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Abstract: Highly populated cities depend highly on intelligent transportation systems (ITSs) for 
reliable and efficient resource utilization and traffic management. Current transportation systems 
struggle to meet different stakeholder expectations while trying their best to optimize resources in 
providing various transport services. This paper proposes a Microservice-Oriented Big Data 
Architecture (MOBDA) incorporating data processing techniques, such as predictive modelling for 
achieving smart transportation and analytics microservices required towards smart cities of the 
future. We postulate key transportation metrics applied on various sources of transportation data 
to serve this objective. A novel hybrid architecture is proposed to combine stream processing and 
batch processing of big data for a smart computation of microservice-oriented transportation 
metrics that can serve the different needs of stakeholders. Development of such an architecture for 
smart transportation and analytics will improve the predictability of transport supply for transport 
providers and transport authority as well as enhance consumer satisfaction during peak periods. 

Keywords: smart technologies; intelligent transportation systems; big data; microservice-oriented 
big data architecture; data analytics 

 

1. Introduction 

In the past decade, steady population growth and digital technology advancement have formed 
the key influencing factors for moving towards intelligent transportation systems (ITSs) [1–3]. With 
the increase in population, the growing traffic congestion in the existing transportation infrastructure 
poses challenges in meeting the required service performance for realizing any ITS of the future [4–
6]. In densely populated cities, efficiency in public transportation systems such as buses and taxis 
play a major role in traffic management on public roads. Hence, population growth in urban cities 
worldwide contribute to the ever-changing public transportation needs of diverse user groups. 
Enhancing the service performance is a key component for achieving stakeholder satisfaction in ITSs. 
With digital technology developments, huge data is being generated from vehicles, commuters, and 
various other sources such as electronic sensors, passenger travelling logs, traffic data, global 
positioning systems, and even images and videos from surveillance systems. The revolution of 
Industry 4.0 with IoT and big data technologies has significantly influenced the way of public life 
[7,8]. Advancements in wireless communications of sensors and edge devices have introduced many 
loosely coupled task-specific cloud and mobile applications (Apps) offered as microservices. The dire 
need for transport-related information has increased with the capabilities of data analytics and the 
culture of easy access to “must-have” information has become the norm over time [1,9,10]. 
Transportation providers and regulators expect to have all the information with regard to the existing 
transportation network, environmental situation such as weather condition that correlate to the 
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demand of transportation services, movement of commuters and vehicles, and their insights with the 
aim to manage a cost-efficient service [5,11,12]. 

Technological advancements in the capture and storage of data have increased the potential to 
monitor both user behavior and the physical world, with provisions to track and triangulate diverse 
data sets using loosely coupled and independent services or microservices [13,14]. However, vast 
challenges remain for storing, analyzing and visualizing such volumes of heterogeneous data at the 
speed they are being generated [15,16]. This becomes more challenging when transportation 
stakeholders are required to monitor certain metrics on-the-fly so that real-time data-driven decision 
making can be made. The major technical challenges of big data applications are: (i) Varying data 
structure of the input format, (ii) dynamically changing data definition of the output to allow for easy 
exchange across different systems (velocity and variety), (iii) selecting optimal algorithm for 
processing huge amount of data with an acceptable computational burden (volume), (iv) post-
processing of data to make them easily understandable despite the informational complexity, and (v) 
analyzing data deeply to gain potential insights (value) [16,17]. Hence, there is a need for a reliable 
and scalable big data architecture with a microservice-oriented objective to support real-time 
processing of massive data in providing intelligent and meaningful data analytics for all the 
transportation stakeholders. This would mark the first steps in achieving a practically successful ITS 
of the future. 

A typical ITS is expected to have a wide range of service-driven provisions such as dynamic 
alternate route recommendations for vehicles, on-demand public bus service, vehicle navigation 
mobile Apps, traffic signal control systems, automatic number plate recognition, automatic incident-
detection, real-time parking lot availability, and dynamic schedule updates of public transport for 
users [18,19]. In densely populated cities such as Singapore and Hongkong, such an ITS and the 
associated microservices have been pivotal in enhancing their public transportation systems, as well 
as in optimizing the limited land space for roads in providing a convenient, safe, and comfortable 
travelling experience for its users [1,5,20]. However, recent population growth and Industry 4.0 
evolution warrant an ITS of the future to address various security and privacy challenges as well as 
to meet the dynamically changing service level expectations of its wide range of stakeholders [21,22]. 
Therefore, a big data architecture that allows for dynamic processing is warranted with the objective 
to deliver relevant and high-quality transport information in real-time, and to ensure data security 
and privacy for its stakeholders who directly or indirectly contribute to the big data collection. 

Overall this paper proposes a service-driven approach for building an effective big data 
Architecture for a smart land transportation and analytics platform. To achieve this objective, we 
formulate a novel Microservice-Oriented Big Data Architecture (MOBDA) describing a hybrid 
model’s architectural principles and its components to suit a dynamically adaptable ITS. 

The rest of the paper is structured as follows. Section 2 on related work provides a brief survey 
of the research landscape for similar architectural contextualization and proposals. In Section 3, we 
explain the service-driven modeling for an ITS including the functional and non-functional 
microservice performance requirements of the proposed architecture. This section also discusses an 
assorted set of metrics as performance indicators of the analytics platform that are useful for 
evaluating the typical transport services in meeting the requirements of various stakeholders. In 
Section 4, we explain the components of our hybrid proposal of MOBDA, with the prime focus of 
achieving desired performance and service level efficiency in an ITS. The component selection, 
configuration, and implementation aspects of the framework are discussed in detail. Section 5 
provides a use case of MOBDA for a smart transportation and analytics system. It establishes the 
practical application of MOBDA by describing the implementation and testing of the model 
conducted using public data sets. Finally, in Section 6, we conclude, highlighting our key 
contributions of our proposed architecture, design guidelines, and observations, including future 
work. We believe this study will be useful to both academia and industry in their big data 
architectural pursuits. 
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2. Related Work 

Current progress in ITSs is based on the innovation in IoT and software industry that can 
provide a safe and reliable travel for commuters towards smart cities of the future improved services 
with performance metrics such as less waiting time for public transport, optimized transport 
capacity, automatic vehicle rerouting, on-time vehicle arrivals, traffic congestion free commutes, and 
reduced road accidents [6,9,18]. Modern transportation vehicles are powered by smart sensors, 
intelligent automation, and data analytics that can provide various information services for vehicle 
drivers, transport operators, and commuters for making various autonomous decisions on the road 
[23]. While microservice-oriented metrics from an ITS can provide data insights for enhancing 
transportation services, the digital transformation for smart systems catering to dynamically 
changing environment requires real-time adaptation [13,19]. It can be challenging to correlate and 
analyze data across various modes of transportation networks, vehicle operators, commuters, and 
other stakeholders to provide real-time visibility of data and its impact with a collaborative service-
driven architecture [23,24]. Although developments in ITSs have progressed significantly in the last 
decade, most of the systems deployed so far rely on rigid, bespoke architectures with pre-defined 
goals to address only a limited number of services related issues. 

Recently, data streaming-based architectures were studied using a simulator for scalability and 
response time for a smart city that can support real-time recommendations in improving driver 
efficiency and road safety [15]. A distributed streaming framework using Apache Kafka was adopted 
to test and benchmark the model configurations. Another study proposed a comprehensive and 
flexible architecture for real-time traffic control based on big data analytics [18]. Apache Kafka was 
not only used for data pipelines and stream-processing but also as a communication broker platform 
to connect the sensors (probe vehicles, loop detectors, etc.) and actuators (traffic lights, variable 
message sign, etc.) associated with the traffic system in collaboration with Hadoop Distributed File 
System (HDFS) data warehouse and an analytics engine for the ITS to enact change in traffic controls. 

