
big data and
cognitive computing

Article

PerTract: Model Extraction and Specification of
Big Data Systems for Performance Prediction
by the Example of Apache Spark and Hadoop

Johannes Kroß 1,* and Helmut Krcmar 2

1 Fortiss, Research Institute of the Free State of Bavaria, Guerickestr. 25, 80805 Munich, Germany
2 Chair for Information Systems, Technical University of Munich (TUM), Boltzmannstr. 3,

85748 Garching, Germany
* Correspondence: kross@fortiss.org; Tel.: +49-89-360-352-218

Received: 13 July 2019; Accepted: 6 August 2019 ; Published: 9 August 2019
����������
�������

Abstract: Evaluating and predicting the performance of big data applications are required to
efficiently size capacities and manage operations. Gaining profound insights into the system
architecture, dependencies of components, resource demands, and configurations cause difficulties
to engineers. To address these challenges, this paper presents an approach to automatically extract
and transform system specifications to predict the performance of applications. It consists of three
components. First, a system- and tool-agnostic domain-specific language (DSL) allows the modeling
of performance-relevant factors of big data applications, computing resources, and data workload.
Second, DSL instances are automatically extracted from monitored measurements of Apache Spark
and Apache Hadoop (i.e., YARN and HDFS) systems. Third, these instances are transformed to model-
and simulation-based performance evaluation tools to allow predictions. By adapting DSL instances,
our approach enables engineers to predict the performance of applications for different scenarios such
as changing data input and resources. We evaluate our approach by predicting the performance of
linear regression and random forest applications of the HiBench benchmark suite. Simulation results of
adjusted DSL instances compared to measurement results show accurate predictions errors below 15%
based upon averages for response times and resource utilization.

Keywords: peformance evaluation; performance modeling; model extraction; performance simulation;
big data systems

1. Introduction

Big data frameworks are specialized to analyze data with high volume, variety, and velocity
efficiently [1]. By distributing and parallelizing processing, they allow for horizontal scalability.
Since the introduction of the MapReduce paradigm, there have been several frameworks released
to support different types of applications, such as machine learning and stream processing. For all
types, the performance of such software systems in terms of response time, throughput, and resource
utilization is essential for a successful application [2]. It is a difficult and complex task to manage
and evaluate the performance for different scenarios such as changing data input and hardware
resources [3].

Practical evaluations such as load tests on test systems are expensive. They require multiple
experiments and only test a subset of configuration parameters. Additionally, they usually run with
a reduced amount of data and resources. Thus, it is not able to draw accurate conclusions about the
performance behavior. Performance models, on the other hand, provide an established evaluation
approach by depicting performance characteristics of software systems and simulating their behavior

Big Data Cogn. Comput. 2019, 3, 47; doi:10.3390/bdcc3030047 www.mdpi.com/journal/bdcc

http://www.mdpi.com/journal/bdcc
http://www.mdpi.com
https://orcid.org/0000-0002-4382-0995
https://orcid.org/0000-0002-2754-8493
http://www.mdpi.com/2504-2289/3/3/47?type=check_update&version=1
http://dx.doi.org/10.3390/bdcc3030047
http://www.mdpi.com/journal/bdcc

Big Data Cogn. Comput. 2019, 3, 47 2 of 24

or analytically solving them [4]. However, there are several challenges: creating models by hand
is expensive, error-prone and slow as software systems are complex and continuously evolve [5].
There is a lack of tool support for automatic model extraction. Regarding big data system, most related
modeling approaches are also specific to a certain technology (i.e., Apache MapReduce) and only
consider the response time of applications but not demands for resources (i.e., CPU).

In order to address these challenges, we propose a specification and model extraction approach for
big data systems called PerTract to evaluate and predict the performance. We present a domain-specific
language (DSL) to allow for modeling specifications on an architecture-level in a tool-agnostic way.
To demonstrate our approach, we use Apache Spark for the application layer, in particular one
random forest and one linear regression application that both use Spark’s machine learning library.
Additionally, we use Apache Hadoop for data provisioning and resource management. Figure 1
illustrates an overview of our approach. We extract execution components and inter-component
interactions, resource landscape, and data workload in three separated specifications of a DSL
instance using interfaces and logs of these technologies. In addition, we extract monitoring traces
of applications (i.e., CPU times) and interrelate these with data workload information to identify
parametric dependencies and estimate parametric resource demands of each execution component.
On this basis, performance predictions are enabled. Therefore, we transform a DSL instance into a
Palladio component model (PCM) [6]. Palladio is a model-based performance evaluation tool on the
architecture-level that is supported by several analytical solvers and simulation engines.

