployment of IoT
applications.

• The success of IoT applications depends IoT
framework and the ecosystem characteristics of the
framework.

• Although the security of IoT frameworks
was surveyed, limited discussion provided to
address those security challenges.

• The work supports the claim that
there are several IoT frameworks and
conceptualises its essence.

[34]

• The work highlighted gains of deploying large scale SoS
and its management challenges that results from its scale of
flexible and scalable devices and systems. A
framework-based solution was advocated, which was
nevertheless difficult to select due to the rising amount of
accessible platform and frameworks. To fill this gap,
features of some IoT key framework were investigated to
aid the simplification of selecting a suitable framework.

• The knowledge of a framework’s entry
barriers to the market that include licenses,
accessibility, industry support, bad
accessibility of code and resources, and the
lack of information and specifications was
considered an important aspect of comparing
its technical characteristics. However, other
entry barriers such as lack of trust in the
community, corporate image, etc., were not
fully considered.

• The work highlighted the
importance of frameworks in the
deployment of IoT paradigm in an
industrial scale.

[48]

• Identified the challenges of retrieving IoT data and
finding IoT devices and their twine challenge of the
need for timely and efficient query processing as the
consequence of the novel ecosystem for actuation
and sensing created by the IoT paradigm on an
exceptional scale.

• To fill this gap, the work proposed a framework that
is generic for the IoT search engine’s (IoT-SE)
deployment with a naming service. The work also
outlined research solutions for developing intelligent
and efficient IoT-SE by addressing an aspect of query
processing and applied a neural network architecture
to deliver predictive query retrieval based on
multiple targets.

• IoT-SE research is sparse and still at its
infancy. Further study is useful
regarding the development of
intelligent/efficient IoT search.

• In the current work the aspect of
semantic search was not/partly
considered.

• Additionally, both privacy and security
issues still remain an open area of
research regarding search in IoT, which
was beyond the research focus of the
work.

• Other aspects of research to consider
include the optimisation of (i) query
processing, (i) data retrieval, and (ii)
data discovery and the handling of
redundancies.

• The work supports the discourse
presented in the review that the
advances in ML and obvious
potentials when in synergy with
DL-based predictive ability will
improve IoT use as a resource to play
a management role in LsM.

[49]

• The use of IoT framework to implement data
acquisition has been recognised in the literature.

(i) The non-exposure to extensive IoT network devices
motivated a proposed data acquisition
IoT-permitted framework.

(ii) Secondly, in similar research, a framework to
develop a data acquisition system that integrates
with robotic technology and web-enabled
technologies.

• Issues of syntactic and semantic
interoperable that impede data
acquisition and cybersecurity concerns
were not given attention.

• Other issues that need to be address
include authentication methods and
security concerns that obstruct the
deployment of services in the cloud.
The work did not consider real-life
case studies’ performance issues.

• It can be concluded that a
framework using IoT devices
and related networks can be
used to develop a
platform-neutral, cost-effective,
and scalable data acquisition
system for smart IoT-oriented
innovations.

• The possibility of deploying a
framework to realize the
automatic generation of
software components and
resultant repositories to be
deployed in the cloud was
highlighted.

[50,51]

• The work identified privacy protection and security
requirements as well as the need to maintain
processing efficiency to conserve the consumption of
battery power as research gaps.

• A two-tier privacy-preserving data inference solution
framework.

• Federated learning and blockchain
techniques are considered for
incorporation in the future to improve
privacy and high-accuracy data
inferencing system.

• Additionally, the work did not show a
proof of work and concept validation
with appropriate use cases.

• The framework will be useful in
deploying IoHT devices to
monitoring zoonotic diseases
outbreak.

• The conservation of IoT devices’
battery deployed in a livestock
farm.

[52]

M2M (machine-to-machine); ICS (industrial control systems); ML (machine learning); DL (deep learning); IoHT (Internet of Health Things).
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The eMBB, mMTC, and URLLC are tantamount to three service-based usage scenarios.
In the eMBB scenario, high data rates and user density with improved latency and traffic
capacity for limitless hotspots and coverage are possible. Whereas, in the mMTC scenario,
data rates and power consumption are low and the numbers of devices are easily connected
simultaneously; in the URLLC scenario, mission and safety critical communication concerns
are addressed to ensure reliability and responsiveness [53]. Based on the features of 5G
limitations such as high energy consumption, end-to-end delay, inability to support high
density of devices, etc., that characterize 3G and 4G networks have been removed. This
same capability will make it possible for IoT to play its role in the management of livestock
where sundry service-based usage scenarios are extensive. Aside from the advantages
offered by 5G based on its features, there are other benefits such as security, mobility
support, economy of scale, virtualization and softwarization, etc. Details of the technical
requirements and use cases that allow infrastructure retrofit and process monitoring, etc.,
that are out of the scope of this review are available in related texts such as [28,43,53–55].

IoT’s enabling technologies underlie its fabric [25]. These technologies support IoT’s
implementation and deployment. The list of these technologies are likely going to increase,
since IoT is still at its emerging phase [56]. In [57], the relationship between IoT and its
emerging technologies was highlighted and appraised to interrogate what IoT requires to
deal with privacy and cyber physical system concerns. These enabling technologies are
presented to show where their support lies in the role IoT and its functionalities seek to
play in the management of livestock [21,58]. Table 1 shows some of the relevant enabling
technologies and their functionalities using IoT elements: identification (Id), sensing (Ss),
communication (Cm), computation (Cp), services (Sv), and semantics (Sm) (see Table 3). In
Table 3, different categories of IoT-enabling technologies that are capable of supporting its
functionalities towards low-cost IoT solution in LsM are presented.
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Table 3. Type of enabling technologies for IoT and based on its features.

Enabling Technologies
IoT’s Elements

Enabling Technologies
IoT’s Elements

Id Ss Cm Cp Sv Sm Cit Id Ss Cm Cp Sv Sm Cit

WiFi X X
√

X X X

[28,40,41]

Arduino X X X
√

X X

[40]Bluetooth X X
√

X X X Phidgets X X X
√

X X
13E-802 X X

√
X X X Intel Galilio X X X

√
X X

Z-wave X X
√

X X X ID-Related X X X X
√

X
LTE-A X X

√
X X X Smart sensors X

√
X X X X

RFID X X
√

X X X [28] Wearable sensors X
√

X X X X

[40,57]NFC X X
√

X X X
[41]

Raspberry Pi X X X
√

X X
EC-GSM-IoT X X

√
X X X Gadgeteer X X X

√
X X

eMTC X X
√

X X X Smart Phones X X X
√

X X

TinyOS X X X
√

X X [40] Zig Bee X X
√

X X X

[28,41,43,59]

ContikiOS X X X
√

X X 6LoWPAN X X
√

X X X

EPC
√

X X X X X

[41,57]

T-GvoZB X X
√

X X X
ubiquitous Codes

√
X X X X X SigFox X X

√
X X X

Ipv4
√

X X X X X 2G X X
√

X X X
Ipv6

√
X X X X X 3G & 4G X X

√
X X X

LTE-M1 X X
√

X X X

[59]

5G X X
√

X X X
UwB X X

√
X X X LoRaWAN X X

√
X X X

BLE X X
√

X X X Ingenu X X
√

X X X
WiFi-direct X X

√
X X X NB-IoT X X

√
X X X

LiteOS X X X
√

X X [40,59] Collaborative-Aware X X
√

X X X
L-Cat X X

√
X X X Embedded sensors X X

√
X X X

RiotOS X X X
√

X X

[40,57]

Bar codes X X
√

X X X
Android X X X

√
X X OWL X X X X X

√

Nimbits—Cloud X X X
√

X X EXI X X X X X
√

Hadoop—Cloud X X X
√

X X Info. Aggr X X
√

X X X
SmartThings X X X

√
X X Ubiquitous X X X X X X

RDF X X X X X
√

Actuators X X X X X X

*Id (identification); Ss (sensing); Cm (communication); Cp (computation); Sv (services); Sm (semantics) ** electronic product codes (EPC); single board computers (SBCs); near field communication (NFC);
ultra-wide bandwidth (UwB); Thread-Google version of ZigBee (T-GvoZB); information aggregation (Information Aggr); information aggregation (Info. Aggr); LTE Cat 0, 1, and 3 (L-Cat); IEEE 802.15.4
(I3E-802); not applicable (X); applicable (

√
).
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2.4. IoT’s Main Technologies

Sensors and actuators (S&As) are IoTs that need the enabling technologies presented
earlier. These S&As form the fabric of the IoT paradigm. Currently, there a different types
of sensors as shown in Table 4. The list is still growing, and these S&As are of different
make and brand. The choice of which one to use is left to the discretion of users [20].
This presentation—to the best of the authors’ knowledge and finding—is meant to guide
stakeholders when deciding which sensor to design IoT solution with. As a paradigm, IoT
aid communication between “things” and the role of sensors and actuators are pivotal to
this. While sensors create information from events and happenings by sensing, actuators
use such information to take action [60]. The sensing ability of IoT devices (sensors)
comes from its ability to respond to stimuli and produce data, which are computable for
inferential and predictive gains [61,62]. In LsM to have a never tiring eyes on ground is a
great asset. Additionally, when there are ears to hear “things” and noses to smell as well
then farmers can go to “sleep” and rest assured that surveillance, monitoring, and the
perception (sensing) of salient occurrences that are difficult for humans are taken care of.
This is where the use of S&As comes in. IoT devices are designed to be deployed to take
over the manual reading and clocking of observed happenings in the farm. Without the
fear of fatigue, these tasks will be performed round the clock and nonstop. There are as
many actuators, as there are sensors as shown in Table 4.