Data processing architectures that combine big data, IoT, machine learning (ML) models, and 
various other modern technologies form the backbone of smart systems, including ITSs. Currently, 
Lambda and Kappa are two popular data processing architectures being studied by researchers [25]. 
The Lambda architecture, developed before Kappa, consists of a batch processing layer, a transient 
real-time processing layer (stream layer), and a serving layer that mergers these layers. On the other 
hand, Kappa architecture considers data as a stream for real-time processing of distinct events and 
does not include batch processing. Several studies have compared Lambda and Kappa architectures 
with detailed discussion on their performance, advantages, and tradeoffs [17,25]. Key factors, such 
as the data columns being analyzed, the size of the cluster of nodes realizing the architectures and 
their characteristics, the deployment costs, as well as the quality of the output, were evaluated. 

Several studies have considered areas that require processing of voluminous data in-motion and 
in real-time including stock market, e-commerce, fraud detection, social media, defense force, and 
healthcare apart from transportation [26,27]. One such study considered Lambda architecture to 
process real-time data streams from social media services (Github and Twitter) using Apache Storm 
to build a predictive model-based trends [28]. The stream layer included the data analytics with ML 
having “incremental” adaptive capabilities (using Apache Mahout) to keep the model up to date. 
Another study used stream/real-time computing to improve the quality of health services [26]. Big 
data analytics was employed to transform data collected from a wide variety of sources, such as 
healthcare records, biomedical imaging, clinical text reports, and sensor data (e.g., EEG), to predict 
epidemics, make clinical decisions, and diagnose and cure diseases. 

Regarding the transportation domain, a real-life case study from Netherlands and Sweden had 
investigated the major challenges in their public transport industry [23]. The study focused on 
increasing efficiency, passenger ridership and consumer satisfaction by allowing data flow between 
service providers and consumers. Several real-time control strategies were designed and 
implemented based on historical data, actual and downstream conditions such as time of arrivals, 
travel times, headway distributions, traffic, fleet, and public demand. Another study discussed 
improvements in China’s transportation through the integration of big data with the main goal to 
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improve operational efficiency, reduce congestion and predicting demand [9,29]. Data from CCTV, 
sensors, and GPS were used to identify traffic streams and weather conditions and moving vehicle 
data to forecast road traffic and to provide an assessment of traffic conditions. In such situations, we 
find that a huge collection of independent and loosely coupled microservices are being developed. 
Beijing has been using a roadside electronic system to display traffic conditions of nearby road 
sections. Such real-time data stream processing and services are expected to assist the driver to divert 
vehicles from congested areas with the limitation that it covers only small areas of congested traffic. 
Similar works in this domain show that big data has been implemented for traffic scheduling, routing, 
and congestion management [10,19]. However, the highly heterogeneous transportation service 
ecosystem is complex with a huge variety in the modes of transport, types of vehicle manufacturers, 
commuters, management authorities, and regulators in the supply chains [30–32]. Data sharing and 
collaboration across multiple stakeholders, platforms, data formats, microservices, communications 
protocols, and sources of intelligence can be challenging and difficult. There is a need for a 
microservice-oriented big data architecture that can provide new and adaptable service offerings in 
an ITS to enable high service levels of safety, performance, and availability. 

3. Service-Driven Modelling for ITSs 

An ITS is designed with the main purpose of improving the services of a transportation system 
by applying state-of-the-art information communications technologies (ICT) smartly and effectively 
[33,34]. However, with the evolution of IoT and big data, ITS technologies are more and more 
characterized by heterogeneous and tightly coupled, ad hoc solutions that are catering to specific 
transportation services. It becomes difficult to integrate, interoperate, extend, and reuse these 
disparate heterogenous transportation services in an agile and seamless manner. Service-driven 
modelling paradigms, namely service-oriented architecture (SOA) a decade ago, and microservice-
oriented architecture (MOA) of recent days, have the underlying principle to enable disparate service 
composition, and are considered appropriate for automation solutions in industries that require 
provision of dynamic and heterogenous services [32,35,36]. A microservice is a highly cohesive, 
single-purpose, and decentralized service running in its own process and communicating with 
lightweight mechanisms. Microservices can be developed to meet business stakeholder requirements 
and independently implemented using automated deployment approaches. The advantage of 
adopting such microservices in an ITS is that a set of distributed microservices can be linked 
independent of hardware and software platforms via external interfaces of heterogeneous systems 
for implementing value-added transportation services. Hence, microservice-oriented modelling 
would meet the key requirements of ITSs of the future, such as integration, interoperability, 
adaptability, and scalability. MOA provides a microservice-oriented modelling approach for 
designing and implementing the interaction and communication among software service layers to 
support information sharing among different stakeholders for providing smart services in an ITS. We 
identify the key software service requirements of our proposed microservice-oriented modelling for 
smart transportation and analytics [37,38]. 

We classify them into two broad categories: (i) Functional microservice performance 
requirements and (ii) non-functional microservice performance requirements. The functional 
microservice performance requirements consist of core microservices for modelling a unified data 
processing platform for an ITS to integrate different subsystems and share information among its 
stakeholders. SOA technology combined with big data are applied to integrate heterogeneous 
information systems from different transportation departments including internal and external 
stakeholder domains. On the other hand, the non-functional microservice performance requirements 
consist of microservice features that can support ITSs to enable high service levels of safety, 
performance, and availability of systems in enhancing stakeholder satisfaction. We provide a detailed 
overview of these functional and non-functional microservice performance requirements of our 
microservice-oriented modelling approach for a smart transportation and analytics system. 
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3.1. Functional Microservice Performance Requirements of ITSs 

We identify four main categories of the functional microservice performance requirements of a 
typical ITS as summarized below: 

3.1.1. Big Data Lake for Data Pooling 

Data collected from disparate sources as silos need to be securely unified under one platform for 
useful collaboration [39,40]. Data Lake refers to a pool of storage which can be used for storage of 
data under multiple stages of processing in an ITS. It stores raw data (structured, semi-structured 
and unstructured), pre-processed data after Extract–Transform–Load (ETL), Just-In-Time (JIT) data 
processed for specific use cases, results of experiments conducted, and other support data. Due to the 
different data sources, the data displays multidimensional heterogeneity as it involves different data 
representations, data uncertainties and various data formats. Therefore, the data extraction, data 
formatting, and data filtering are important for data pooling to form the Big Data Lake. The Data 
Lake must be governed by a set of principles and design patterns during the stages of ingestion, 
processing, storage, and consumption so that it does not end up as a Data Swamp. 

3.1.2. Real-Time Reporting Tools of Useful Metrics and Visualization for Data Insights 

The big data system should not only enable real-time reporting of the current condition of 
various channels of various transport systems, but also allow complex processing of historical data 
to generate value from it [41,42]. Therefore, in this regard, the functional microservice performance 
requirements can be divided into two types based on their transport service time. The first type of 
service metrics/use cases are those that need to be reported in the lowest possible latency. Congestion 
on roads and bus delays are examples of metrics of this type. The other type of service metrics/use 
cases are those whose values do not diminish if not reported immediately. For example, daily or 
weekly public bus transport’s timeliness report is a use case of this type. In this paper, we discuss 
how some of these metrics can be implemented through a hybrid architecture of both streaming and 
batch processing to deliver the required smart transportation services. Visualization of both types of 
service use cases is another key requirement. Such visualizations would assist authorities for making 
decisions effectively. 

3.1.3. Predictive Modelling of Transportation Services 

Past and current data accumulated over time are useful in descriptive (what) and diagnostic 
(why) analytics of transportation services. The predictive analytics help further in providing 
intelligence using ML and deep learning (DL) algorithms and captures patterns from the current data 
distribution to predict future values so that transport related decisions can be made in real-time 
[43,44]. Demand forecast of a public transport is an example of predictive modelling of transportation 
services which can help public transport providers to effectively make use of vehicle and manpower 
resources to meet the user needs. 

3.1.4. Data Integration and Insights using Application Programming Interface (API) 

Data insights gained from various reporting features that serve as use cases must also reach 
relevant end-users of an ITS. The system must expose transportation service-related data insights as 
endpoints which can then be consumed by other third party APIs from the cloud environment. 
Exposing data insights to the public consumers and stakeholders of an ITS would help to make 
smarter decisions. This requires the software components and interfaces to integrate applications 
using a mix of data sources, thereby accelerating the speed of developing services for smart 
transportation and analytics [37,39]. 