31/07/2019 approach-approach new.svg

file:///Users/kross/Desktop/approach-approach new.svg 1/1

 	System 	Transformation 	Monitoring

Extraction

Traces

Resource
Profiles

Extraction

Extraction

PerTract-
DSL

Transformation

Component
Specifications

Assembly
Model

Allocation
Model

Usage
Model

<<conformsTo>>
Architecture-

level
Performance

Model

...

Execution
Architecture

Resource
Architecture

Data
Workload

Architecture

Parametric
Resource
Demands

<<conformsTo>>

Worker

Framework
Execution
Resources

Data

Worker

Framework
Execution
Resources

Data

Master

Resource
Mngmt.
Data

Mngmt.

Framework
Interface

Extraction 	Palladio	Simulator

Discrete
Event

Simulation

Figure 1. Overview of the extraction and transformation approach.

Our approach provides several benefits. It integrates model-based activities, which are performed
during development, and measurement-based activities, which are carried out during operations
(DevOps) [5]. The automated extraction process eliminates the effort to create models by hand.
As applications are continuously updated, DSL instances can be extracted and tracked for each release
as they evolve as well. This also enables engineers to continuously manage and plan required capacities
and evaluate the performance for different scenarios (e.g., changing data workload) by adapting model
parameters. Finally, it gives detailed insights about resource demands of execution components of an
application and can be used to detect performance changes and regressions.

To sum up, the contributions of this paper are the following:

1. A DSL for modeling performance-relevant factors of big data systems,
2. An automatic extraction of system structure, behavior, resource demands, and data workload

from Apache Spark and Apache Hadoop,
3. Transformations from DSL instances to model- and simulation-based performance evaluation tools,
4. Tool support for this approach.

Big Data Cogn. Comput. 2019, 3, 47 3 of 24

To the best of our knowledge, our approach is the first white-box approach to extract
performance-relevant metrics that allow for performance predictions of response times and resource
usage. The developed tools are open source [7] and extendable for extracting DSL instances from other
frameworks and for transforming them to other model-based performance evaluation tools.

This paper builds upon our previous work [8–11] on modeling and simulating the performance
of big data applications and includes the following major improvements and extensions:

1. A formalism and DSL to model big data applications,
2. A lightweight Java agent to sample stack traces and CPU times from applications,
3. Automatic extraction of DSL instances,
4. Detailed evaluation against complex applications of the HiBench benchmark suite.

The remainder of this work is structured as follows: Section 2 describes related literature and
approaches in the area of modeling and simulating big data applications. Section 3 introduces the
model formalism as well as the DSL, which are required to understand this paper. Section 4 describes
the extraction of DSL instances by the example of Apache Spark and Apache Hadoop. Section 5
presents the transformation to PCM models to allow for simulating the performance. Section 6
evaluates the prediction accuracy of our proposed approach for different upscaling scenarios and
describes our assumptions and limitations. Finally, Section 7 outlines conclusions of our work and
ideas for future activities.

2. Related Work

Since the Apache Hadoop family was the first widely-adopted big data framework, initial
performance modeling approaches have been concentrating on this technology stack.

Vianna et al. [12] predict the response time of MapReduce applications by introducing an analytical
model, which they validated against an event-driven queuing network simulator. Their approach
primarily concentrated on synchronization delays between map and reduce tasks. Verma et al. [13]
introduce another approach for MapReduce. They developed a framework to allow for predicting
response times before moving applications to different target platforms. The framework applies multiple
benchmarks on source platforms and a regression-based model to relate the performance of source and
the target platforms. Zhang et al. [14–16] present multiple approaches where most of them are based on
the analytical model by [13]. Therefore, they additionally take heterogeneous clusters and configuration
optimizations into account.

For other applications of the Hadoop family, Barbierato et al. [17] developed a language for the
description of performance models. As a main component, the model uses the SQL-like query language
of Apache Hive, a data warehouse built on top of Apache Hadoop. Ardagna et al. [18] propose
approaches to estimate response times of Hive requirements. Therefore, they presented multiple
performance analysis models with increasing complexity and accuracy, such as queueing networks and
stochastic well formed nets. They also considered unreliable resources in their experiments. Lehrig [19]
proposes a scalability and elasticity analysis of Software-as-a-Service applications at design time using
architectural templates for Palladio. They plan to enhance it for big data paradigms on the processing
layer and data layer.

Wang and Khan [3] propose a prediction model for estimating response times of Apache Spark
applications. In their approach, they consider demands for in-memory as well as demands for
disk drives but not CPU processing. Another work by Ardagna et al. [20] explores three modeling
approaches for execution time prediction of Spark applications: one queuing network with a fork-join
model and one with a task precedence model. Third, they present a discrete event simulation engine
dagSim. The evaluation was conducted for different applications such as logistic regression and
K-Means running in a public cloud. Although the variance of the prediction accuracy is low for all
approaches, the third approach delivers the most precise results.