Actuators are made for sundry purposes with appropriate delineations to respond to
sensors, thereby accomplishing specific purposes. They complement sensors and essentially
serve as the force that drives mechatronic systems (see Figure 4). While sensors transform
electrical impulses that are construed easily and read, actuators sense (or receive) the
readings as commands and actuate them into physical actions [63]. For example, a sensing
unit can send data to a controller using a set of parameters. With this the controller–actuator
makes necessary decisions using a control algorithm. The outcome of this is a command
that actuate units to respond. In LsM, standard animal body parameters can be used to
collect data through implanted biosensors, and such data will be sent to a controller that is
within a central system for analysis. Multifunctional sensors also exist. They have optical
and sound capabilities that can serve similar purposes as biosensors. Animal facial, body
expression, and voice can be captured as data with S&As such as biosensors. Data always
make the difference, and with appropriate algorithms, billions of predictions can be made
from which informed decisions are taken. Recent advances in mechatronics now make it
possible to use robots to perform the administration of drugs and other sundry activities to
benefit farmers due to data availability [64–66]. Contextually, LsM is a value-based scheme
going by the traditional method of livestock practice of animal monitoring by which signs
of injury or disease infection are identified. It is known that when an animal is ill, it is
difficult to place a value on it. The value of an animal is a function of its health in relation
to that of other healthy animals in a herd. Robots retrofitted with IoT can be valuable assert
that uses available data to monitor the health of animals better than humans, since they are
never fatigued and they can help overcome the pressure of labour shortages. This level of
value addition and intelligence is some of the many supporting roles IoT systems will offer
in LsM [67,68].
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Figure 4. Different types of actuators.

Table 4. Types of sensors.

Sensor Types Description/
Uses Make of Sensors Proprietary

Example Cit.

Presence–position
proximity sensors

Measure the presence,
position, and proximity

of objects

Made of inclinometer, potentiometer,
and proximity sensors

GPRS, GPS, and
transponders [61,69–72]

Motion-occupancy
displacement

—velocity and acceleration
sensors

Measures movement, speed,
wind, water direction, weight,

period, and pressure using
barometric means,

precipitation, motion
detection, and surveillance

Made of radio detection and ranging
capacity—to sense skin temperature
and for microwave and ultrasonic

sensing; tomographic motion
detector—sensitive to disturbances;

video camera software for
photo-detection

and infrared lighting, and use as
accelerometers and gyroscope;

digital vernier calipers—senses size
of cracks

Altimeter, sport sensors,
wearable sensors [67,73–75]

Pressure, force, flow, and
load-strain torque sensors

Measure pressure, volume per
time (i.e., mass flow or rate,
i.e., flow of velocity of fluid

and force

Made of barometer, bourdon gauge,
piezometer—for pressure sensing;

viscometer, force gauge, tactile
sensor for touch sensing = for force;

flow sensor is made of an
anemometer, water, and mass meter

Rotameters flow sensor,
spring and piston flow
meters, mass gas flow
meters, ultrasonic flow

meters, turbine flow
transmitter, etc.

[62,76,77]

Acoustic—vibration and
sound sensors

Measure sound levels and
convert that information into
digital/analogue data signals

N/A

NDI sensor, ultrasonic PD
sensors, UHF sensors,

geophone, microphone,
hydrophone

[62,78,79]

Humidity, moisture, and
temperature sensors

Measure levels of relative
humidity, cold, or heat;

identify physical contact or
lack of contact using

convection, radiation, and
presence of water, air, and

toxic gases

Made of organic polymer (e.g.,
polyethylene, polyamide resin, or

metal oxide); wet and dry bulb
psychro-meter and a mechanical

hygrometer; EMC—a forward
meson spectrometer, thermistors,

and RTDs

Humistor, hygrometer,
moisture sensor,

calorimeter, thermometer,
temperature gauge

[62,67,80,81]

Optical (i.e., light), machine
vision, ambient light

sensors

Measure and detect the
presence of light (i.e., invisible
or visible), monitor real-time

temperature, measure and
detect pH, refractive indices
voltage humidity, antigens,

chemical species

Made of photoelectric device of
either photo-emissive or voltaic

materials, photo-resistors or
conductors; LED drivers, infrared,
LDR from cadmium sulphide, etc.,

depending on the area of application

Real-time temperature
monitoring (infrared),

ultraviolet light,
LMR-based optical sensors,
and many others based on

area of application

[62,67,82–84]

Radiation sensors

Measure and detect radiation
in an environment based on

ionization and/or scintillating
detection

Made of thermoluminescent
dosimeter, semiconductor, wilson

cloud chamber, and carbon
nanotubes

Scintillator, Geiger–Müller
counter, neutron detector [62,67]

Global positioning system (GPS); general packet radio service (GPRS); northern digital incorporated (NDI); partial discharge (PD);
ultra-high frequency (UHF); electromagnetic calorimeter (EMC);resistance temperature detectors (RTDs); light-dependent resistor (LDR);
lossy-mode resonance (LMR); Citation (Cit); not available (N/A).
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2.5. IoT’s Technicalities and the Livestock Context

The use of IoT to deliver services is technically reliant on what happens at the middle-
ware layer of the IoTA. This pertains to how the perception, networking and application,
and processing layers are managed. In recent IoTA, the initial layers have been extended
with the middleware strengthened to serve as the service management layer. In the new
proposals, the networking and application layers were separated to make the IoTA a five
(5)-layered architecture (see Figure 2b) [21,58]. This confers individual tasks on each layer of
the IoTA with unique technicalities. In the perception layer, sensing is done using variable
physical quantities (VPQ) to sense sound, humidity, light intensity, and temperature, etc.
In the context of managing livestock with smart technologies, this VPQ will be resourceful
in making it possible to use IoTT on a large scale in animal farms. Technically, IoT vis-à-vis
its functionalities will leverage these VPQs to offer the opportunity for IoTT to play its
monitoring role. This implies that on a massive scale animal growth, wellbeing, and welfare
can be monitored unlike humans would do on a small scale. The advantage in this is the
fact that it is possible to codify VPQ to use IoT to collect data, pre-process, and compute
them for appropriate action. The collection of data takes place in the perception layer but
are transmitted/routed through the Internet in the network layer. Some of the Internet
technologies to contemplate in this regard are: WIFI, 5G, Zigbee, 3G/LTE, and Lora.

The application layer is where the ultimate goal of IoT—which is service delivery—is
met [58]. In the management/middleware layer (MML), a lot of computation is carried
out as against fewer ones in the perception layer. Every processing in these layers are
coordinated in the processing layer. Interactions in these layers often use a real-time active
database [21,42]. The computational activities in the MML is borne out of the use of open
lightweight and secure IoT middleware operations [42]. The IoT’s MML provides three
frameworks to allow its workability, namely, the service-oriented architecture (SoA), cloud-
based solution (C-bS), and the actor-based framework (A-bF). While the SoA is responsible
for regulating the deployment and addition of any category of IoTT as a service and as the
need arises, the C-bs controls the number and type of IoTT that are deployable per time.
The A-bF is responsible to provide an open plug and play standardization platform for
sensors and actuators to operate using VPQs. All of these will provide an application plane
to handle routine (utility) services. In LsM, there are routines. IoTT being a routine-oriented
technology makes it fit to handle routine tasks. With VPQs, IoTT can exert control and
manage repetitive tasks and save labour cost [85]. For example, after monitoring through
sensing, IoT sensors will alert farmers when a VPQ falls out of the normal range at real-time
or near real-time with individualized information about individual animals. As such, the
cost of physically, laboriously, and repetitively checking the vitals of each animals will
be reduced.

3. Review Method

To be consistent with what obtains in the literature [2,86,87] and reach the aim of this
review, PRISMA—the methodology for reporting preferred items for systematic reviews—
was adopted to provide the framework to support the systematic literature review. The
workflow of the framework is shown in Figure 5.

It simplified the systematic review procedure using PRISMA that guided the concerted
research strategy applied starting from June 2019 through to August of the same year, with
a search made to SCOPUS database to source for and identify the relevant articles for this
work. Other indexing databases such as EBSCO, DBLP, and Web of Science (WoS) were
also searched for wider coverage (see Figure 5). These databases also index highly rated
journals and catalogues that include that of ACM, IEEE, etc. [2].
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Figure 5. The systematic review procedure using PRISMA.

Using the PRISMA framework, in the identification stage, articles were manually
screened, and then duplicate record(s) (i.e., articles) were identified and removed. Titles,
abstracts, and keywords in the articles and the objective to use IoT for problem solving
guided the screening and use of eligibility criteria. In the eligibility stage the inclusion–
exclusion criteria were applied as prescribed in [2]. In the final stage, qualitative synthesis
of included studies was carried out. These articles were further categorized into relevant
studies (62), partially relevant studies (39), little relevant studies (81), and from other
relevant studies (43). This made it possible to have a detailed study carried out on the
articles in the qualitative synthesis activity in the “include and final stage”.