In general, microservices offer benefit such as faster change speed, better selective scalability, 
and cleaner, evolvable architecture. 
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3.2. Non-Functional Microservice Performance Requirements of ITSs 

Typically, ITSs should be capable of scaling horizontally and handling large amount of traffic 
coming from several heterogeneous data sources such as IoT devices, smartphones, cameras, machine 
logs, and social media [38,45]. There are ten non-functional microservice performance requirements 
in the context of designing contemporary data architectures for intelligent systems: Batch data, 
stream data, late and out-of-order data, processing guarantees, integration and extensibility, 
distribution and scalability, cloud support and elasticity, fault-tolerance, flow control, and flexibility 
and technology agnosticism [38]. Conventional big data systems that rely on MapReduce jobs and 
batch ETL cannot be used because of high latency in ingesting new data [46]. Our proposed 
microservice-oriented architecture for ITSs should be capable of ingesting data continuously and 
support real-time processing of big data. The system should be robust, highly available and fault 
tolerant without losing incoming data. In addition, security measures should preserve user privacy 
while dealing with data which can potentially identify the user. For instance, data generated from a 
smartphone of a user must be anonymized to protect sensitive and private information. Further, the 
system should establish secure policies for granting access rights and roles to authorized users who 
are eligible to access data. We identify and summarize below seven key non-functional microservice 
performance requirements in providing useful metrics for smart transportation and value-added 
analytics in efficient use of the roads and public transport systems. 

3.2.1. Public Transport Service Reliability 

Many studies have emphasized that reliability of transport services is a key determinant of 
passenger ride satisfaction and strongly shapes people’s choice in transportation modes. Reliability 
measures include not only absolute waiting time but also headway of the transport system. Reliability 
is more significant in the intra-city public transportation context where most bus services are of the 
high-frequency category where buses arrive at frequencies of less than 15 minutes. Headway is 
measured as an interval of time between bus arrivals and is the commonly used metric to specify the 
bus regularity or reliability [5,6]. In general, for such bus services, passengers do not rely on a 
timetable of scheduled arrival times and; therefore, bus arrival punctuality is not primarily a 
passenger concern. More importantly, expectation of passengers to “turn up and go” and any 
unexpected increase in waiting time are important in assessing the passenger satisfaction of the 
transportation service. To improve reliability, bus service controllers are required to assist in reducing 
bus bunching as it increases headway [47,48]. Based on reliability metrics, the transport service 
providers can arrive at transport policies and traffic governing measures, such as enforcing 
appropriate bus travel speed, providing advisories on bus stop dwell time, inserting stand-by buses 
in mid-route, or replacing a turnaround bus with a new one. 

We provide an example measure for public transport service reliability such as excess wait time 
(EWT), which is the difference between actual wait time (AWT) and scheduled wait time (SWT). 
These reliability metrics can be calculated using the accumulated data at different instances 𝑛𝑛 related 
to actual headway (𝐴𝐴𝑛𝑛) and scheduled headway (𝑆𝑆𝑛𝑛). For instance, bus drivers and service operators 
could be provided with incentives based on achieving certain performance metrics. The formula for 
the calculation of EWT, AWT and SWT are given below: 

EWT = AWT − SWT 
AWT = ∑ 𝐴𝐴𝑛𝑛2𝑛𝑛

2 ×∑ 𝐴𝐴𝑛𝑛 𝑛𝑛
         SWT = ∑ 𝑆𝑆𝑛𝑛2𝑛𝑛

2 ×∑ 𝑆𝑆𝑛𝑛 𝑛𝑛
 

Assuming a uniform arrival rate of passengers, EWT increases when there is bus bunching. EWT 
is zero if a bus service arrives exactly according to the scheduled headway. These metrics can be 
defined to bring out the complexity of the traffic environment and gain deep insights. In other words, 
a measure such as EWT can be measured in multiple ways from different data inputs such as peak 
period, non-peak period, across all trips, at critical bus stops, average across calendar month, and trip 
direction. 
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3.2.2. Seating Availability in Public Transport 

In a public transport system, the available seating capacity is a concern for commuters who 
depend on such mode of transport every day. During peak hours, commuters may prefer to use taxis 
rather than overcrowded buses/subways [21,39]. A smarter decision of whether to use public 
transport can be made if the traveler has access to information on the available seating capacity at a 
time and the chance of getting a seat for bus/subway for taking the journey. Crowdedness of buses 
and subways can also help elderly and people in need of more space like parents travelling with 
infants/kids to make a smarter decision when to opt for a more comfortable travelling alternative 
than public transport. For instance, the total occupancy (𝑇𝑇𝑇𝑇) and crowdedness metric (𝐶𝐶) of a bus 
or subway can be calculated as follows: 

𝑇𝑇𝑇𝑇 = 𝑂𝑂 + 𝐵𝐵 − 𝐸𝐸  and 𝐶𝐶 = 𝑇𝑇𝑇𝑇
𝑀𝑀

 

where 𝑂𝑂 denotes number of occupied seats, 𝐵𝐵 denotes number of passengers boarded into the bus, 
𝐸𝐸 denotes number of passengers exiting the bus, and 𝑀𝑀 denotes maximum capacity of the bus. 

3.2.3. Public Road Congestion 

Reduction in traffic congestion has economic, environmental, and health benefits. Firstly, 
reducing peak-time congestion saves both travel time as well as capital investment on building 
additional roads or highways. Further, reduced vehicle wait times in traffic jams reduces vehicle 
exhaust, thus reducing carbon emissions and air pollution. In the US alone, 25 million tons of carbon 
dioxide per year was emitted from vehicles stuck on congested roads [12]. With big data providing 
high-resolution GPS information, such data could be used to build public transport demand maps to 
enable better allocation of public transport resources. Various ridership trends and passenger routes 
can be processed to identify areas of high demand so that public transport resources could be 
redeployed accordingly. Such public transport resource optimization aim to minimize wait-times, 
increase transport efficiency, and encourage uptake of public transport, thereby reduce the volume 
of private vehicles in improving public road congestion [42,49]. We provide two metrics for 
determining the public road congestion such as travel time index (TTI) and duration of traffic 
congestion (DTC) below: 

Travel Time Index 

Travel Time Index (TTI) is a measure which compares peak period travel and traffic-free or free 
flow travel, while accounting for both recurring and incident conditions. The index has the advantage 
of expressing traffic congestion in terms of both space and time as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑝𝑝
𝑇𝑇𝑓𝑓

=
𝑆𝑆𝑓𝑓
𝑆𝑆𝑝𝑝

 

where 𝑇𝑇𝑝𝑝  denotes travel time during peak period, 𝑇𝑇𝑓𝑓  denotes travel time free flow of traffic, 𝑆𝑆𝑓𝑓 
denotes travel speed of the bus during peak period, and 𝑆𝑆𝑝𝑝 travel speed of the bus during free flow 
of traffic. 

Duration of Traffic Congestion 

Another measure that provides useful information on public road congestion is the duration of 
traffic congestion [9]. To determine this metric, the first step involves smoothing the instantaneous 
fluctuating vehicle velocity using the technique that is commonly used in the Transport Control 
Protocol (TCP) for smoothing out the average flow throughput on the Internet. This technique is 
called weighted exponential average velocity that can be adopted for vehicle traffic on public roads 
and can be expressed mathematically using data collected at different times. In this context, we adopt 
the following mathematical equation: 

𝑉𝑉𝑡𝑡 =  𝛼𝛼. 𝑆𝑆𝑡𝑡 + (1 − 𝛼𝛼).𝑉𝑉𝑡𝑡−1 
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where 𝑉𝑉𝑡𝑡  denotes the average vehicle velocity at time t, 𝑆𝑆𝑡𝑡 is the 𝛼𝛼  percentage of instantaneous 
velocity at time t and 𝑉𝑉𝑡𝑡−1 denotes (1 − 𝛼𝛼) percentage of the average velocity at previous time (t-1). 