Big Data Cogn. Comput. 2019, 3, 47 4 of 24

Besides analytical and simulation-driven approaches, there are also approaches using machine
learning for Apache Spark. Rekha and Praveen [21] evaluated different machine learning algorithms
(i.e., multi linear regression and support vector machine) as well as an analytical model to predict
execution times of Spark stages in development environments. They include multiple parameters
from application logs into their models but only use execution times and do not consider resource
demands. They also mention the drawback of machine learning approaches, which require intensive
experiments and data collection. Furthermore, Venkataraman et al. [22] present Ernest, a performance
prediction framework for large scale analytics using machine learning kernels. It involves an automatic
process to collect training data and to build a non-negative least squared model taking only a few
parameters. They evaluate their approach on Amazon EC2 and show accurate predictions of execution
times for increasing machine numbers. It is a black-box approach and does not give any insight
into components of an application. As Ernest is bound to the structure of machine learning jobs,
Alipourfard et al. [23] present CherryPick, which intends to find best cloud configurations for various
applications and use Bayesian optimization to create performance models. A configuration, for instance,
contains parameters such as the number of virtual machines, CPU, and cores. In contrast to our work,
they support additional types of applications (i.e., Spark SQL). Additionally, Witt et al. [24] provide
an extensive survey on performance prediction of batch processing using black box monitoring and
machine learning.

Castiglione et al. [25] propose a general approach to model the behavior of batch applications
and concentrate on cloud infrastructures and evolution dynamics in terms of resource requirements
and energy consumption. Therefore, they use an analytic modeling technique based Markovian
agents and mean field analysis to describe the behavior of interactive cloud, batch, and time
constrained applications. Niemann [26] also presents an approach in the area of energy consumption.
He focuses on Apache Cassandra, a distributed data management system, and uses queueing Petri
nets to predict the performance and energy consumption of different workloads and platforms.
Casale et al. [27] propose a model-driven engineering for quality assurance of data-intensive software
systems concentrating on Apache Hadoop and MapReduce, NoSQL databases, and stream processing
(i.e., Apache Storm). Their approach aims at simulating, verifying, and optimizing architectures of big
data applications. The models contain three different model layers including a platform-independent,
a technology-specific and a deployment-specific model [28]. Gómez et al. [29] also shows an approach
to transform these models into stochastic Petri nets, which is intended to allow for evaluating
performance requirements. Lastly, Ginis and Strom [30] hold a patent in the area of stream processing.
The patent describes a method to model performance characteristics of publish–subscribe systems
using queueing theory. However, the method does not include resource demands such as CPU,
memory, and disks.

To summarize, the mentioned approaches focus on predicting the metric response time and
often only implicitly assume resource demands for service executions per resource but do not
link them to software components and operations [5]. To the best of our knowledge, automatic
model extraction in the area of big data are only supported by the mentioned machine learning
approaches [22,23]. However, these are black-box approaches and the models serve as interpolation of
the measurements [5]. Consequently, they do not model detailed information of the system architecture
and dependencies and cannot be adapted for further evaluation scenarios. Finally, most of the
mentioned models are technology-specific and, thus, are difficult to adapt and generalize them.

3. Modeling Approach

In this section, we describe the formalism for specifying big data systems. Afterwards, we present
the PerTract-DSL based on the formalism.

Big Data Cogn. Comput. 2019, 3, 47 5 of 24

3.1. Formalism

The specification consists of the following components:

• An Execution Architecture of the application, specifying nested directed graphs for execution components,
• A set of Resource Profiles, providing demands of different resources with parametric dependencies

for the nodes of a graph,
• A Data Workload Architecture, specifying the underlying data model and type of data source
• A Resource Architecture, specifying a cluster of resource nodes, each with several resource units

3.1.1. Application Execution Architecture

The specification of the application Execution Architecture is a 2-tuple (c, n) where c ∈ C is the
application configuration and n ∈ N specifies an initial node of the application.

A configuration c ∈ C is represented by the 5-tuple (pd, e, tse, me, mts) where pd is the default
parallelism for operations, more specifically tasks, of an application (e.g., join or reduce); e is the
number of executors, which manage tasks; tse describes the number of tasks slots per executor that
can be executed in parallel; me is the amount of main memory per executor that is available for tasks;
and mts represents the amount of memory that each task slot requires to be allocated.

Nodes N are composite components. They can represent directed graphs NG ⊂ N and execution
nodes of a directed graph NE ⊂ N. In Figure 2, ScalaWordCount and saveAsHadoopFile represent a
directed graph and map and reduce an execution node.

A directed graph ng ∈ NG is a 2-tuple (Nng, Eng), in which Nng is a set of nodes (or vertices) of
the directed graph ng such that ng /∈ Nng; and Eng is a set of directed edges. A directed edge e ∈ E is
represented by a 3-tuple (nt, nh, te), where nt ∈ N is the tail of e; nh ∈ N is the head of e; and te ∈ R≥0

specifies the factor of how many data are transmitted from nt to nh dependent on the amount of input
data of nt.