The search criteria used keywords such as “(IoT OR Internet of Things)” and “(Live-
stock OR Animals)”. Keywords that include sensors, actuators, IoT ecosystem and ar-
chitecture, the role of IoT, etc., were also leveraged in the search process. Following the
practice in [86] and [2] to improve the search process, effort was made to ensure that the
keywords were present in the article abstract, title, highlights, or article keywords, and
the articles that were considered were published in English. Additionally, articles that are
related to core agricultural thematic were excluded. By relevance, the articles that pertain
to the subject under consideration were grouped together as relevant, since they directly
focus on the role/application of IoTT in the livestock context. Articles from which this
objective could be inferred were also included in this category. Whereas articles that were
moderately relevant to certain IoT technologies and enabling technologies in relation to
LsM were included to the category of partially relevant, the ones whose topic was off the
objective of this paper and/or lacked originality as well as the rigor of science due to lack
of peer-review were categorized as little relevance [86]. Much progress was made in this
process, when a more concerted search was repeated between January and March of 2020
and in the month of December 2020. At the final stage, the analysis resulted in 182 articles.
When added to the articles that are relevant from other sources (38), a total of 220 articles
were considered suitable and included as the sample for the state-of-the-art review.
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4. IoT and Its Cyber Physical System Perspective

This section presents the cyber physical systems (CPS) perspective of IoT. As earlier
presented, IoT and its emerging technologies have been interrogated to ascertain what
IoT require to deal with CPS concerns among others. The CPS perspective of IoT presents
the lens to understand the scale at which IoT would operate to initiate analytics using
data to drive growth in LsM. This scale of operation in the role IoT will play to manage
livestock going by the conception of CPS will amount to introducing the industry 4.0 scale
of resource management. This refers to large-scale production by digitalization that entails
the use of advance and emerging technologies such as big data, IoT, and cloud computing.
The connection of physical object with the digital world under the CPS perspective will be
the burden of IoT, while big data techniques will take care of the data that will result from
the connection. This implies that production by digitalization and its management would
be run and managed relying on algorithms. This will unlock the meaning in data to set off
analyses, of which the result will be useful to manage and improve processes within the
farm. This section is significant in that IoT’s synergistic role with machine learning (ML),
and AI regarding data analysis is unveiled with algorithms highlighted as what will drive
the production of value and utility from data.

4.1. CPS Perspective of IoT in Livestock Management vis-à-vis Big Data

In the CPS architecture [88–90], IoT is part of the physical system of the CPS. In this
subset, there also exists the Internet of knowledge and content (IoKC), which specifically
entails data that are translatable to knowledge as useful information. The relation that exists
within the context of the CPS is that of interactions based on joint collaboration and action
of IoT and IoKC. The cyber system part of the CPS model offers the service orientation that
allows big data to result from the sensing potentials of the IoT [88]. CPS entails control
(i.e., management) through computation and communication. While computation will be
handled by algorithms as reveal in sub-section on algorithms, communication will be made
via the Internet that will offer the data infrastructure to operate in.

IoT from CPS perspective is a transformative technology to manage systems that are
interconnected. This is uniquely important in LsM where the context of operation falls with
the system interconnectedness conception, where physical assets possess the potential for
computing. As highlighted in [10], when CPS is integrated with production and services,
its management would result in the industry 4.0 scale. Based on the concept of smart
farming that allows the extensive adoption of IoT from the CPS perspective, generated
data from smart devices from different user applications will be easily harnessed. In [89], a
multi-layer architecture that accommodates the possibility of harvesting data from different
multi-cloud scenarios in the context of smart farming was presented. There is a future in
this that encourages the industry 4.0 scale of the digital management of livestock farming.
LsM that countenances heavy automation, real-time data collection capability, and machine
learning with interconnectivity can be operated in synergy to physical production and
operations using smart digital technology [91]. Table 5 presents information about the
potential of IoTs to deliver big data through the lens of CPS as an advantage to LsM. While
the table also includes information about CPS’s potential limitation, Table 6 presents a
comparative evaluation of current studies in the field of CPS to the benefit of IoT for
LsM. The analysis and comparison presented in Tables 5 and 6 follow best practice in the
literature e.g., in [39].
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Table 5. An inductive analysis of IoT as a CPS to deliver big data.

Advantages Limitations Cit.

• Identified big data business-oriented model (BDBoM)
that is effective in associating data-driven technologies of
big data scale. The conception uses MLT and algorithms to
support real-time clarifications analytically to improve
sustainable production.

• Sustainable production rely on inputs that
are trustworthy, which still need improvement in
the BDBoM.

[92]

• Motivated by the problem of scalability CPS mechanism
for decision making to meet data storage and processing
requirements. The framework allows the use of low-cost
orchestrators that demonstrated satisfactory control in
micro-grid environment.

• Still requires the removal of operational
constraints from target app domain that imposes
sensors to continuously monitor manifold
scenario of operations that hinders optimal
configuration

[93]

• The paper presented a multi-layer architecture that
captures numerous entities that can handle real-time use
cases based on support from the cloud and edge
environment.

• Though there was a real test bed for the
architecture, cyber-attacks on CPS may still
easily unleashed.

• This attacks are easy due to leakages of
information through unauthorised access or
insider intruders that are potential threats.

[89]

• Identified a feedback loop that CPS feedback loops
were identified as effective to integrate both the
physical and the cyber subsets of CPS since how they
are integrated affects their operation.

• This achieved effect data analysis, and both physical
and data-driven, and data fusion capacity.

• In turn, knowledge discovery is easily enhanced even
from heterogeneous sources of data, which is of a
high-dimensional data scale, thus, scalability is
ensured.

• Overfitting still remains a troubling
challenge.

• Introducing computational intelligence
enforces the use of “black box” algorithmic
techniques, of which inner workings and
behaviour are difficult to understand and
explain.

[94]

• The study characterised and presented a reference
architecture to implement a big-data-oriented CPS.

• The architecture was presented as a 9-tuple that
includes that capture the social CPS that fosters IoKC.

• Security and the challenge of heterogeneity of
“Things” remain major issues. [88]

Citation (Cit.); machine learning technique (MLT); cyber physical system (CPS); Internet of knowledge and content (IoKC).
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Table 6. Indicative comparison evaluation of current studies on CPS.

Features Description Limitation Remarks/Cit.

• A novel decision-making
technique (DMT) that operates
online and optimally configures
CPS is proposed.

• It showed low storage and
computational difficulties in a
ventilation, heating, and air
conditioning (VHAC) context
(i.e., in a micro-grid setting).

• The DMT uses a multiple-choice
knapsack and linear regression
algorithms that accurately
estimate VHAC’s energy usage.

• It is capable of balancing out
energy consumption with the
energy budget intact.

• Additional data are not able to
improve the proposed model accuracy,
since it imposes constraints to the
procedure of refinement.

• Showed the existence of
prototyping framework to implement
and customize CPS in domains (such
as livestock farming) where decision
making is critical and on the spur of
the moment. [95]

• Proposed an architecture with
multi-layers that reflect diverse
user applications that fits into
various layers for a distributed
cyber physical environment
such as the smart farm
ecosystem.

• Security and other privacy
concerns with different attack
scenarios were highlighted.

• The architecture adapts CPS and
IoT design to utilize the infinite
abilities provided by edge and cloud
services to harness data from smart
devices and handle numerous user
applications at its layers.

• Regarding implementation
assumptions, no information is
available.

• A framework is needed to
guide the elicitation of
implementation requirements
within the context of
softwarization to protect
sensitive data.

• Show that in distributed and
dynamic cyber physical environment
where IoT devices are adopted across
several domains, privacy and security
issues are inevitable. [96]

• The study highlighted the CPS
that is driven by big data analytics,
deep learning-assisted smart planning
process, and decision-making
cognitive algorithms as a digital
technology.

• IoT sensing and computing
networks in synergy with AIbDMA
and blockchain (to aid big data
innovations) were shown as capable
of sustaining production at large scale.

• No framework was suggested
for possible implementation.

• No implementation details or
assumption were provided.

• Show that digital technologies can
be used with state-of-the-art
algorithm to assist during
de-carbonization process. [92]

• The research work introduced IoT
as capable of unlocking new
capabilities to enhance performance
by organizing internal logistics. A
design perspective was adopted for
IoT-driven analytics within CPS
context and approach.

• The CPS demonstrator offers
(and guide) data generation
with performance estimation
and appropriate visualization.

• As an IoT-driven CPS, its
performance analytic
monitoring can benefit the
upgrade of legacy systems.

• There is the absence of efficient
synchronization mechanism to
exploit production assets and
spur the uptake of technological
upgrades.

• Data complexity and
interoperability concerns
require much attention.

• Validated the fact that
performance monitoring is
visualize-able and CPS tuned to
support operational performance and
sustainability. [97]

• An IoPT that integrates reliable
machine learning and data
analytics methods to sure-up
the resilience of CPS against
cyber-attacks.

• The concept was validated
using the testbed of CPS under
randomly selected cyber-attack
scenarios to satisfy the proof of
concept.

• The IoPT is a hybrid CPS that
uses state-of-the-art IoT, data
science, IIS, and edge analytics.

• Its architecture embeds AI-dA
and supports less load of
computation that is free of
latency in the cloud.

• The feasibility of exploring another
anomaly detection technique is
encourage to curb adversarial ML
attacks.

• Demonstrate the fact that CPS can
become or be made resilient against a
variety of cyber-attack scenarios. [98]

• A framework capturing the
implementation of the CPASs.

• It intelligently integrates CPS
that leverages IoT, big data, and
CC with agricultural systems.

• CPAS was highlighted to boost
productivity with potential in diary
and meat production.

• More implementation details to
actualize the CPASs in real-time
agric-systems are still needed.

• Shows that the CPS conception
using industry 4.0 technologies can
increase sustainable productivity in
the agric-sector. [99]

• Presents a typology that
captures different digital twins
(DTw) as CPS in conceptual
framework.

• It incorporates a control model
based on IoT architecture with
proof of concept validation.

• The framework deploys DTw and
allows reasoning and learning from
real-time data and other data sources
to dynamically recalibrate and make
improved decision.

• No discussion regarding
privacy concerns were
presented.

• The framework was built on
analysis of literature and is still
developing.

• The framework is particularly
useful since the DTw is good at
removing constraints that impose
physical proximity. [100]

Citation (Cit.); cyber physical systems (CPS); artificial-intelligence-based decision-making algorithms (AIbDMA); Internet of Predictable
Things (IoPT); AI-driven algorithms (AI-dA); machine learning (ML); cyber physical agricultural systems (CPASs); cloud computing (CC);
intelligent industrial systems (IIS).