In our experimental study, α = 0.125 is used, which is a standard value used by TCP. After the 
average velocity is obtained, the second step classifies it into three levels—red, yellow, and green—
and two classification thresholds, β and γ, are determined as follows: 

• Red level, if 𝑉𝑉𝑡𝑡 <  𝛽𝛽 km/hr. 
• Yellow level, if 𝛽𝛽 < 𝑉𝑉𝑡𝑡  <  𝛾𝛾 km/hr. 
• Green level, if 𝑉𝑉𝑡𝑡 > 𝛾𝛾 km/hr. 

After the initial congestion level is determined, the congestion duration is calculated according 
to the time in which each congestion event remains in the same state. The third step determines the 
final congestion levels. A reported congestion event is assumed to last for at least ±180 seconds, which 
is determined based on mining of historical data. Experimental study should be conducted until the 
final congestion level obtained is compatible with the current system and ready to be reported to the 
public. 

3.2.4. Public Transport Queuing Information 

In densely populated cities, both situations where passengers queuing for taxis and taxis 
queuing for passengers frequently occur due to an imbalance of taxi supply and demand. Timely and 
accurate detection of such waiting queues and the queue properties would immensely benefit both 
public commuters and taxi drivers [40]. There are four types of queue contexts (C1, C2, C3, and C4) 
given in the following table that play a role in the context-aware data processing: 

In Table 1, Taxi Queue refers to one or more available taxi waiting for taking new passengers, 
and Passenger Queue refers to one or more passenger waiting for taxis at a queuing area or taxi stand 
during a given period. Big data mining of various parameters associated with this queue information 
would help in providing appropriate advice for commuters and transport operators for an improved 
service. 

Table 1. Passenger and transportation queues. 

Queue Type Passenger Queue No Passenger Queue 
Taxi Queue C1 C3 

No Taxi Queue C2 C4 

3.2.5. Monitoring Public Transport Incentives 

One of the non-functional microservice performance requirements for continuously improving 
transport services is by providing context-aware rewards and incentives and monitoring their 
effectiveness [10,31]. However, there could be missing real-time headway metrics arising from 
missed real-time location data and messages from vehicles [40]. Such data may need to be imputed 
for determining the incentives for service reliability. For instance, the real-time headway metrics of a 
public transportation service could be imputed as an average over different groups of data available 
under certain criteria such as time (e.g., weekly, monthly, etc.), peak or non-peak period, type of bus 
services, single or both directions, and specific critical bus stops to create the overall reliability 
indicators of a bus service. 

3.2.6. Predictive Demand Forecast 

Predictive analytics could be employed to forecast the demand for public transportation 
services. A widely used statistical method for time series forecasting is autoregressive integrated 
moving average (ARIMA) that can be developed to predict the demand for public bus services from 
previously boarded passenger count [43]. The ARIMA model could be built in the batch layer, and 
the most recently boarded passenger count for the bus service will be used in the real-time stream 
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layer to predict future demand of the bus service. An ARIMA model is represented by the equation 
given below: 

ŷ𝑡𝑡 = μ +  𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 +  𝜃𝜃1𝑒𝑒𝑡𝑡−1 + 𝜃𝜃2𝑒𝑒𝑡𝑡−2 + ⋯+  𝜃𝜃𝑞𝑞𝑒𝑒𝑡𝑡−𝑞𝑞 + μ𝑡𝑡 

where 𝑦𝑦𝑡𝑡 is the difference in boarded passenger count at time t, the moving average parameters are 
represented by 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑞𝑞 and 𝜙𝜙1,𝜙𝜙2 … ,𝜙𝜙𝑝𝑝 are the autoregressive parameters determined by the 
fitted model. Other model based on neural networks such as the recurrent neural network (RNN) 
and the long–short term memory model (LSTM) could also be used to for predictive analytics on time 
series data. 

3.2.7. Information for Traffic Enforcement 

In many countries, traffic enforcement in an ITS makes use of images and video-based intelligent 
systems that are instrumental in traffic analysis and traffic management [50,51]. Typically, traffic 
analysis includes information on vehicle count, and other image and video-based parameters for 
traffic state recognition and automatic incident detection. Traffic management involves placing 
closed loop sensor systems to track vehicles and their usage of different locations of the road such as 
temporary hard shoulders to control their access using traffic signals. All these rich traffic data from 
various images and videos collected from speed cameras will help the traffic enforcement for public 
roads and transportation systems. Such data can be used by ITSs from traffic analysis to traffic 
management and then to traffic enforcement of average speed controls, traffic light system, and toll 
collection at various locations of the road. An integrated ITS with service-driven design is required 
to increase the reliance and accuracy from the images and video sources for different transport 
modes. For instance, public bus service could be enhanced using the images and videos of buses 
taken at different bus stops and locations of the road. An accurate and intelligent data computation 
plays a major role in an ITS such as bus headways for regulatory reporting purposes and prediction 
of future headways for better bus fleet management. Using machine vision of spatial-temporal traffic 
data, insightful information, and predictions can determine traffic speed bands of road segments, 
road traffic congestion, future traffic status, and alerts. 

4. Proposed Microservice-Oriented Big Data Architecture (MOBDA) for a Smart Transportation 
and Analytics System 

Driven by the user-centric requirements in the design of an ITS, we propose Microservice-
Oriented Big Data Architecture (MOBDA) as a hybrid model framework that leverages both stream 
processing and batch processing for achieving a smart transportation and analytics system. By 
dividing the metrics and use cases into two popular categories of data processing architectures, as 
discussed in Section 3, the system can exploit low latency proficiencies of Kappa and high throughput 
of Lambda, as shown in Figure 1. 

 
Figure 1. Overview of proposed Microservice-Oriented Big Data Architecture (MOBDA). 
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4.1. Overview of Proposed MOBDA 

The proposed MODBA relies on a distributed message broker backend to ingest data, 
communicate between microservice-oriented components, and exchange messages to share data 
processing models, data analytics, and insights. The processing framework will also provide 
querying, pattern recognition, and text analytics facilities made available to the serving layer. The 
architecture derives its computations from both online and offline computation models depicted as 
the real-time processing layer and batch layer, respectively, in Figure 1. The real-time processing 
layer can produce output in the lowest possible latency to compute metrics that can be calculated 
incrementally and does not rely on time-consuming complex CPU/GPU based processing. Real-time 
processing covers dynamic dashboards and quick analytics. On the other hand, batch processing 
architecture is used to process data in batches to gain higher throughput. Training of complex ML 
models, feature engineering, and data transformation for reporting from analytics apps will be 
performed in this layer. 

The main motive behind having a hybrid between stream and batch processing is to achieve 
performance and service level efficiency in an ITS. Performing computation intensive big data 
operations such as joins, grouping, sorting will increase the reporting latency of the streaming layer 
for arriving at transport service level metrics. Additionally, we show that a clear majority of metrics 
related to an ITS can be calculated by handling the incoming data as a continuous stream and 
applying intelligent window functions. The core technologies used in each of the layers is discussed 
in further sections. 

Today, an ecosystem of open source tools and cloud-based services make it possible to develop 
decomposed and distributed microservices in a cost-effective way. In the proposed MOBDA, we off-
load the cost of dealing with some of the repeated batch and real-time processing pipelines to 
effective microservices. While this results in several advantages, the most significant advantage in 
big data context is the ability to run selected stateless processes as microservices thereby making it 
easier to scale across distributed clusters. MOBDA aims at identifying components from the existing 
ITS functional pipelines that can shift towards self-contained, independently deployable high 
performing microservices that can bind to a port. The goal is not to build microservices that are as 
small as possible like in traditional microservice based solutions. Instead the primary aim in our 
proposal is to achieve process optimization through bounded right-sized microservices. 
Consequently, in the proposed architecture, our reactive microservice layer works in-tandem with 
the event integrator to provide real-time interactive interfaces for the hybrid architecture. It does not 
replace the real-time stream processing pipelines that were built using frameworks such as Apache 
Storm. Similarly, microservice-based applications will also supplement traditional batch processing 
pipelines by offering domain driven decomposition of intelligent transport services. Hence, through 
the use of our microservices layer over the data pipelines, we are able to achieve non-real-time 
transport services that are loosely coupled, query-based, and independently deployable, and these 
form critical considerations for the adaptability and scalability of big data solutions. 