An execution node ne ∈ NE is a 5-tuple (pn, s, m, nng, rp) where pn is the parallelism of node
(e.g., some big data frameworks such as Apache Flink allow for specifying the parallelism for each
operation individually); s indicates whether ne is a spout that is the node depending on partitioned
data from an external source, such as a file system or messaging system; m ∈ M is a reference to the
dependent data model from the Data Workload Architecture; nng ∈ NG references the parent directed
node graph; and rp ∈ RP describes the Resource Profile of ne.

3.1.2. Resource Profile

We use Resource Profiles to specify multiple resource demands. A Resource Profile rp ∈ RP
describes an ordered set of parametric resource demands RD. A parametric resource demand rd ∈ RD
is a 3-tuple (rt, frt, p) in which rt ∈ RT represents the resource type and frt : R≥0 → R≥0 is a function
to specify the actual value of a resource demand in dependence on a parameter p (e.g., number of
partitions of an input data source).

3.1.3. Data Workload Architecture

The model to represent the data workload is kept very simple. A Data Workload Architecture
d ∈ D is a singleton containing a set of data models M. A data model m ∈ M contains one data source
ds ∈ DS element that consists of a parameter pds to specify the number of partitions.

3.1.4. Resource Architecture

A Resource Architecture ra ∈ RA is a pair (nc, RN) in which nc ∈ NC is a network channel and
RN is a set of resource nodes. A network channel nc ∈ NC is a 2-tuple (b, l) where b describes its
bandwidth and l its latency. A resource node rn ∈ RN describes a cluster node and is a 2-tuple (cs, RU)
in which cs ∈ CS is a cluster specification and RU is a set of resource units. A cluster specification

Big Data Cogn. Comput. 2019, 3, 47 6 of 24

cs ∈ CS is described by a 2-tuple (rr, sp) where rr ∈ RR describes a resource role (i.e., master node or
worker node) and sp ∈ SP the scheduling policy for distributing task across resource nodes (i.e., round
robin). A resource unit ru ∈ RU represents CPU, drive, and memory units.

3.2. PerTract-DSL

The PerTract-DSL follows the system model formalism described in the previous subsection and
constitutes a language for specifying such models. Figure 2 illustrates an exemplary PerTract-DSL
instance for a big data application. The PerTract-DSL is implemented as an Ecore-based meta-model
using the Eclipse Modeling Framework (EMF) [31]. We use the DSL as an intermediate language to
extract model instances and adapt its parameters for different scenarios. Afterwards, we generate
architecture-level performance models that we use to simulate and predict the performance.

18.11.2018 dsl-example.svg

file:///Users/kross/Desktop/dsl-example.svg 1/1

ScalaWordCount

saveAsHadoopFile

map

spout=true

reduceByKey

nodeParallelism=8

transmission-

Factor=0.0034

Execution
Architecture

Data Workload
Architecture

Resource
Architecture

Resource Profiles
rdcpu= 345 + dataSize * 75

rd
disk,read

= dataSize

...

rdcpu= 976 + dataSize * 94

rd
disk,read

= dataSize

...

...

file 1

size=4832

records=1240

file n

size=4832

records=1240

rr=worker

bandwidth=123; latency=0.01

rr=master

sp=RoundRobin

rr = resource role

sp = scheduling policy

rd = resource demand

Processing

Resource

Unit

Drive

Resource

Unit

...

Processing

Resource

Unit

Drive

Resource

Unit

...

Figure 2. Exemplary PerTract-DSL instance.

Figure 3a shows the classes and relationships of the Execution Architecture and Resource Profile.
The Execution Architecture includes execution flows and operations on data and a configuration of
an application. The configuration includes multiple parameters to specify the application settings.
Depending on the application type (i.e., batch, mini-batch, and stream), a corresponding configuration
type can be instantiated and may include additional parameters. For instance, a MiniBatchConfiguration
involves an interval variable to indicate the mini-batch intervals.

In order to specify operations on data and execution flows, we use nodes and directed edges (for
instance, distributed acyclic graphs DAGs represent execution flows in Apache Spark, topologies in
Apache Storm, and job graphs and execution graphs in Apache Flink). Therefore, a Node is a composite
that can represent two roles—a directed graph that contains several nodes (children) and edges, and an
execution node that executes tasks. In the latter case, a node contains a Resource Profile for its tasks.

The term Resource Profile describes a set of resource demands for transactions of an
application [32–34]. This includes resource demands for CPU, disk, memory, and network usage.
Resource Profiles have been used for transactions for a specific workload and specific servers [32,33]
but also for component operations within the control flow of each transaction independent of their
deployment topology [34]. Branches with probabilities for its occurrences represent operation control
flows. As yet, the related approaches do not use parametric dependencies and use Resource Profiles
in the area of enterprise applications, where the workload is mainly user-driven and the resource
demands for operations may remain static for each user. In our case, operations highly depend on
incoming data volume either dependent on the data size or number of records.