4.2. Algorithmic Perspective of IoT and CPS in Livestock Management

Livestock farmers are saddled with intricate responsibilities. Sometimes, this includes
working out the optimum method(s) to apply to several tasks, most of which are repetitive.
So, the onus is on livestock farmers to regularly make life saving and profit making
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decisions. This burden can easily be borne using a modern technique—algorithms in
ML. IoTT can leverage them in a win–win situation. This CPS-IoTT perspective comes
with a technical burden, for which algorithms exist. Algorithms would drive all forms of
computation including data analytics to manage and implement modern business models
in livestock production. Interestingly, the algorithmic support component of the IoT-based
system is as essential as sensors and actuators and other IoTTs. For instance, algorithms,
especially in the genre of ML, would be used by systems to interpret sundry activities.
This means more objective information about individual animals will be easily provided
to support farmers to make better choices about what works to sustain production. In
livestock farming, there are two main costs: feed and the management of diseases aside
from stocking rate as the basic driver of cost. These costs can be better managed using
existing advanced technologies (e.g., AI and ML algorithms) when deployed to help
farmers make sense out of costs data, about which insight would guide the decision to
determine best feed rates, diet formulations, and disease treatment regimen, etc. [101].

In [102,103], a wireless bioelectric system known as canine body-area network that
uses low-power consumption was reported. This advanced technology uses ML algorithm
to give feedback from sensors and actuators. With the right interpretation of such feedback,
health and welfare issues can be resolved to better the life of livestock. Oestrus—a cycle
of reproductive activity in animals—is an important moment such that when properly
managed animal breeding becomes easy and successful. IoT-based systems can detect and
observe this moment unobtrusively for several animals on a large scale simultaneously.
There is also an anomaly detector that uses the support vector data description methods. In
the literature [104], it was used to detect oestrus sound, thus affirming the possibility of the
early detection of anomaly in oestrus using ML and sound data. In a typical livestock farm
that adopts the IoT technicalities for LsM, there will be a large continuous inbound data
stream that is characteristic of surveillance systems. Though the tasks of oestrus monitoring
and management is repetitious and to be done discreetly, it is one example of the many
repetitive tasks in a typical livestock farm [72]. With IoT-based systems, all of these tasks
can be handled automatically. The detection and observation of oestrus moments can also
be done unobtrusively for several animals on a large scale simultaneously using IoT as
a CPS. Sound from animals such as coughs are gestures from which audio features can
be extracted using supervised learning algorithms such as k-nearest neighbours, support
vector machine, random forest, and bootstrap aggregations [105], etc., to monitor animal
health far better than using manual approach. LsM needs an integrated environment with
the potentials for intelligence to thrive, thus the need to introduce the CPS conception. This
demands a cognitive automation process (CAP) that is computationally driven. Artificial
intelligence (AI) algorithms suffice in this regard to intelligently process and analyse data
to deliver critical improvement when CAP is in place. The confluence of AI algorithms and
IoT can then play the support role of intelligent data processing (IDP) in LsM.

The role IoT will play regarding IDP is the provision of the means of identification,
sensing, communication, computation, services, and semantics. These IoT features (i.e.,
elements) will be deployed to man distinct activities and tasks areas that befit them in
LsM for management purposes. In Figure 6, some of the techniques (i.e., algorithms) to be
delivered by AI are shown in the left had side of the diagram in Figure 6. These techniques
are poised to support IoT’s management role in LsM by providing the method for IDP.
The fusion and integration shown in Figure 6 is meant to report the techniques (see left
hand side (LHS) of the diagram in Figure 6) that will be relied on to support IoT in playing
its role of identification, sensing, communication, etc., as shown in the right hand side
(RHS) of the diagram in Figure 6. Much as the integration captured in Figure 6 may not be
perfectly done, it, however, shows IoT roles vis-à-vis the intelligent job functions it will
perform on behalf of livestock farmers on a daily basis. These intelligent job functions
in summary include identification, sensing—by observation, semantic—giving the right
interpretation, communication, etc.
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Figure 6. Showing IoT characteristics (i.e., role) that integrate AI by way of being helped to take the
management responsibility in LsM.

IoT will perform this intelligent job function much better than livestock farmers, who
need help with the management of scarce resources (especially that of land) as well as
assess situations on the spot with prompt feedback. Anomaly detection and root cause
analysis, which relates causal–effect relationships, and other recurrent tasks, etc., can also
be handled digitally in LsM [101,106]. AI techniques fall mainly within the machine and
deep learning and data mining domain (see LHS of the diagram in Figure 6). A confluence
of these techniques is possible for either learning or mining with AI techniques irrespective
of the domain of application. With brevity, machine learning is presented as follows to help
enlighten readers on its knowledge and application in the next section.

4.3. Machine Learning

Machine learning (ML) algorithms are of several types such as artificial neural net-
works, clustering and classification, and regression methods. These ML techniques will be
used to provide the system and device intelligence (SandDI) that is needed for IoT elements
to demonstrate their capabilities as expected. In LsM, reliance on this SandDI can help
resolve key environmental, production, and sundry other tricky challenges [6]. IoT devices
will provide extensive data that will be analysed by advanced ML and AI algorithms to no-
tify farmers after prediction should there be any abnormal situation [101]. With advanced
ML and AI algorithms sensors and the data they provide, they can synergistically be relied
on to provide solution in the context of livestock farming and management [101,107]. The
support expected from ML methods (in the role of IoT in LsM) in real time is an abstract
data representation of sensor observations [107,108]. Bayesian network is an example ML
technique (MLT), which can support knowledge representation in domains such as LsM
where uncertainty is rife. Using data from IoT devices, this technique like others will
benefit LsM in that the knowledge to manage uncertainties will be realised from such data
instead of wild guessing.

Based on the literature [101], a confluence of AI and ML algorithms will serve as a
candidate technique to determine the status of animal health and wellbeing. Using the
technique to mine and analyse data from IoT devices the paradigm of IoT will digitally
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be resourceful to play its management role without guesswork as was the case in the
traditional method of livestock management. From the same data, which IoT devices will
collect from sundry animal activities, augmented analytics can be deployed to monitor
animal heart rate, location, blood pressure, temperature, etc., remotely. Without distorting
the natural ecosystem and its environment, which is home to animals, advanced AI and ML
techniques can be used to model and simulate possible scenarios to learn about weather
and even provide guidance on the reduction in livestock contribution to greenhouse gas
emissions, etc. [109]. The pattern recognition that is possible with AI and ML algorithms
will yield an immediate prediction that will be useful within the context of LsM to weigh
and estimate many options and then introduce economic balances accurately. With these
advanced digital techniques, the livestock production line is poised to have a support
mechanism that is guaranteed of procedure to manage the complexities and uncertainties
faced by livestock farmers on a regular basis [110].

5. IoT Application and Usefulness in Livestock Management

LsM is all about resource management. Two important resources to manage livestock
production line are (i) the quality of life (QoL) of livestock and (ii) the condition of the
land where animals are farmed. Since the context of this work is livestock farming, the
authors focus is on managing the QoL of livestock using IoT. Therefore, the management
of biosecurity, animal welfare, and product quality control, animal recognition through
identification is overarching. This is because these areas, which are to be managed regarding
livestock, will play a critical role in ultimately determining the QoL of animals and in turn
show their health and welfare status. Nevertheless, the discourse of biosecurity, animal
welfare, and product quality control, etc., is delved into after the comparison in Table 7
that highlights the pros and cons of some relevant studies on the application of IoT in LsM
following the practice in [39].
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Table 7. IoT application in livestock management.

Comment on Paper/Citation Advantages Disadvantages

Digital twins (DTws) can bring new levels of
farming that is sustainable at large scale of

productivity [100,111]

• The framework is conceptual but effective
in guiding the design and implementation of
DTw-based farm management system that
applies a typological approach to leverage
DTw to plan, control, monitor, and optimize
farm processes.

• A detailed reference architecture for
modelling and realizing the DTw-based IS is
still absent.

The synergy of IoT and deep learning (DL)
brings livestock monitoring to a resourceful

level that supports the effective management
of livestock digitally [112]

• This framework is advantageous in that
it provides sensor layer to use devices
that are sensor-rich to collect contextual
livestock-oriented data, and a layer for
data processing to detect sick animals,
animals on heat, etc.

• Insightful information can, therefore, be
sent to herd owners, and production cost
is effectively managed.

• Although some level of implementation
details were shown, privacy and security
concerns were unattended to.

Acoustic monitoring technique based on DNN
was shown to be better than the use of HMMT

to monitor animal activity [113]

• Use of DNN for an efficient DL acoustic
activity technique for modeling lossy
compressed or uncompressed bee
sounds.

• The architecture made provision for
modification in the hidden DNN layers,
which is the advantage over HMMT.

• Poor network response that hinders
real-time transmission of audio signals and
insufficient computing capability still need
attention.

IoT-based LoRa network demonstrates field
ready, rapidly deployable, and flexible

capacity to monitor pastured livestock activity
(i.e., behaviour) and location identification in

expansive environments [96]

• This network removes the bottlenecks of
networking access that facilitates regular
animal contact.

• It provides realistic alternative to cellular
or WiFi networking solutions that are
available for extensive systems.

• Its potential to use machine-to-machine
IoT protocol of connectivity makes it
more viable to transfer data at wide
range in several kilometers.

• There is need to build upon the tool to
optimize the frequencies of reporting, improve
power requirements, and refine accuracy and
precision of classification potentials for (e.g.,
animal behaviour) so as to update the
advancement of wearable IoT technologies for
extensive system of production such as
livestock farming.

Mating time are trackable to know optimal
time of oestrus as a critical constituent of

reproductive management in animals using
IoT technologies [114]

• IoT framework allows the use of
behavioural time-series data that are
multivariate in nature. Neck-based
mounted sensors are applied to collect
the multivariate data.

• Its a cost-effective detection method that
uses real-time ML-detection-based
algorithms with low power consumption
and wide coverage capacity.

• Patterns are extracted from oestrus data
by exploiting DNN and LSTM to give
oestrus alert.