The input sources of big data in its ingestion phase can be broadly categorized into two major 
types as follows: 

• Internal sources—This refers to data originating from each transport organization and its 
services. A collection of these data should have started with the associated service, and hence 
will have a historical data such as GPS locations, passenger entry and exit of bus, commuter 
usage on mobile apps, camera feeds from bus, seat availability, bus routes, etc. 

• External sources—This refers to data obtained from third-party sources. This data does not 
originate from the transport organization but are useful as complementary sources in the data 
analysis. External data sources could be from weather bureau, public events, bus and taxi stand 
cameras, real-time traffic information of Google Maps, etc. 

Figure 2 presents a high-level flow of data from the big data input sources to the operational and 
edge servers of MOBDA. The arrows from various input sources indicate the different datasets 
ingested from both external and internal sources to various publishers. The edge/gateway node is an 
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independent server that acts as a connection between the external sources and the actual big data 
cluster in offering many microservices. In Figure 2, we consider Weather as an example of a 
microservice originally exposed via API endpoints from the government or a private company. The 
edge node periodically calls the API (e.g., via CRON), does the required pre-processing (e.g., 
converting XML/JSON to flat file), and produces a message in the Kafka topic. The difference with 
the internal sources is that they are handled by the Operations Server. The dotted box in Figure 2 
clearly shows the components of this Operations Server, wherein the distributed data services and 
endpoints already in place for the typical create–read–update–delete (CRUD) operations as well as 
related to data streaming topics. An additional service called KafkaMsgToTopic converts the data 
into a message and passes it along the specific Kafka topic, and will be useful in creating 
microservices meeting the requirements of different users for a scalable system. Each Kafka topic is 
a category or feed name to which data records belonging to that topic are organized, stored, and 
published. Figure 2 shows along the arrows the partition of topics indicating the data under the 
specific topics communicated from KafkaMsgToTopic Service in parallel to Kafka broker. 

 
Figure 2. Data flow model of MOBDA from various big data input sources. 

4.2. Real-Time Stream Processing Layer 

The foundation of our approach to real-time stream processing layer is the stream processing 
speed layer using Kappa architecture. An ITS generated data being dominantly time-series data with 
rapidly changing contexts, Kappa stream processing frameworks such as Flink, Storm, and Spark 
provide processing pipelines using data extraction libraries, task/pipeline parallelism, functional 
scalability, high computational power, finite data-retention rates, data compression support, and 
relevant specific time-series analytics 

In the real-time stream processing layer of MOBDA, a Storm cluster is used with an architectural 
perspective shown in Figure 3. It is composed set of nodes called Worker node running the daemon 
called Supervisor. The cluster also hosts one master node, which runs the daemon called Nimbus. 
The Nimbus is responsible for assigning work and managing resources in the cluster [15]. Figure 3 
provides a pictorial illustration of a high-level stream processing of MOBDA by adopting Apache 
Storm cluster to complete the assigned tasks with real-time data in the best possible way. The Nimbus 
daemon distributes code to get the tasks done within the cluster and monitors for failures using the 
Apache ZooKeeper. Using Figure 3, we demonstrate high-level topology as an example of Zookeeper 
employing three Worker nodes (Supervisor) to execute the Worker processes. The double arrows 
show the mutual reliance of these components. The single arrows show the communication among 
the Worker processes that collaboratively complete the assigned tasks and update their status in the 
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Apache ZooKeeper service. This topology is useful to illustrate how the microservice tools can be 
used to store Nimbus states in Apache ZooKeeper and monitor the state to restart Nimbus from 
where it left in the case of any failure. Hence, from the perspective of stream processing, Storm is 
scalable and fault tolerant, and can be configured to deliver a different level of guarantee in 
processing tuples and the three semantics employed are at-most-once, at-least-once, and exactly-once 
to enhance reliability. 

 
Figure 3. Stream Processing of MOBDA using Storm Architecture. 

For ITSs, many data sources, like IoT sensors, smartphones, cameras, etc., emit data 
continuously, making Apache Storm a natural choice for processing the incoming stream [28]. In 
addition, as discussed in Section 3, most microservices offering reporting of traffic-related services 
require certain metrics either calculated instantaneously or based on a windowed time frame. These 
metrics do not rely on historical data, thus eliminating the need to maintain a central cache of 
historical data for Storm bolts to access. Additionally, seamless Kafka integration using Kafka spouts 
enables easy integration of microservices with the proposed architecture. 

We propose a Storm topology for MOBDA, as shown in Figure 4, to compute the transport 
service metrics discussed in Section 3. Kafka spouts, which emit the incoming Kafka messages (curly 
arrows) as a stream of tuples, act as the starting point for calculating the metrics (shown in processing 
bolts as circles). Then each of the spouts release data to a corresponding bolt which transforms the 
stream using a valid stream operator. In a few cases, these bolts rely on the saved state to access 
historic or factual values (denoted by dotted links). The bolts can also utilize pre-trained models, 
which can be applied to transform the stream data. For instance, the Object Detection bolt can apply 
previously trained DL model to the incoming stream of images to count the number of people/taxis 
waiting in the taxi stand. These pre-trained models can be either loaded to memory or accessed via 
an API call. Finally, the final bolt in each of the computation emits the desired metric which is 
published to Kafka queue. The published messages are consumed by another set of spouts and bolts 
which are responsible for persistence committed to the storage layer. Figure 4 serves as a design 
model that is useful for the implementation of ITS metrics in the Apache Storm topology of MOBDA. 
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Figure 4. Overview of Storm topology of MOBDA for real-time transport service metrics. 
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4.3. Batch Processing Layer 

The batch processing layer is aimed to provide the delayed reporting of transport service metrics 
and the visualizations of the data insights. For this layer, we adopt Apache Spark, an open-source 
distributed general-purpose cluster-computing framework, which is gaining popularity due its speed 
and adaptability with interactive queries and iterative algorithms. Spark is faster than Hadoop 
MapReduce as it uses in-memory processing, which is about 100 times faster with data in RAM and 
about 10 times faster with data in storage [46]. Spark can be adopted with the Akka framework for 
creating reactive, distributed, parallel and resilient concurrent applications. 

The Spark Core’s version of MapReduce allows in-memory computing, caching, and chaining 
multiple tasks together. It has the advantage that offline descriptive and diagnostic analytics (such as 
weekly or monthly reporting microservices) are simple to implement. Spark SQL is a module in 
Apache Spark that integrates relational processing with Spark’s functional programming API. 
Further, Spark SQL Engine allows combining batch and stream processing using the new structured 
streaming approach. Spark MLlib is a collection of distributed ML algorithms that utilizes large-scale 
historical data for batch processing and is useful in the development of models for predictive 
analytics in an ITL. 

4.4. Storage Layer 

The storage layer needs to meet all the functional and non-functional microservice performance 
requirements which differ particularly in scalability and real-time accessibility of big data. Real-time 
metrics which are used for transport operational control purposes require a storage solution which 
supports quick database reads and writes. For management reporting, the storage layer requires 
more complex query support with less need for fast-transactional response or real-time analytics. A 
polyglot persistence architecture is best able to meet these differing storage requirements, albeit the 
cost of increased implementation complexity [16]. More recently, multi-model datastores have 
appeared in the NoSQL landscape and they hold the promise of a homogeneous single-system 
implementation of polyglot persistence, which significantly reduces the implementation complexity 
[52]. Such software components can provide scalability to meet a wide range of storage layer 
requirements in our proposed MOBDA for an ITS. 

In the polyglot storage layer, raw data from the data sources are stored directly into a scalable 
HDFS. Processed data from the real-time stream processing layer and the batch layer is stored in 
Cassandra, which is used as a distribute column-based database to allow for different consistency 
levels and to support a large volume of concurrent reads and write with a low latency. In addition, 
MOBDA makes use of Cassandra query language (CQL) for the formulation of efficient and powerful 
queries into the data storage layer to support management reporting microservices. Cassandra, 
which is fault tolerant and highly available, can be connected to Apache Spark and Apache Storm 
easily through connectors. Cassandra’s data model is an excellent fit for handling data in sequence, 
making it a preferred choice for storing the calculated transport service level metrics which are time 
dependent. Incoming image stream which is raw files is simply stored into the HDFS. A meta-data 
table to store the details about the traffic images and videos like the place, timestamp, and location 
in HDFS is maintained using Cassandra. 