We change the notion of Resource Profiles for our purposes in three ways. First, we include
parametric dependencies. Second, we do not model the control flow and probability as this information
is contained in the directed graph. Third, we do not apply a Resource Profile on the same fine

Big Data Cogn. Comput. 2019, 3, 47 7 of 24

granularity level of operations except for a set of operations and tasks. Big data frameworks chain
and group single operations together and transform each grouping into a set of tasks, which will
eventually be executed multiple times in a distributed way. The number of executed tasks usually
depends on the number of partitions. As we model data and hardware resources as first-class entities in
dedicated specifications, the exact number and distribution of operations depends on them. Therefore,
we apply a Resource Profile on a group of chained operations. It forms the basis to derive tasks
with resource demands and predict the performance by combining them with data workload and
Resource Architectures.

22.11.2018 dsl-application.svg

file:///Users/kross/Desktop/dsl-application.svg 1/1

1

starting-

Node

0...*

edges-

Of-

Children

ExecutionArchitecture

framework: EString

ResourceProfile

ResourceDemand

parameterName: EString

function: EString

1

config
1

resource-

Profile

DirectedEdge

transmissionFactor: EDouble

«enumeration»

ProcessingType

CPU

DISK_READ

DISK_WRITE

MEMORY_ALLOCATED

WAIT

1
processingType

1...*

resource-

Demands

1

head

1

tail

Node

nodeParallelism: EInt

1

0...*

parent

children

spout: EBoolean

dataModelRef: DataModel

MiniBatchConfiguration

interval: EInt

Configuration

defaultParallelism: EInt

executors: EInt

taskSlotsPerExecutor: EInt

memoryPerExecutor: EInt

memoryPerTaskSlot: EInt

(a) Execution Architecture and Resource Profile
22.11.2018 dsl-data.svg

file:///Users/kross/Desktop/dsl-data.svg 1/1

«abstract»
DataModel

1..*
dataModel

dataSource

1

RecordDataModel

recordSize: EString

FileSpecification

size: ELong

records: ELong

ContinuousDataSource

arrivalRate: EString

1...*
files

dataSource
1

dataSource
1

DataWorkloadArchitecture

SingleDataSource

partitionSize: ELong

FileDataModel

«abstract»
DataSource

partitions: EInt

(b) Data Workload Architecture
22.11.2018 dsl-hardware.svg

file:///Users/kross/Desktop/dsl-hardware.svg 1/1

«enumeration»

ResourceRole

MASTER

WORKER

NetworkChannel

bandwidth: EDouble

latency: EDouble

MemoryUnit

capacity: EInt

«enumeration»

SchedulingPolicy

ROUND_ROBIN

ClusterSpecification

DriveUnit

replications: EInt

readRate: EInt

writeRate: EInt

ResourceNode

«interface»

ResourceUnit

1
processingUnit

1
spec

ProcessingUnit

replications: EInt

processingRate: EIntresourceNodes

1...*

1
network-

Channel

schedulingPolicy

1

resource-

Role

1

ResourceArchitecture

1
memoryUnit

1
driveUnit

(c) Resource Architecture

Figure 3. PerTract-DSL classes and relationships.

Big Data Cogn. Comput. 2019, 3, 47 8 of 24

While considering data as first-class entities, we focus on specifying only performance-relevant
factors of data as presented in Figure 3b. A Data Workload Architecture contains one or several
data models, which are either file-based (e.g., for batch applications) or record-based (e.g., for stream
applications). The former contains multiple file specifications and a single data source, which specifies
the partition size of the files and the number of partitions. The latter contains a variable to indicate the
mean record size and a continuous data source, which describes the number of partitions of a data
stream as well as the arrival rate per second of one record.

Figure 3c illustrates an overview of the classes and relationships of the Resource Architecture. It is
a simplified version based on the resource environment model of PCM including our extension [6,9].
It contains several resource nodes that, combined, represent a cluster. Each resource node contains
a processing unit, memory unit, and drive unit with individual processing rates or capacities.
The resource demands of one Resource Profile will be performed on the corresponding resource
units of one resource node.

4. Extracting Model Instances by the Example of Apache Spark, Apache YARN and Apache HDFS

Since creating models for applications, data, and resources requires much effort, we propose an
approach to automatically extract PerTract-DSL instances based on monitoring measurements and logs.
The remainder of this section describes the approach to extract a DSL instance in detail, comprising
the monitoring on application level (Section 4.1), the extraction of Execution Architectures from
applications (Section 4.2), the estimation of Resource Profiles for stages of applications (Section 4.3),
the derivation of Data Workload Architectures (Section 4.4), and the extraction of hardware resources
(Section 4.5).