• Although efficient for oestrus detection, the
framework still needs extension to be fit to
implement efficient monitoring digital systems
to cater for (i.e., monitor) disease, health, and
abortion, etc., in animals.

IoT-based digital technology was
countenanced as resourceful in the assessment

of QoL of livestock and by extension their
on-farm welfare in real time for all animals

[115].

• The framework identifies measures to
adapt animal welfare assessment (AWA)
to bridge existing knowledge gap to
benefit the assessment of QoL of
livestock.

• From AWA measures, digital
representations are built to improve
animal monitoring, and in ILF, this will
be useful in address animal welfare
challenges such as heat stress, pressure
body/wounds, early weaning practices,
lesion susceptibility, and tail biting
behaviour, etc.

• Still impossible to observe individual
animals using detached sensors to
observe (several) animals per sensor.

• Some other identified knowledge gaps to
be filled include the welfare monitoring
of not only at the abattoir—a few studies
have handled this, but during transport
particularly inside large enclosed vehicle
environment where observation is
manually difficult for humans, etc.

Deep neural network (DNN); hidden Markov model technique (HMMT); long-range radio (LoRa); machine learning (ML); long-short-term
memory (LSTM);(intensive livestock farming (ILF).
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5.1. Biosecurity

In biosecurity, proactive measures are set up to prevent the outbreak of diseases. It also
entails the control of disease outbreak when it occurs. When animals are sick, the human
population will be at risk, since they can be infected and become sick when products from
sick animals get into the market. With proactive measures important biosecurity steps
are taken to prevent the outbreak of diseases. This measure includes the use of control to
reduce disease transmission, while productivity parameters are maintained. The standard
practice in biosecurity is to prevent the spread of endemic outbreaks by checkmating the
causative agents [116]. Integrated structures must be in place to run different types of risk
analysis on human–animal activities to identify causative agents so as to check zoonoses
diseases before they are transferred from animals to humans or vice versa [117,118].

Contextually, early responses to disease outbreaks through proactive collaborative
approach would require risk assessment along with well-informed, coordinated, and
prompt information sharing. Coming from this possibility, authorities using existing
integrated structures that are interconnected can enforce robust control. IoT’s integration
with existing interconnected structures would make data and the possibility to monitor
how members uphold protocols available. Response to zoonotic attacks is best when there
are tailored surveillance strategies to adapt in the face of rapidly changing objectives during
zoonotic disease activities [117,118]. At regional and country levels, coordinated efforts
to put zoonosis at bay have been premised on existing parameters and protocols (P&Ps).
This list of P&Ps can be endless. Moreover, more attention must be paid to (i) running
a close herd, (ii) the use of shared farm boundaries with double fenced, (iii) vaccinating
susceptible livestock, (iv) using improved equipment and visitors’ hygiene practices, (v)
the maintenance of animal QoL to prevent disease transmission, (vi) do regular pest control,
(vii) clean and disinfect vehicles after moving them, and (viii) minimize animal contact
with neighbours, etc. These parameters offer a window of opportunity to use IoTT. As a
data-oriented technique, a proper codifying process of existing and new parameters will
be a valuable asset to use IoTT.

As the world recovers from the devastating damages caused by the COVID-19 pan-
demic, the place of data sharing capability on a wide scale to alert about new virus(s) of
pandemic proportion is further justified [119]. For example, data sharing capability is
key to using important biosecurity procedures such as the next-generation sequencing
technique to alert stakeholders of the possible outbreak of novel zoonotic viruses before
it is even isolated [120]. The role of IoTT in this will be to facilitate the collection of data
and make them available for new procedures to report pandemics before it even occurs.
Newer variables and metadata that are now known from the COVID-19 pandemic can
be relied on to achieve effective surveillance through monitoring and control of zoonoses.
The confluence of AI-ML and IoT will assist IoTT in its undertaking to monitor farm
management practices to reduce risks from zoonoses and give more accurate zoonoses
detection for predictive purpose. This implies that a key responsibility of IoT as a CPS and
in synergy with ML to drive S&DI is the provision of the technicality to automate LsM
labor-intensive activities.

5.2. Livestock Welfare and Product Quality Control

There are IoTTs that exist in the literature, which are indicative of the potentials of IoT
to manage the welfare of livestock and their product quality. The IoTTs were successfully
tried to track animal activities using drones and classification techniques [121], monitor
animal behaviour at an individualized level with automated analysis to decode animal
welfare [31], and use an infrared thermal imaging technique to examine and detect stress
and edema in animals [122], etc. This prospective justifies the possibility of adopting IoTTs
to support LsM on a robust proportion. What IoTT requires is a codifiable template to
leverage to make its impacts in disruptive proportion. This exists. For example, Figure 7
shows the standardized conceptual attributes, among others that are available to start
with [123]. These standards have formed the basis to assess animal welfare and ascertain
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their level of wellbeing. Recent reports on animal welfare have highlighted these same
attributes as how the quality of animal products are perceived [124]. This implies that there
is a connection between animal welfare and the quality they imply as a product on the
shelves in the meat market. This perception has also been linked to the poor quality of
animal feeds and over-use of antibiotics. The job of IoTT is to leverage the operationalized
form of these attributes to collect historical data from which livestock vitality is understood.
Trends can also be identified and learned from these data to improve cattle welfare, their
QoL, and by extension, product quality.

Figure 7. Standard principles for assessing animal welfare.

5.3. Animal Recognition through Identification

Livestock identification (Lst-Id) is an old tradition. It has been practiced for decades
to manage livestock. It was initially meant to indicate animal ownership. However,
as time progresses, it has been used to combat disease outbreaks [125]. Lst-Id is about
keeping accurate livestock records that should start from when an animal joins the farm or
from birth. Adequate knowledge about the health status of animals can be significantly
relied on to influence animal’s productivity. It can also help with a thorough elicitation of
epidemiological information to the advantage of impacting animal welfare. Having unique
animal identifiers have been found to support traceability. Identification plays an integral
role in traceability. It provides the opportunity to trace individual animal species or breed
for different reasons within the food supply chain.

Starting from the point of selling an animal or even at the point of its consumption
back to when the animal’s breeding happened even through to when it was slaughtered,
an animal and its product can be traced. The true health status of an animal, which
is tantamount to its quality at the time of consumption, can be unravelled. Traces of
information (ToI) is what is required. The concept of digital tracing that allows the use
of tracing points (i.e., ToI) makes tracing through sensors possible. The use of DNA has
been the most useful procedure for this purpose. The vista traceability offers will take
a new dimension that will open up substantial opportunities with the advent of IoTT.
For example, IoT in confluence with the blockchain technology will influence traceability
simultaneously with security and authenticity. These features offer limitless possibilities
to monitor details concerning time, and the origin and quality of products. Traceability
is linked with profit maximization and guarantees the safety and quality of products due
to transparency. IoT will take this dimension to a new level by offering sensing data and
technologies with connectivity options in LsM [40,126].

It is important to keep records of specific livestock species. The concept of iden-
tification will make sure this happens with the aid of IoT. This will support the easy
remembrance of the species to re-order due to their potential value regarding meat quality
and milk yield. Techniques in terms of algorithms, processing speed, and storage capacity
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are not hindrances nor lacking to achieve record keep for sundry purposes. IoTT as retrofits
and in the LsM future means the possibility of using the potential of the big data and
blockchain conception for data analytics and to incorporate transparency as part of modern
farm management practices. IoTT is already positioned to make this happen, considering
their existing potential to retrofit devices such as ear clippers, notches, taggers, barcode,
QR code, facial recognition, micro-chipping, radio frequency identification (RFID), ear
collar and tags with electronic capacity, and biometrics (e.g., muzzle prints, iris patterns,
and retinal vascular devices), etc., with IoT sensors [127,128]. Some of these methods allow
the permanent identification of animals on individual basis, unlike others that do so on
temporal basis. RFID has fallen prey to reverse engineering. This notwithstanding the role
of IoT and its complimentary technique such as the blockchain will make it difficult to com-
promise them when using in LsM [129]. Animal biometrics [128] and facial recognition [6]
are both gaining attention as electronic means of animal identification due to their usage
advantage. They suffice as simplified means of recording and retrieving flock information.
Embracing this with IoT and its role will provide the platform to fast-track data-driven and
inferential decision making anywhere and anytime regarding animal recognition through
identification [130].

The use of animal yield potential and health status (i.e., QoL) as means of individual
animal recognition is still new in the literature. Basically, this can be attributed to the tradi-
tional method that is unreliable and costly. The introduction of IoT in this aspect of LsM
would make it possible to use the sensing potentials of IoTT. Compared to the traditional
approach, IoT will make it possible to use Internet-based connectivity with appropriate
sensing technologies. So, computing using IoT sensor technology will incorporate the use
of non-manual methods to easily monitor the association of breeds, their health concerns,
milk, and meat yield, etc. [131]. In [131], a deep-learning biometric-based approach was
introduced to uniquely identify individual animals based on their yield potentials. In a
related study, [132] showed the possibility of individual animal recognition, while in [6],
this possibility incorporated remote sensing and monitoring technique to ascertain animal
health and welfare status. This extent of success was before the advent of IoTT. The role of
IoT will be the incorporation of the wherewithal to contextually recognize individual ani-
mals by means of identification, which was not considered in [6,131,132]. IoT will play this
role, since it is customized to contextually recognize things through sensing. This implies
that existing thermometers, microphones, and cameras can be retrofitted with sensors to
remotely sense and monitor as well as recognize animals on an individual or group basis
using their unique features such as body heat, motion, sound, and image [6,128,131].