4.5. Broker Layer 

The broker layer of MOBDA can be considered as the meta-data layer for data communication, 
security, and governance by enforcing the required business rules of an ITS. Frameworks such as 
Apache Atlas and HCatalogue are helpful in a successful implementation if this layer. It plays an 
integral part of MOBDA as many decisions are made based on the various transport data that needs 
to be validated and protected from unintended parties. In addition, big data security and governance 
are required to ensure privacy of individuals and safety of commuters. This poses restrictions on data 
that can be captured, and every data collected needs to be accounted for and tracked across various 
organizations in achieving the required transport service levels. Data lineage of MOBDA includes a 
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data cycle that captures data visibility across all stages of the pipeline and every action is traced back 
to its source. This helps in troubleshooting and recovery of middle stage data by running only from 
the affected parts of the pipeline. Figure 5 lists four essential components of the security broker layer 
of MOBDA for managing sensitive data [36]. By separating these security broker components, the 
business rules for each component could be independently adopted using best practice methods. 
Data classification or tagging allows one to identify the source where data was obtained, thereby 
custom security checks can be applied to the source depending on vulnerability. Fine-grained access 
control policies are to keep a check on the user access to authorize only the right user(s) to have 
limited access to the right data. Data anonymization, encryption, and differential privacy 
mechanisms protect public information. Finally, monitoring options are included for audit purposes. 

 
Figure 5. Security broker components of MOBDA. 

4.6. Serving Layer 

The serving layer includes both batch and real-time data processing. The former involves 
querying the stored data at rest, while the later stores queries that works on moving data. The serving 
layer is responsible to meet the functional microservice performance requirements as discussed in 
Section 3. Typically, it should satisfy such functional microservice performance requirements 
originating from two different end-user groups. As shown in Figure 6, the first group of users are the 
administrative staff, decision makers and data analysts who would rely on computed metrics and 
generated reports for big data insights and to drive important decisions. This group is mostly 
interested in real-time visualization of the metrics, easy access of the generated reports and capability 
to perform analytical processing either by querying the data or through business intelligence tools 
like Tableau, Power BI, etc. To monitor the metrics in real-time, the messages published by Storm 
topology of MOBDA can be directly subscribed with appropriate secure access rights and 
authorization privileges. The metric can be displayed in a dashboard (using microservice built using 
popular languages like Python or Java). To extract big data insights directly from moving data or 
perform complex querying like joining message stream, Kafka provides a familiar SQL like API called 
KSQL. The other group of users which comprises of common customers or third-party app 
developers will not have direct access to the system and would rely on the exposed API endpoints to 
consume the data. The microservice application responsible for exposing the desired service would 
host its own data caching and persisting mechanisms. 

 
Figure 6. Serving layer of MOBDA using Apache Cassandra and Kafka. 

Overall, Figure 6 illustrates integrating systems connecting different BI tools, NoSQL stores like 
Cassandra and Kafka via representational state transfer (REST) architecture, REST API within the 
Serving Layer of MOBDA. In many ITS scenarios, the flow of data from various IoT devices is 
continuous but has limited capacity to buffer data. The use of Kafka microservices allows additional 
events to be added to the system from a simple application to buffer data in Cassandra to advanced 
intelligent applications that performs real-time stream processing for business decisions in ITSs. 
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5. Use Case of MOBDA for a Smart Transportation and Analytics System 

5.1. Case Scenario and Method 

In many densely populated countries, ITSs have been pivotal in enhancing their public transport 
systems, as well as in managing and optimizing the limited road space to deliver a convenient, safe, 
and comfortable travelling experience for its commuters. Behind these systems, there exists a need 
for big data processing capabilities. Therefore, in this section, we explore use case of our proposed 
MOBDA for a smart transportation and analytics system to process a large-scale transportation data 
in the context of a country such as Singapore [1]. We consider one use case of MOBDA for the scenario 
of determining bus service headway, which is a key service level metric used for determining many 
of the above smart and timely information on transportation. 

The data for exploring the use case of our proposed hybrid architecture was obtained from the 
Singapore Land Transport Authority (LTA) DataMall. The LTA provides API access for various types 
of transport related data and microservices in Singapore [5,20]. Figure 7 provides a pictorial overview 
of a combination of actual real-time streaming of traffic data downloaded from public dataset of LTA 
and simulated data related to public bus transport system. Hence, it gives an illustration of the main 
types of transport related data that was collected as input data stream that we processed using our 
proposed MOBDA model. We mapped some of the key metrics/use cases for transport service level 
requirements discussed in Section 3, with the big data source and the architecture type in Table 2. 
The following gives a list of key components and microservices of transportation subsystems: 

• Alternative dynamic route recommendations 

• On-demand public bus service 

• Vehicle navigation service 

• Traffic signal control systems 

• Variable traffic message signs 

• Automatic number plate recognition 

• Automatic incident-detection 

• Real-time parking lots availability 

• Regular and timely updates for users 

 
Figure 7. Input data stream for use case of MOBDA. 
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Table 2. Mapping of key transport service requirements and big data processing architecture. 

Transport Service Level 
Metric/Use Case 

Big Data Source Big Data Processing 
Architecture 

EWT and AWT Bus arrival Stream 
Available Seat Capacity and 

Crowdedness 
Bus passenger count, image stream from 

cameras 
Stream 

TTI (Travel Time Index) Driver’s GPS using smartphone apps Stream 
Velocity Measurement Driver’s GPS using smartphone apps Stream 

Bus Stand Queue Image stream from surveillance cameras Stream 
Bus Timeliness Report Generation Historical EWT data Batch 

Predictive Analytics to Forecast 
the Demand 

Historical data Batch 

Intelligent Systems using Deep 
Learning 

Historical data stored image/video 
stream and records  

Batch 

 

For exploring the use case of MOBDA, we determined the bus service headway as an illustration, 
with real-time bus arrival information for bus services at a specific bus stop. To achieve this, a sample 
of 50 bus stops were selected among more than 5000 existing bus stops to obtain the bus arrival data. 
In this section, we provide the implementation details of various layers of MOBDA such as the data 
ingestion at the storage layer, real-time data, and batch processing layer and the serving layer with 
results. Table 3 provides a summary of the technologies used for big data processing in different 
layers of MOBDA. 

Table 3. Technologies used for big data processing in different layers of MOBDA. 

Big Data Processing/Service Level Reporting  Technology Used 
Raw sensor data Apache Kafka/Storm/Cassandra 

Data stream from smartphone apps Apache Storm/Cassandra/HBase/Hive 
Real-time operational metrics Apache Cassandra/HDFS 

Management daily/weekly reports Apache Spark (with SparkSQL)/HDFS 
Captured images and videos Apache Cassandra/HDFS 

The proposed MOBDA was applied using Apache Storm for processing the incoming stream of 
data to calculate the metrics required by microservices in real-time. The topology of Apache Storm 
consists of spouts that represent the source of the data stream and bolts that consume the spouts. 
Together they define the stream processing pipeline, which eventually transforms the stream by 
applying filtering, aggregations, joining with another stream. Unlike a MapReduce pipeline, which 
processes the data in batches, the Storm topology processes the data as it enters the system, thereby 
effectively providing the lowest possible latency. For the data integration from various big data 
sources, the primary data ingestion tool we employed was Apache Kafka. Using a distributed 
streaming platform such as Kafka, we could apply MOBDA to handle trillions of transport-related 
events per day. At the heart of Kafka lies three main components: i) Pub-Sub (publish and subscribe), 
ii) WAL (write ahead log) to ensure persistent commit that can recover from failures, and iii) 
processes which are small on-the-fly transformations that can be performed between data transmits. 