4.1. Extraction of Resource Demands

Collecting measurement data is necessary in order to extract Resource Profiles, estimate resource
demands, and calculate parametric dependencies. Profilers provide a common way to extract
fine-grained data such as stack traces and CPU times. We examined multiple Java profilers but
found that the performance of big data applications is significantly increased by their overhead.
Therefore, we chose a sampling approach and developed a lightweight Java agent for sampling CPU
values for either stack traces or thread groups of long-running applications.

Algorithm 1 shows the main procedure of the agent. It collects samples in intervals of
100 milliseconds, which we found to cause only low overhead while still providing high accuracy
in our experiments. Therefore, the agent fetches a dictionary of thread identifiers and corresponding stack
traces by calling the getAllStackTraces() method provided by the Java Thread class. The dictionary contains
only entries for threads that are in an active state at the point of time requested. The CPU time is collected
for each thread by using the ThreadMXBean management interface (i.e., the getThreadCpuTime(long id)
method) for monitoring of the Java Virtual Machine (JVM). The CPU times for thread groups with the
same names will be summed up and sent as a batch to an Apache Cassandra repository. Additionally,
the name of the JVM will be transmitted to the repository for each measurement.

Big Data Cogn. Comput. 2019, 3, 47 9 of 24

Algorithm 1: Sampling thread groups and CPU values.
Output: samples← dictionary containing a timestamp as key and tuples of thread groups and

CPU times as value

Schedule new thread every 100 milliseconds
threadGroups← < k : String, v : long >;
sampleTime← current timestamp;
/* procedure provided by Java */
threads← getAllStackTraces();
for thread to threads do

/* procedure provided by Java */
cpuTime← getThreadCpuTime(thread.id);
threadGroup← thread.threadGroup;
threadGroups[threadGroup]← cpuTime + threadGroups[threadGroup]);

end
samples← (sampleTime, threadGroups);

Until application has terminated;

4.2. Extraction of Execution Architectures

The Apache Spark framework introduces so-called resilient distributed datasets (RDDs). RDDs
are parallel data structures to store intermediate results in memory and offer coarse-grained operations,
which can be applied on them and work the same way on all data items [35]. Spark offers several
operations and transformations such as map and reduce.

A Spark application is executed by forming a DAG based on associated operations and grouping
them into stages of tasks. A stage chains operations with narrow dependencies, which means a shuffle
operation is not required e.g., a map and a subsequent filter operation [35]. The number of tasks of one
stage depends on the number of RDD partitions. Stages are executed successively and constitute one
job. One or more jobs compose one Spark application. The application is managed by one context.
It runs in the main process called the driver program. It allocates executors to worker nodes and
schedules and assigns tasks of an application on to executors. An executor is a process that executes
the tasks and operations in parallel [36].

In order to automatically extract execution components and inter-component interactions from
Apache Spark, we access the interfaces of the embedded history server. We remind readers that we
refer to the specification introduced in Section 3.1. We use the Spark environment properties to derive
an Application Configuration. We set pd to spark.default.parallelism, e to spark.executor.instances, tse to
spark.executor.cores, and me to spark.executor.memory. While a DAG created by Apache Spark models
RDDs as nodes and operations as edges, we create nodes on three levels—on application-, job- and
stage-level—and data flows as edges (similar to the JobGraph of Apache Flink).

On the application-level, one initial node is created to represent the application itself
(i.e., ScalaWordCount in Figure 2). It contains a set of child nodes and edges for the job-level.

On the job-level, we read the interface for job metrics of the corresponding application and create
a set of nodes containing one element for each job entry. As jobs may be executed in parallel, we
consider the chronological sequence of jobs by accessing start times and end times in order to create
a set of directed edges and connect successive nodes. The data transmission factor of each edge is
calculated by bringing the input data of the tail and head in dependence:

dte =
inputnt

inputnh

. (1)

Each job node contains a set of child nodes and edges for the stage-level. On the stage-level,
we access the interface for stage metrics of the corresponding application and create a set of nodes
containing one element for each stage entry corresponding to one job. In order to derive the parallelism

Big Data Cogn. Comput. 2019, 3, 47 10 of 24

pn of each node and whether it represents a spout sn, we obtain the read data metrics of each stage
and distinguish between input and shuffle data:

sn =

{ true, for input > 0∧ shuffle = 0, (2a)

f alse, otherwise, (2b)

pn =

{ pds, for input > 0∧ shuffle = 0, (3a)

pd, otherwise. (3b)

In case a stage has read input bytes, the initial RDD of the stage is created by an external data
source and contains as many partitions as the data source. This usually applies to each initial stage of a
job. For this case, we set sn to true (Equation (2a)) and specify pn according to the number of partitions
of the data source pds (Equation (3a)). In case a stage has read shuffled data, the corresponding RDD of
the stage is already transformed based on prior RDDs. Its partitions equal the default parallelism pd.
Therefore, we set sn to false (Equation (2b)) and set pn to pa (Equation (3b)). The data transmission
factor is calculated as in (Equation (1)). Finally, we extract one Resource Profile for each node element
on the stage-level.