6. IoT: Opportunities for Livestock Management

In the management of livestock, the responsibility of IoT can be aggregated in its role
to apply remotely controlled operations with advanced and enabled sensors and actuators
for management advantages. In the IoT model of protocol stack data logging, transport,
management, processing and reporting and security and privacy functionalities are enabled
to work with sensors hardware for positioning, touch, proximity, vision, etc. This potential
is what IoT will employ to play its management role that will make it possible to initiate
precise intervention even purposefully in the context of sensitive circumstances in the
management of livestock. The context sensitive nature of livestock management makes
it imperative to seek the robust digital solution IoT offers. As the world enters the cusp
of another ICT revolution, the use of IoT for LsM would offer lots of opportunities going
by the role it will play. These opportunities can be understood through the lens of the
drivers of the IoT revolution. For brevity due to space and time, two of the main drivers are
considered, since they are the core technologies to drive the realization of the full potentials
of IoT even in the livestock industry.
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6.1. Cloud Computing and the 5G Nexus

In the IoT context, devices will need to operate communally. Therefore, innova-
tive applications that support such operation are needed [133]. The cloud platform is a
driver/enabling technology that allows computing as a service over the Internet. This is
one innovation that IoT will leverage in LsM. Existing LsM uses known capabilities as
against the unlimited self-capabilities that IoT deploys that will yet get better with more
data. This implies that as the volume of data grows this self-capability will also grow in
the same proportion. The cloud will play a major role in the use of IoT unlimited self-
capability for LsM. Like other domains, LsM require services from cross-cutting domain
to create innovative solutions. Cloud computing provides the essentials that IoT will
need to coordinate the extremely heterogeneous resource capabilities that the modern LsM
practice needs. This the traditional system of computation cannot provide. For example,
the computing and storage services that befit the type of computational opportunities IoT
will open up in LsM cannot be provided by the traditional computing and processing
potentials. Additionally, as the livestock industry embraces the use of IoT paradigm, it will
be inevitable to adopt the computing-infrastructure-as-a-service model. Farmers, especially
in low income regions, would not need to own any infrastructure to use computing and
storage services. In so far as the ability to connect to the cloud and pay a token exists, this
service(s) will serve livestock farmers well. Based on cloud technology, the platform-as-
a-service, infrastructure-as-a-service, and software-as-a-service models would be easily
available to livestock farmers.

Cloud computing will be driven by three enabling technologies: the Cloudlets, Fog
computing, and mobile-edge computing (MEC) [134]. These technologies drive the service
orientation of the cloud through the specific functions they perform. In the context of
the management of livestock, the function of the Cloudlet would be to grant livestock
farmers access to the cloud to use the computing-infrastructure-as-a-service model. Aside
from this access opportunity, the usual end-to-end latency in cloud access would be
managed by Cloudlet by reducing any inactivity. This is because high latency during cloud
access could frustrate livestock farmers’ experience during access to a cloud service. After
access is granted, it is the responsibility of MEC to ensure that the computing power in
the cloud is sustained without interruption due to lack of energy. While MEC takes up
this responsibility, the function of Fog computing will be to ensure that the paradigm of
distributed computing is operational and available for use by farmers. Fog computing
will also promote the use of near-user edge devices’ function to improve computation.
This resource will afford farmers the open opportunity to share the many distributed
routine tasks of monitoring with sensors on a regular basis even at odd times from remote
location. As is, latency, the near-user edge device services by MEC (see Figure 8), the
need for low energy computation, etc., that the existing 4G LTE network offers still need
improvement. This is where the 5G (i.e., 5th Generation network) nexus connection comes
in to provide the pragmatic way to connect in reality to the foregoing functionalities to
deliver high-quality services.

A further look at MEC is justified by the computational need of the smart method of
livestock management. For example, as depicted in Figure 8, data from mobile devices and
other sundry devices are moved to MEC, where the computational tasks that is needed on
the data are carried out. In case MEC encounters some unsolvable computational demand,
the cloud will take over since it has superior (and more) computational resources. Basically,
MEC’s function is to ensure that the cloud’s central computational function is present at
the network edge, which is closer to users. As a consequence, operators fancy MEC and,
thus, make it operate near the users to provide storage and computing services for them. A
typical MEC architecture is presented in Figure 8 as a contribution in this paper. However,
since detailed research into MEC is out of the scope of this review, readers are encouraged to
consult related materials such as [28,134,135] and many others for more information. With
MEC, end-user clients are able to perform a massive amount of computation and storage
in real time instead of doing so in the data centers that reside in the cloud. MEC support
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for latency, the direct access to real-time network information, and high bandwidth are
the key advantages it seeks to contribute to the conception of managing livestock smartly.
MEC’s closeness to subscribers than the cloud through application program interfaces, its
virtualised nature, and ability to locally manage its resources aggregately make it important
to operators and user applications alike. All these potentials make it plausible justifiable to
leverage it for the smart management of livestock.

Figure 8. A typical mobile-edge computing (MEC) architecture.

The 5G network seeks to offer the nexus to provide additional strength for cloud
computing by offering high spectral efficiency, which the current 4G network [28] is unable
to provide. However, until 5G is officially revealed, 4G still remains the network to deliver
the infrastructure for IoT to be driven by cloud computing to perform its role. Currently,
the 4G network continues to struggle to satisfy the requirements of being a scalable network
with ubiquitous communication coverage. As an infrastructure, its pricing and billing
capabilities as well as the provision of backhaul connectivity and potential flexibility to
manage IoT devices’ performance with guaranteed security and privacy capabilities are
still lagging behind. There is also the challenge of not being able to seamlessly offer
network densification. With the 5G network, these challenges will be a thing of the past
as a better generation of network. For IoTT to be deployed such that its potentials are
fully utilized, the requirements highlighted earlier must be met, hence the 5G network is
expected to fill this gap by supporting a super high network for superb communication [28].
The opportunities cloud computing and the 5G network offers would be extra-improved
capacity to use computing resources. With this infrastructure in place, at a fee, owning
computing infrastructure may not be necessary. LsM could come at the click of a button.
Many of the connect-and-integrate-oriented livestock equipments after retrofitting with
IoT-sensors will be connected easily to the cloud. Cloud-based IoT portal will also be
available to provide a generic and specialized methodology to support sundry system
integration to use the resources of the cloud to support the management of livestock [133].
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6.2. Disruptive Technologies

Cloud computing and the 5G network are also part of the technologies with disruptive
tendencies (DT). Their disruptive proportion is dependent on their capacity and based on
their performance indicators that highlight their potential to defile known performance
metrics (PM) of competing industries. Until the emergence of DTs, it was difficult to
defile these PMs. However, though DTs do change the tone of the competitive edge
of industries to newer levels of competition [136], for a technology to be innovatively
disruptive, it must exhibit general purpose technological tendencies. This is the capability
to provide alternative and sustained value. General purpose technological tendencies are
pervasive and have broad application spectrum with the potential for continued technical
advancements. Support for innovation is their hallmark with the strong tendency to
handle repetitive tasks. They do this with better precision than humans. As “innovation
complementarities”, they open up many vistas for IoT to achieve its full potentials. Since the
livestock industry is a niche industry, like others, the industry could rely on the disruptive
potentials of DTs to its competitive advantage [137,138].

Arguably, big data, blockchain technology, and AI are other DTs that will compliment
IoT to offer limitless opportunities in the management of livestock. Some of the oppor-
tunities expressed earlier were consequent upon the complimentary provisions of cloud
computing, blockchain, and the 5G network to offer resources to support communal and
high-power computing with security capabilities for IoT to leverage in LsM. Additionally,
AI will contribute the techniques to drive analytics and inelastic computability as the brain
of IoT. While IoT will be supported by big data to deliver the volume of data needed for
sundry analytics, AI in synergy with big data will acquire the power in the data to unravel
responses. These responses would offer the creativity and context to initiate smart and
intelligent actions to manage livestock. Among the other role of the DTs in supporting IoT
to play its managerial role is the clout the DTs will provide for IoT to be truly pervasive.
This will provide a core nexus of influence for things to easily connect and promote the
acceptable spread of IoTT applications to wide geometric proportion. In summary, the role
of these DTs as general purpose technologies is that of “innovation complementarities”.
This will make them sufficiently resourceful to compliment IoTT. Additionally, in LsM,
previously underutilized, untouched, and often ignored data will be exploited for decision
making, since their potential power and use were poorly understood and the wherewithal
to use them were unavailable until the unveiling of IoT [139].

7. IoT’s Adoption for Livestock Management

This section presents a snippet of a future direction with highlights on the likely trends
and future of LsM with IoT. IoT’s managerial function is examined, therefore, vis-à-vis
its key roles in LsM. Additionally presented is the likely impediments or barriers in IoT’s
adoption for LsM.

7.1. The Future of Livestock Management with IoTT

The future of IoT is already here. The success recorded with the use of IoT-based
digital contact tracing capability during the current COVID-19 era to contain its spreads
and also alert individuals of possible exposure highlighted two facts. Firstly, that it is
now possible to use IoT-enabled devices to monitor infectious diseases. Secondly, that the
technology to drive IoT for sundry management purposes in domains that are interested in
the use of IoTT is here and advanced. For infectious disease detection through surveillance
in various aspects, it is now possible to use IoT in confluence with tactile Internet and AI to
propose novel solutions using new computational models that can drive the optimisation
of productivity [139]. The future for IoTT in LsM is that that will require technologically
advanced tools for communications, sensing, and computation. Of utmost significance is
the possibility of exploring the fundamental resources IoT would offer to allow the design
of IoT-based solutions in a real standardized way. Given the continuous advancements in
the DTs presented earlier, IoTTs’ automation would, therefore, be possible.
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Obviously, in the livestock industry, the foregoing should result in new ways of
organizing, scheduling, and doing things, etc. The farmers of the IoT generation would
need to adjust a lot of things. The entire livestock ecosystem and culture would be disrupted
with the change that encourages all-around competitiveness. New maintenance strategies
and skills will emerge to sustain different devices and pieces of equipment. These will lead
to more challenges, some of which might be difficult to see now. Humans may even need
to step aside from the scene if the right framework is not deployed to lay the groundwork
for IoT’s deployment in such a way that their relevance is still intact. All these present
a whole new world of opportunities in which there will be new job roles where humans
may even be confined to both moderators and overall controller, etc. Based on the findings
in [3–5,13,14,64], being proactive is important. This is because under the dispensation of
using IoTT in LsM, the system in use will be autonomous, and actuators will be most
efficiently instructed by sensors and optimised for sundry utilities and resource usage for
better than how humans would do it.