For the storage layer, different data storage options are chosen such as HDFS and HBase. For the 
big data querying engine, we chose Hive as a suitable option. The implementation of data ingestion 
and microservice consumption from Kafka to storage is illustrated in Figures 8 and 9. Ingestion of 
big data to storage was completed with HDFS for storing unstructured data such as checkpoint 
images, HBase for storing data of bus arrivals, and Hive for data utilization in the downstream 
processes. Ingestion of traffic speed bands and bus arrivals are shown in Figure 8. Ingestion of footage 
from surveillance cameras at bus stands and other checkpoints is shown in Figure 9. The data in 
HBase was exposed as a Hive table by efficiently making Hive to be in sync with the incoming data 
inserts without having to explicitly schedule an ETL job to transfer the data. 
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Figure 8. Data ingestion of MOBDA: Consumption of speedband data from Kafka to storage. 

 
Figure 9. Data ingestion of MOBDA: Consumption of checkpoint images from Kafka to storage. 

5.2. Results 

Computation of bus headways are required for regular reporting purposes in different traffic 
related microservices. Determining traffic speed bands, analysis of road traffic congestion, and 
prediction of future headways for better bus fleet management make use of various unstructured 
traffic data, including footage from surveillance cameras at bus stands and other checkpoints using 
the real-time data and batch processing layers of MOBDA. Machine vision is used for calculating 
service level metrics and other measures for road traffic congestion. DL and other ML models are 
trained using the meta-data table by employing the Cassandra data store in the storage layer of 
MOBDA. Table 3 provides the choice of technologies used in this study for processing transport 
related big data and the service level reporting with typical performance metrics required for the ITS. 
We adopted Spark SQL to make queries on the bus arrival data from the storage layer and the output 
of a sample query is provided in Figure 10. We illustrate, in Figure 10, the testing of the data pipeline 
implementation using the Spark SQL system, conducted by outputting the data values related to each 
bus and bus stop such as bus code, bus arrival time, departure time, bus stop code, and location. 
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Figure 10. Results of a sample query of bus arrival data using Spark SQL. 

The quality and frequency of bus service, reliability, waiting time, and other metrics are key 
factors of passenger satisfaction [53]. The time interval between bus arrivals denoted by bus service 
headway is a key quality of service (QoS) metric in a microservice for management reporting. It is 
also used for the calculation of incentives/penalties for bus service operators. We model the bus 
arrival data obtained at each time instance, such as t0 and t1 at each bus stop, as shown in Figure 11. 
The pictorial representation of three different buses—Bus1, Bus2 and Bus3—at a specific bus stop and 
its queueing at different timestamps illustrates the importance of metrics, such as average headways, 
in making decisions that are further constrained by the queue size and bus bay length at the bus stop. 
For this purpose, average headways are calculated using the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 𝑖𝑖+1 − 𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 𝑖𝑖

𝑛𝑛 − 1

𝑛𝑛

𝑖𝑖=1
 

 
Figure 11. Bus arrival at a bus stop for different time instances. 

The average bus service headway was calculated using bus arrival data gathered from 5021 bus 
stops in total. Table 4 shows the output for a sample of 40 bus services. In order to establish an 
improved bus fleet management, bus service headway was predicted using ML models such as linear 
regression and random forest regression [54]. Spark ML was used to fit regression models to predict 
the headway for the next time frame and the output is given in Table 5. The Spark processing pipeline 
using Spark ML was comprised of two steps: 
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Table 4. Average bus service headway output generated using Spark SQL. 

ServiceNo Average_Headway ServiceNo Average_Headway 
51 821.0 174 716.0 
7 648.0 502 1054.0 

124 584.0 61 784.0 
700 655.0 75 689.0 
851 608.0 166 889.0 
11 1124.0 131 699.0 

961 751.0 130 813.0 
64 835.0 147 634.0 

133 604.0 851e 1619.0 
162 706.0 77 685.0 
139 779.0 111 738.0 
7A 1676.0 197 859.0 
16 671.0 167 846.0 

171 594.0 190 404.0 
980 832.0 857 430.0 
195 631.0 33 781.0 
107 858.0 48 906.0 
167e 1189.0 97 698.0 
100 692.0 106 625.0 
70 612.0 158 949.0 

Table 5. Regression model output of bus service headways using Spark ML. 

Prediction Headway Features 
618.8091607030974 792 [1.554951864×10−9] 
739.4689226078593 705 [1.554952656×10−9] 
711.9043973618633 593 [1.554953361×10−9] 
736.4733593312665 858 [1.554953954×10−9] 
642.3014599489723 478 [1.554954812×10−9] 

i). Assembly of various features. The sole feature of this simple regression model was based on the 
timestamp. 

ii). Fitting the ML model. Two different machine learning models were fitted—linear regression and 
random forest regression model. The evaluation metric used was root mean square error. 

For the road checkpoint image classification in Spark DL, we used various road checkpoint 
images taken from traffic cameras and transformed the images to obtain the features. The following 
steps were adopted in the processing, training and prediction: 

i). Loading images. We made use of utility functions such as ImageSchema.readImages() in 
Pyspark to load millions of images in Spark Dataframe. It was split to obtain train dataframe 
and test dataframe. 

ii). Model definition: The DeepImageFeaturizer provided by SparkDL uses a pre-trained DL model, 
such as InceptionV3, which was used to transform the images into numeric features. Logistic 
Regression was used to perform binary classification in addition to the features provided by 
InceptionV3. We employed pyspark.ml pipeline to define the model. 

iii). Model training: The model pipeline was trained using the training dataframe. 
iv). Model prediction: The model was employed to predict on the test dataframe. To evaluate the 

accuracy of the model, a MultiClassClassificationEvaluator() utility function was used. 
v). Model testing: A new set of images was loaded in a Spark dataframe and the trained model was 

used to obtain the labels (high or low) for the given images. 
The root mean square error (RMSE), a standard deviation that provides a measure of the 

prediction errors, was calculated. Our prediction of bus service headway using linear regression 
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model resulted with an RMSE of 291.46, while the random forest regression model resulted with an 
RSME of only 206.42. 

Overall, the use case of our proposed MOBDA for the scenario of determining bus service 
headway demonstrates the computation and reporting of important metrics used in microservices of 
a modern ITS. These performance metrics and data insights report the current condition and 
effectiveness of the system in providing the desired service level of a microservice or an ITS 
subcomponent. The application of MOBDA effectively leverages two different computation 
archetypes: stream processing and batch processing. The stream processing layer enables real-time 
reporting of the metrics while batch processing enables building complex processing pipelines and 
models. The batch processing layer has successfully used SparkSQL and SparkML to compute the 
metrics. 

6. Discussions 

The successful prototype development of our proposed MOBDA leveraged Apache Kafka as the 
entry point to the Data Lake. Once the API responses from LTA data mall were pushed to the Data 
Lake as messages to Kafka broker using producers, the processes from Nifi, a software project of 
Apache, were adopted to deliver these messages to storage sinks. Nifi provided an effective data flow 
management, making it easier to move data between different kinds of sources and sinks. Once the 
data was stored in HBase, a few of the required tables were exposed as Hive tables, which made it 
easier to connect to data processing engines like Apache Spark. 

The design of our hybrid model in MOBDA facilitated in having each component of the 
architecture to be easily scaled based on application requirements. Our proposed model is quite 
different from the recently proposed microservice-oriented platform reported as a proof of concept 
in literature [55]. It was called IoBDA platform as it was proposed to facilitate big data analytics 
(BDA) in IoT environments.  The study concluded that scalability of components is a limitation in 
IoBDA’s processing abilities. While IoBDA focuses on Monte Carlo and convergence analytics in IoT-
based systems, our proposed MOBDA is more generic and scalable. Further, we demonstrated the 
successful application of MOBDA in a real-world case scenario of an ITS. Another similar research 
proposes the use of Apache Spark for ITSs by employing a single data source and a prototype 
processing pipeline for descriptive analytics [56], but lacks generalized architecture and scalability. 