4.3. Extraction and Estimation of Resource Profiles

A Resource Profile consists of a set of resource demands where each element may involve a
different resource type and a function to specify the value. Our main focus lies on the CPU resource.
As Kay et al. [37] systematically identified by the example of Apache Spark, CPU is the bottleneck
of data analytics applications in most cases contrary to the widely-accepted opinion that disk and
network are weak points.

We define three different CPU demands for each stage i ∈ EN. The first one represents the actual
time to process a task. We define a linear function dependent on the parameter p describing the data
size for each task of a stage. The slope of the function is calculated by using aggregated CPU times
originating from task-related thread groups across all Spark executors. This CPU time is divided by
the total amount of read data for each stage:

fi,cpu,task(p) = p
cpuTimei,task

inputi + shufflei
. (4)

The second CPU demand represents the overhead of coordinating with the driver program,
preparing a task before it is actually executed, and postprocessing. These times are provided by
the Spark task metrics interface (i.e., they are included in the variables executorDeserializeTime and
resultSerializationTime). As the coordination grows with the number of Spark executors, we define the
demand dependent on the configuration parameter e, the number of executors. We observed that this
demand varies very strong from task to task, especially for the first tasks of a stage. As averaging the
metric is not reasonable, we model this demand by converting the series of time values to a boxed
probability density function (PDF) with variable interval sizes as specified by PCM [6]. In order to box
the CPU values, we use the percentiles 5, 25, 50, 75 and 95 as intervals since they are provided by the
Spark’s interface.

The third CPU demand represents the overhead caused by providing infrastructure services for
one task. As it is independent of data input, we define a static demand using aggregated CPU times
of traces originating from worker-related thread groups across all Spark executors. We additionally
divide the CPU times by the total number of tasks to receive the demand for one task:

fi,cpu,in f ra =
cpuTimei,worker

numComplTasks + numFailTasks
. (5)

Big Data Cogn. Comput. 2019, 3, 47 11 of 24

For the extraction of drive demands, we examined several approaches to estimate read and
write demands. As we are not able to measure the drive demands on an appropriate level without
adding instrumentation to HDFS (similar to [37]), we extract only a resource demand for reading data,
which equals the dependent parameter p describing the data size for each stage.

Similarly, network demands on a low granularity level are only able to be retrieved by
instrumenting Spark in a sophisticated way. In order to compensate and include the time delays
caused by network traffic, we extract wait demands. We calculate the delays between stages by
comparing their start and end times and model the demand accordingly.

Furthermore, we do not extract demands for allocating main memory at the moment.
As simulation approaches for memory are still limited and neglect features such as garbage collection,
the prediction accuracy of this resource is debatable [34].

4.4. Extraction of Data Workload Architectures

The Hadoop distributed file system (HDFS) is a distributed, scalable, and fault-tolerant storage
system for big data [38]. Files are split into a sequence of blocks according to a specified block size,
which are are replicated to different data nodes to support fault tolerance [38]. For instance, if Spark
applications read a file from HDFS, it will be represented by one RDD with as many partitions as blocks.

In order to extract the Data Workload Architecture, we create a file-based data model and a single
data source for a specified folder in HDFS and create a file specification for each file. To access the
required information, we use the client library of Apache Hadoop. We access the size of each file as
well as calculate the partition size and number of overall partitions pds.

4.5. Extraction of Resource Architectures

Cluster managers, such as Apache Hadoop YARN and Apache Mesos, arbitrate resources for
batch and stream applications and provide support to distribute them on cluster nodes. YARN stands
for Yet Another Resource Negotiator and follows a master–worker architecture [38]. This includes
one resource manager and multiple node managers. A node manager runs on each worker node
and is responsible for executing resource containers. A resource container is an abstract notion for
resources such as CPU, memory, and HDD in which application tasks run [38]. If a new application is
submitted, a responsible application master will be executed in a new resource container. It orchestrates
application tasks and, therefore, requests resource containers from the resource manager and monitors
their state [39]. Apache Spark is able to run in different modes on YARN. In the so-called client-mode,
for instance, the driver program and Spark context runs at the client itself, the application master
requests resources for executors, and each executor will run in its own resource container [36].