Similarly, with IoTT, it will be possible to have smart milking stool, milk sieve/strainer,
meat mincers, refrigerating system, feeders, waterers, chutes, calving pens, elastrator, and
wagons, etc., that will interact with (e.g., talk to) farmers’ smartphone and prompt them
to initiate compensatory and/or spontaneous and follow up activities. This particular
discernment will be enabled by concomitant data through devices that are IoT enabled.
This is because these IoT empowered devices will be able to learn from observing—in
this case—the behaviour of livestock and follow the preferences of stakeholders. These
preferences will be checked against business insights. These insights will come from
unlocked terabytes of analysed data from numerous touchpoints whenever connections
are established. As [140] puts it, IoT-assisted devices would be able to demonstrate that
they are engineered to understand and know a lot about different human behaviour might
be scary. However, this is truly going to be the future, even for LsM. The opportunities that
emerge as a result of data would be untold, and so long as there is connectivity, decision
making will be efficiently improved, and market dynamics, end-user customer service
experiences, and brand value addition, etc., will be huge.

7.2. Key Roles of IoT in Livestock Management

Based on the literature finding through a desk research following the practice in [141]
by the review of deliverables from materials, projects, scientific conference, and journal
paper publication, it was observed that it will be difficult to highlight the key role of IoT in
one piece. This is due to its wide area of application. This also attest to IoT potentials based
on available case studies of its capabilities [142]. So far, in this presentation, some of these
roles have been presented. Nevertheless, a summary and recap of the roles are needed
for quick reference by stakeholders. This inspires and supports the rationale to strive to
overcome the impediments highlighted as a drawback to IoT adoption, particularly in the
management of livestock. To put IoTT’s key role in LsM in better perspective, its potential
applications in related vertical industries are presented using the lens of IoT’s features.

In some of the presentations already made in the literature, the role of IoT in specific
contexts provides the lenses to highlight and understand the role. For example, [86] consid-
ered arable farming, and [142] highlighted theirs based on livestock and crop monitoring
within the context of dairy farming using the perspective of intelligent edge-based IoT
platform with the technology of blockchain. Basically in the LsM context IoT will play
the key role of monitoring, forecasting, traceability, documentation, controlling, and the
optimisation of logistics and navigation maneuvers, etc. An important aspect of the IoT
key role is the platform it provides to implement multiple applications in the management
of livestock. As found in [86], IoT’s role can be best interpreted from three IoT concerns,
i.e., the use of gateway in the network layer, sensing in the device layer, data processing
and computing, and the use of GUI in the application layer. This can be extended to the
processing and service management layer, thus countenancing the current IoT five layers.
It is in the processing layer, which is separated from the network layer, that events are
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handled. To provide the means to act upon these events data, efficient database transactions
are needed. In the service management layer, businesses such as the management of the
whole IoT system are managed to include IoT applications and users’ privacy (where the
blockchain comes in, in recent formation), etc.

Drawing from the review of the literature, forecasting will engage different data
sources by means of analytic methods to make concrete prediction of events. This is an
important role that IoT will play along with monitoring where timely sensing of parameters
of very diverse proclivities will be made. This role is particularly important, since it is
the initial entry point for many other applications. These roles highlight the need for
documentation to take care of the data sample that is needed for forecasting, monitoring,
control, etc., for later use. In LsM, this will be important for management purposes,
where traceability of products or produce is a regular occurrence. As for control, the
role of active monitoring and the use of data to automatically control actuators after
activating them are going to be daunting, whereas LsM will require the use of devices
and sundry machines. Therefore, to use them in an organized way to improve the success
of production, a different option of connectivity is required. This implies the activation
of sundry operational processes (OP). This requires logistics and optimisation analytics,
which IoT will provide to guide the OP to augment the daily routine of scheduling (for
instance) in LsM. In Table 8, a succinct summary of the role of IoT in livestock management
is presented.

Table 8. Additional IoT’s role in livestock management (a summarized version of [37,71,142–147]).

Role Area of Application

Monitoring

Identifies animal location and movement. Monitors animal behaviour,
walking time, grazing time, resting time, and water or/and feed
consumption time, milk conductivity, animals’ health by means of
monitoring animal temperature. Monitors animal activities such as physical
gesture recognition, heat stress, nutrition can also be monitored by
automatic observation. This also goes for rumination, heart rate, breath, and
in the detection and prevention of plagues, and in the reduction in the effect
of greenhouse gas.

Controlling Takes control, responsibility, and account for vital nutrients in animal feeds.
It also facilitates automation, use in temperature control, etc.

Forecasting Predicts the likelihood of future trends. Through prescriptive analytics how
future events are responded to base on data analysis are covered.

Traceability/Tracking In supply and value chain. Animals’ locations can be tracked and
monitored by means of activities to save thefts and wild attack.

Documentation
Plays the vital role of a store house to enable the processing of huge volume
of data. This has become possible, since IoT is correlated with turning out
data. It synergizes with cloud computing and big data resources to this.

LO&NM IoT is applied to achieve self-driving tractors and GPS field mapping, and
their sensors for unmanned ariel vehicles.

Management

Helps in making smarter decisions concerning animal health, weather, and
the production of quality product using data. Ensures the optimum usage of
farm materials, e.g., drugs, feed, and grain. It also aids their planning and
administration. Provides and manages scheduling of resources that are
restricted to enhance productivity, livestock conditions, farming principles,
and quality dairy products.

Innovative initiator Provides platform for innovative and creative way to solve both in-field and
out-field problems.

Technical
responsibility

Generates big data for edge computing. Ensures ingestion of data from
dissimilar heterogeneous sources. Allows interaction between sensors and
blockchain to support traceability. Provides cross-platform for devices to be
smarter and intelligent. Its gateway makes it possible for end-devices to
connect and allow stream data to the cloud for analysis from which issues
identified. Settle interoperability concerns among multiple operators.

Location operation & network management (LO&NM); Internet of Things (IoT); global positioning system (GPS).
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7.3. Barriers to IoT Adoption in Livestock Management

As optimistic as some of the key roles of IoTTs are, which were explicated regarding
the management of livestock (see Table 6), the challenge of data and device heterogeneity
(D&DH) still remains a huge impediment to tackle in the future. D&DH is the result
of the high amount of variable processes and diverse scenarios that will require large
heterogeneous IoT functionalities to operate. This challenge hampers the uptake of IoT at a
large scale, of which the adoption scenario will also be the same in livestock farming. Recent
research has shown that the challenge will be sorted out going by the existence of advanced
technologies. In [148], this was shown by the architectural approach that was proposed to
align system architectures with enabling reuse to model IoT-based systems, among others.
Some of the other barriers to the adoption of IoTT in LsM as identified from the literature
include, but are not limited to, the following. (1) How to coordinate and manage network
complexity. This will result from the number of wired and wireless network connections
vis-à-vis communicators and receivers that will be required per time? This means livestock
farmer(s) will need to train, retrain, and/or hire experts to manage this challenge. Research
efforts will also be needed to help document best practices to learn from and solve this
problem. (2) The management of power amidst energy requirements. Though significant
efforts have been made to tackle this challenge, more efforts are still needed to strike a
balance between energy consumption, communication coverage, and data rate [2]. The
target for balance should be the non-stop use of IoT devices when efficient sources of
energy provision are achieved for sundry usages. (3) This third challenge is about how to
leverage and integrate the advantages of the 5G network within the context of LsM. This is
because of what the 5G network needs to functional properly. Like IoT, the 5G network
operates with enabling technologies such as the massive multiple-input multiple-output
technology, C-RAN, HetNets, mmWaves, and non-orthogonality. Their sole responsibility
is to strengthen existing wireless sensor network infrastructure, though architectures and
frameworks are needed to successfully adopt the 5G network enabling technologies.

The need to (i) understand the characteristics of distinct IoT traffic and (ii) maintain
their complexities, which requires concerted research effort, are part of these challenges.
The other challenges include the management of the overheads from time-critical IoT
devices and delay intolerant services. This affects latency issues due to the operational
diversity from distinct IoT technical activities [6,28]. At the level of connectivity, there
will be mobile instability. This requires technical expertise to manage. It is compulsory
to attend to it, since the challenge definitely come as a result of the sundry connectivity
options, which IoT offers, and the need to constantly overhaul IoT infrastructure that
changes continuously. These impediments have been identified as capable of limiting the
efficient use of computing and communication resources by IoT devices. These technical
bottlenecks are also making it difficult to develop intelligent and adaptive solutions that
will use ML technique in diverse domains including the livestock industry [149]. The cost
of data communication and long data access, especially in rural or isolated environments,
are additional limitations to IoT adoption in LsM. In Africa, this is a huge challenge
because a lot of cattle grazing takes place in rural and isolated environments. The cost of
hardware, the challenge of long-range communication, the need for resilient design against
environmental hazards, etc., in low-income countries are other barriers to worry about
because they remain a big deal in the adoption of IoTs for rural access [43,86,149].