Further, in this discussion, we compare the merits of our work in this paper with a review on 
various architectural models and their stereotypical use cases that were profiled recently [57]. We 
observe from such reviews that the hybrid architecture is preferred in situations where there is a need 
for both real-time analytics and periodic batch analytics on the entire data collection. The kappa 
architecture is particularly suited for real-time analytics such as user behavior, network analytics, 
and social media trends. The zeta architecture is particularly suitable for complex data-centric 
applications that enables broker-based communications. For instance, zeta architecture is useful for 
building machine learning systems of an analytics solution. The recently proposed iota architecture 
is an extension of zeta architecture but focuses only on stream-based event triggered systems 
(covering both batch and real-time processing). On the other hand, the microservices architecture is 
useful to achieve modularity, query-based interactivity and service-based interactive responses. They 
are generally found to be deployed as apps for stakeholder, device, and sensor interactions. Similarly, 
in another comparative study, Lambda, Kappa, and IoT Architecture were profiled with a focus on 
the four V's (volume, variety, velocity, and veracity) of big data, as well as latency, storage, 
adaptability, and processing aspects [58]. However, the study did not provide implementation details 
to support the stated claims. Another survey [59] on various big data architectural models briefly 
reviewed the ecosystem and conceptual terminologies as defined by research, academia and 
industry. 

A modular ITS for automobile accident detection system (U.S. Patent No. 7,983,835) [60] used 
both audio and visual inputs to identify special situations. It was highly useful in incident monitoring 
in situations where it is important to directly or inferentially determine whether an accident had 
occurred. This patent used a proprietary hybrid algorithm thereby limiting its application. In another 
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IoV (Internet of Vehicles)-based real-time analytics proposal [61], IoT devices, fog computing, and 
cloud computing were suggested for solving traffic congestion by incorporating alternate route 
calculations. The proposal used three main layers (vehicles, intelligent road, and communication 
messages) and was tested using simulated data by employing cloud/fog services. The work 
supported hybrid models; however, lacked in adaptability and scalability due to the inherent 
limitations of the velocity and veracity aspects of big data in their architecture and the restricted 
nature of the simulated data used. 

In comparison to the above-mentioned studies and proposals, our proposed MOBDA uses a 
hybrid architecture leveraging the advantages of lambda, kappa, and microservices appropriately. 
We have adopted an inclusive approach in building a solution model that positions well to embrace 
Industry 4.0. The use case of MOBDA has been demonstrated with a real-world open data, as well as 
real-time data streams and messages of an ITS with a futuristic purpose of improving various service 
metrics such as traffic prediction accuracies and entropy of parameters. 

A major challenge in any big data processing architecture implementation is in real-time 
processing of IoT data, as most of the sensors will be generating big data every second resulting in 
high data ingestion rates. In MOBDA, by seamless addition of more worker nodes in the cluster, Nifi 
and Kafka’s throughput can be increased to handle data at a rate of a few gigabytes per second, which 
is a typical requirement of large-scale big data IoT architectures. By using HBase we have ensured 
that the data is persisted quickly. Additionally, given that incoming data from IoT are small 
messages, HBase was a preferred choice over Hive with higher overhead (due to starting a Map-
Reduce job for each small batch of messages) in persisting data. Finally, Spark was used to process 
the data as it is the industry standard for large scale data processing. The stream processing layer 
enabled real-time reporting of the metrics while batch processing enabled in building complex 
processing pipelines and models. The batch processing layer was successfully implemented using 
SparkSQL and SparkML to compute the metrics. 

The use case of MOBDA was tested with the transportation data obtained from the Singapore 
Land Transport Authority (LTA) DataMall. This data is actively consumed by research community 
under Singapore’s open data initiative for various purposes. The use of LTA’s public datasets is 
gaining popularity due to the realization of various research outcomes and real-world implications 
that include developing i) plans for charging infrastructure of electronic vehicle [62]; ii) sustainable 
transportation policies, in particular for last mile metrics [63]; iii) offline journey mappings as part of 
smart nation initiative [64]; and iv) timetabling of trains in transit link line system [65]. 

The LTA provided API access for various types of transport related data in Singapore. Three 
types of data were obtained from the DataMall, namely real-time bus arrival information for various 
bus services, images of live traffic conditions, and traffic speed bands. Three Kafka producers were 
implemented in Java language. Each of the producers made a REST API call to LTA DataMall and 
pushed the response to the broker. The processed results from Spark were written back as Hive tables. 
The results stored in these tables were exposed through API services and were used for visualization 
and exploratory analysis using tools like Apache Zeppelin. Table 6 gives an overall efficiency in speed 
of API call frequency and LTA update frequency for bus arrival, traffic images, and traffic speed 
bands. 

Table 6. Sources of real-time data and API call frequency. 

Data Response Type LTA Update Frequency API Call Frequency 
Bus Arrival JSON 1 minute 3 minutes 

Traffic Images JSON and JPEG 1 to 5 minutes 4 minutes 
Traffic Speed Bands JSON 5 minutes 5 minutes 
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Use of Kafka, Nifi and HBase/Hive had guaranteed that the overall data flow of MOBDA was 
fault tolerant with no loss of messages. Kafka and Nifi guaranteed message delivery and HBase 
provided data replication to ensure that data was always available, and no data was lost. 

The limitations of our proposed MOBDA are mainly attributed to its implementation with the 
technology options that we had to adopt while using LTA data. The ingested JSON messages stored 
as a form of Kafka logs were not suitable for visualization or exploratory analysis by tools like 
Zeppelin. Thus, there was a need to structure these messages in tabular format and write to suitable 
sinks like HBase (for later processing by Spark) or HDFS (for historical record archival). In addition, 
we observed that the newer version of Kafka was packaged with numerous connectors under the 
umbrella called KafkaConnect, which could be used in future implementation and testing of 
MOBDA. KafkaConnect plugins could be employed to implement scalable pipelines using 
declarative syntax for transferring data from sources to sinks, and this would be more efficient as it 
eliminates the need for a separate integration layer. These observations of the limitations of this work 
motivates us to explore further in our future research in this direction. 

7. Concluding Remarks and Future Work 

With IoT-based transport services becoming the backbone of future ITSs, smart transportation 
and analytics leveraging big data is one of the major research challenges. In this paper, we proposed, 
developed, and applied a microservice-oriented big data architecture (MOBDA) for meeting the 
dynamically changing functional and non-functional service performance requirements of an ITS. To 
support smart transportation and analytics over large traffic data, the microservice and component-
based hybrid technologies were adopted to integrate the big data streaming from heterogeneous and 
disparate platforms of various stakeholders of an ITS. MOBDA supports smart analytics on different 
data sources by combining both real-time stream processing and batch processing of big data to 
report several transport service use cases and performance metrics. A hybrid of these two data 
processing layers of MOBDA was designed to leverage different trade-offs between latency and 
throughput requirements. This aided in the adaptability and scalability of the big data architecture 
to efficiently handle the dynamically changing transportation environment. Further, with a use case 
of MOBDA in Singapore’s busy bus transportation as a pilot study, we demonstrated the application 
of different layers of the architecture using Apache Storm topology, and successfully computed the 
bus service headway metrics as a use case for a smart transport reporting service within an ITS. 

While we explored the various big data storage options such as HDFS and HBase as well as big 
data processing engines such as Hive, due to time limitations, the proposed MOBDA was not 
evaluated with the objective of establishing performance thresholds for each layer of the architecture 
individually. The serving layer was developed in Cassandra, whose query language does not support 
join, which might not be able to cater to all the analytical exploration use cases. In future, more 
sophisticated OLAP offerings, such as Apache Druid, would be integrated into the implementation. 
Guided by industry best practices, the architecture proposed in this paper scales horizontally with 
fault tolerance and can easily be adapted over any cloud/edge platform. However, future research 
direction would aim at extending the work to develop several other traffic-based performance 
metrics and microservice use cases. This pilot study provided a minimal viable product that would 
serve as a stepping stone to extend the smart transportation and analytics system to include a variety 
of metrics. By augmenting real-world transport data with other public data sets, machine learning 
and deep learning models for predicting various traffic conditions could be enhanced and more 
meaningful data insights could be derived. 
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