8. Cost Implication of IoT’s Use in Livestock Management

The technology of IoT is data and function driven. Therefore, to understand IoT’s
functionalities, its key elements present an interesting lens to do so (see Figure 6). These
functionalities are representative evidence of the role IoT will play in LsM. Nevertheless,
this role(s) comes at some costs. This is because every technology function at some cost [150].
In the literature, the conception of “cost implication” highlights monetary concerns, as
well as time and energy (skill set). However, as IoTT gains and assumes new functions,
its monetary cost drops proportionally, thus following the pattern identified by Moore’s
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techno-economic model (MTeM) [151]. However, what is considered as cost implication
in this article is the cost at which IoTT is deployed and used, since the monetary aspect
is ultimately negligible going by MTeM. Therefore, the cost at which IoTT is deployed
and used is tantamount to X-raying the contribution of the livestock farmer who is at the
centre of ensuring that IoT use lives up to its functional expectation and promise. Hence,
“cost implication” is herein referred to as the “cost at which IoT is to be used in LsM”
(C-IoT-L). From this perspective, C-IoT-L is, thus, presented as the cost at which IoTT is
coordinated and its services maintained in LsM by livestock farmers. This the authors
also conceptualises as the time and energy (skill set) deployed by a farmer to ensure the
sustainability of IoT.

IoT’s six elements that are representatives of its capabilities [57] present a first step
to also consider C-IoT-L. However, despite available knowledge about these features (i.e.,
elements), it is only the feature of “identification” that has been appraised regarding
C-IoT-L, hence the need for this appraisal. However, the existing appraisal presents a
template of some sort to consider C-IoT-L, since unarguably, the six features of IoT show
the aggregate of technicalities that will be needed in a farmer to interact with different
IoTs. This cost by implication and in the context of consideration is at the level of the
farmers hard earned experiences over time. This type of cost is often unquantifiable and
operationally going by the provisions in the literature; the dynamics of estimating it is
tricky. It is also because of the continuous changing nature of IoT infrastructure that is
derived from a changing implementation framework. This has an implication too in that
until a particular IoT solution is working, estimating its C-IoT-L in the context of this paper
vis-à-vis the contribution of farmers may not be feasible. Hence, the focus is on a much
broader aspect of qualitatively appraising C-IoT-L. This affects the societal and behavioural
adjustments and the innate sense of farmers that mature over time into an experience-based
skill set (EbSS). This is leveraged to show the C-IoT-L through the lens of time and energy
(skill set) that farmers put into LsM.

IoT is a digital task and burden reliever. It plays this role by accepting the responsibility
of knowing things by sensing for instance what mix of feed and combination of drug are to
be administered as its contribution to animal welfare. With this responsibility comes the
issue of animal care culture. This culture in the conventional livestock farming practice
allows animals to be cared for on a one-to-one basis. In this one-to-one-care culture, there
is the characteristic bonding that fosters relationships between human and animals. This
care culture would definitely be at risk as IoT takes over tasks that encourage bonding.
This will come at the cost of redefining the whole conception of “care concerns for animal
wellbeing”. There is evidence that shows that levels of human bias exist in the culture of
animal care. Yes, the use of technology may reduce this bias, since they are able to work
uncompromisingly regarding empathy, sympathy, and compassion unlike humans’ who
are subject to mood swings [85]. However, the tradeoff of non-human involvement is at a
huge cost, which is the eroding the bonding between human and animals.

Another aspect to look regarding C-IoT-L is in respect of the digital platform IoT
presents by which it will play the role of offering standardized systems of animal wel-
farism to uphold and sustain high levels of concern (i.e., respect) for animals at the same
level [85,123,152]. This task is highly repetitive and utilitarian, but the involvement of data
will make it easy for IoT to carry out. Nevertheless, though this approach to animal wel-
farism upholds the “aspect of respect” for several animals at the same level, it is actually at
the cost of the absence of the “one-to-one-care culture” and its characteristic bonding. This
cost is unquantifiable too. While the tasks of automating the systems of animal welfarism
may be quantifiable from the perspective of the cost of buying hardware and software
to support the automation, the effort of the farmer in ensuring the system works is an
additional cost to consider. Notwithstanding, the IoT must handle and sustain the “respect”
aspect of animal care culture as much as data can afford; the exact cost of doing so is still at
the expense of someone.
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Furthermore, the perspective of having IoTT devices operate in the farm presents yet
another dimension to consider the C-IoT-L. During the discharging of the observatory and
sensing role of IoT in the farm, feedbacks would be inevitable and prompt actions will
be demanded. These feedbacks may be sent as an alert for farmers’ immediate response.
Definitely, actuators will not initiate all of the demanded actions or responses. Some
very crucial ones would require the attention of farmers’ who would deploy their innate
skills to perform such actions. To rely on these skills implies they exist and are innately
nurtured over time through cognitive learning and knowledge acquisition to play their
role satisfactorily. Experiences of these nature and other similar ones are nuanced and
highly subjective. They are also unquantifiable because they are innate senses that rely
on judgements and accumulated knowledge, information, etc. These are EbSS, and as
such, they offer deductive, inductive, and at the same time, inferential resources to make
decisions when applied. These skill sets should be made to compliment whatever IoT
delivers. This must be deliberately considered and recognized and given a place when
formulating the implementation framework that will drive the continuously changing
IoT infrastructure.

To discount the EbSS of livestock farmers due to the role IoT seeks to play in livestock
management will come at a cost that may be detrimental to the whole concept of PLF. For
instance, the EbSS of farmers will be relied on to identify and understand the problems
thrown up by data sensors at different times in the livestock farm. The EbSS will also be
relied on to create new ideas to analyse, synthesise, and make sense of IoT data and do
follow up predictions using unbiased data validation generated from the learning curve of
experience [6]. Farmers will be armed with this experience to live up to the requirements
to adopt the right decision options that IoTT will throw up. These complementary roles
are critical and must not be discountenanced, since they are from soft technical skills,
as documented in the literature [153]. Based on the literature, IoTTs as service-oriented
technologies will exhibit a profitable degree of technological advancements. However, it
is noteworthy to emphasize that the onus will still be on humans to harness the intelli-
gent solutions, which IoT will provide in LsM. This human intervention will come at an
unquantifiable cost too. Its overall value addition may be estimatable, perhaps cognizant
of the technologically innovative and creative role of IoTT vis-à-vis farmers’ role in LsM.
Some parameters may suffice for this estimation: the change in the management dynamics
of what obtains in the conventional sense, the demand for what IoTT has to offer, and the
potential to add value by employees’ EbSS in the livestock industry. These suggestively
may be good enough parameters for scientific investigation to ascertain what offers the
most cost implication for development.

9. Conclusions

In this paper, a PRISMA-based systematic review of IoTT’s use in LsM has been
presented with LsM highlighted as a methodical process with strict regimentations. This
provided the rationale to consider a highly logical and at the same time methodical tech-
nology such as IoT for LsM. IoT as highlighted so far will play a key management role in
LsM. This will happen by deploying its primary feature of identification by sensing and
observation, etc., through monitoring and control to manage the strict regimentations in
LsM. The health and wellbeing of livestock have been highlighted as important factors
in determining the quality of animals as products in the market. In some ways, the deter-
mination of animal wellbeing and health is still heavily dependent on human discipline,
which is fraught with errors from misrepresentation and misinterpretations due to fatigue.
However, the authors argued that the role of IoT in LsM for the same purpose is important
in that its potentials will orchestrate profitable change. In this paper, the authors also
justified their motivation that the burgeoning population of the world cannot survive on
the traditional method of LsM practice by encouraging a rethink of the traditional process
in favour of the use of IoT. This also raises the question of whether the livestock industry is
ready to work in synergy with other proponents of IoT to surmount the barriers highlighted
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as impediments to IoT adoption in LsM. The cost implication of using IoT was discussed
while highlighting with caution the need to uphold the place of farmers EbSS in the use of
IoT in LsM.

Aside from the barriers inhibiting the adoption of IoT in LsM, there are non-adoption
challenges. These challenges include greenhouse gas emission with livestock being a major
contributor, the continuously dwindling land resource due to deforestation, and deserti-
fication for which sustainability has become a crucial issue to meet the upward demand
for animal food in the world. There have also been biosecurity and zoonotic outcries that
have been reinforced by the current need to forestall future pandemic such as the current
COVID-19. These challenges and others make the LsM of the 21st century a very chal-
lenging endeavour. To live up to this challenge, this article attempts to draw stakeholders’
attention to the use of IoT based on the role it can play to surmount the challenges. That
IoT is correlated with data and also synergizes with DTs such as cloud computing, big data,
and AI, etc., makes it imperative to try IoTT in LsM. The business insights it will unravel to
innovatively create solution for both in-field and out-field problems is a testament to this.

Three factors make IoT uniquely fit to provide the wherewithal to take on the chal-
lenges confronting the endeavour of LsM in the 21st century. These factors are: IoT’s
retrofitting capability, its data-savvy nature, and ability to work in synergy with DTs (e.g.,
cloud computing, blockchain technology, AI, etc.). Technology often thrives innovatively
when data are available. Big data, data mining, and other data-savvy endeavours confirm
this. One additional unique role IoTT will play in LsM is the provision of limitless Internet
connectivity options to harness the DTs to use data and, thus, support the delivery of
sustained value. To this end, the rationale for IoT architecture, ecosystems, and other IoT
concepts and enabling technology with cost implication among others were presented to
help understand the management role of IoT in LsM and the nature of solution to expect,
etc. Stakeholders within the livestock industry must show action-oriented interest in the
use of IoT techniques for disruptive innovation to be realised in the livestock industry.
This interest, the authors believe, can drive the optimism that is required to surmount the
challenges highlighted as barriers to IoT’s adoption in LsM.

As future work, a gap analysis is intended to investigate a range of relevant initiatives
that includes the adoption of industry 4.0 technologies for extensive livestock farming to
find if sustainability can be ensured through big-data-driven systems using IoT sensing
networks, DL, and other ML-assisted techniques. Contributions would also be made in
respect of the provision of a reference framework that adds additional functionalities to
actualise CPS for extensive livestock farming going by the consistency observed in the
literature [92,99] regarding the use of digitalization to enforce sustainable productivity.
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