In order to extract Resource Architectures, we use the public interface provided by YARN
to retrieve metrics of each cluster node. For each node manager, we create one resource node
rn ∈ RN. Therefore, we assign a worker resource role and create a resource unit for each CPU,
drive, and memory. The CPU cores and memory capacity are extracted via the interface. As drive
information is not available, we set the read and write speed manually (e.g., by testing HDFS with the
included DFSIO benchmark).

Besides the set of resource nodes, we create a network channel and also set the bandwidth and
latency manually.

5. Transformation to Performance Models

This section describes the concepts of the architecture-level performance model PCM and how
we transform DSL instances into PCM models.

5.1. Palladio Component Model

We chose to use PCM [6] as a model-based performance evaluation tool as it enables engineers
to specify software systems independent of technology, include resource demands for software

Big Data Cogn. Comput. 2019, 3, 47 12 of 24

components, consider resource contention, and predict not only response time, but also resource
utilization. Furthermore, the tool support is mature, open source, and continuously maintained with a
large community.

In particular, PCM is developed for component-based software systems and enables engineers
to describe performance relevant factors of software architectures, resource environments, and usage
behavior [4]. It is implemented in Ecore from the Eclipse Modeling Framework (EMF) and consists
of multiple models [6]. Software interfaces and components are specified in the Repository Model
(Figure 4a). Components provide the implementation for signatures of interfaces. Therefore, they contain
a resource demanding service effect specification (RDSEFF) in which the activities such as parametric
resource demands and external calls of signatures are modeled similar to activity diagrams (Figure 4b).
Components are additionally assembled in a System Model. In the Resource Environment Model, network
and hardware resources are specified such as processing resources (CPU, disk, and delay), processing
rates, and scheduling policies. The Allocation Model allows for deploying assembled components from
the System Model on resources from the Resource Environment Model. The usage and workload of
software components are specified in the Usage Model. Finally, PCM provides a simulator for its models,
which is based on a process-oriented discrete event simulation.

IJob0

void delegate(int files, ...

ITaskForStage0

void run(int dataSize, ...

IStage0

void delegate(int files, ...

void execute(bool isDe...

IResources

freeSlot (int amount)

allocSlot(int amount)

IApplication

void delegate(int files, ...

Job0

SEFF <delegate>

TaskForStage0

SEFF <run>

Stage0

SEFF <delegate>

SEFF <execute>

Resources

SEFF <allocSlot

SEFF <freeSlot>

slots <Capacity: 6*4>

Application

SEFF <delegate>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Requires>>

<<Requires>>

<<Provides>>

<<Provides>>

 <<Requires>>

<<Provides>>

(a) PCM Repository model example

<<InternalAction>>

CPU

ResourceDemands

10 * dataSize.VALUE <CPU>

151 <CPU>

DoublePDF[(1;0.3)(2;0.5)(11;0.2)] * executors.VALUE <CPU>

(b) Resource demanding SEFF for a task (PDF probability density function)

Figure 4. Exemplary transformed PCM instances.

5.2. Transformation to PCM

We describe the transformation for each DSL component. Table 1 shows the mapping of DSL
concepts to PCM elements. An Execution Architecture is transformed to a Repository Model (Figure 4a).
In order to traverse the Edges and Nodes of an Execution Architecture, we use a recursive depth-first
search. Upon visiting each Node, we check if it contains child Nodes and Edges. If this is the case, we
again traverse this Node and the procedure repeats.

Big Data Cogn. Comput. 2019, 3, 47 13 of 24

For each Node, we create one Interface with several signatures and a corresponding Basic
Component that provides the signatures using an RDSEFF. If a Node contains child Nodes, we add a
delegate signature to the corresponding Interface (i.e., IJob0). Additionally, the Basic Component requires
the Interfaces of the child Nodes.

Parameters of the Configuration and parametric dependencies of the Execution Architecture
are transformed into input parameters of each Signature. We consider parameters for the number of
files, the data size of one file, the default partition size, the number of partitions, and the number of
executors. In order to model and limit the maximum number of concurrent tasks, we separately specify
an Infrastructure Component to represent a pool of available task slots. The component contains two
SEFFs to acquire and to release a task slot. In order to finally execute a task, a slot must be acquired
first. After task completion, the slot is released again. In the case of Apache Spark, the limiting number
of task slots is the number of total cores.

Table 1. Mapping of PerTract-DSL to PCM elements.

PerTract-DSL PCM Model Elements

Execution Architecture Repository Model
Nodes Interface, Basic Component
Edges RDSEFF
Configuration Parameters, Infrastructure Component

Resource Profile Distributed Call Action, RDSEFF
Resource Architecture Resource Environment Model

Resource Node Resource Container
Cluster Specification Cluster Specification
Network Channel Linking Resource

Data Workload Architecture Usage Model
Data Model Entry Level SystemCall, Parameters
Data Source Workload

RDSEFF Resource Demanding Service Effect Specification; Distributed Call Action, Cluster Specification PCM
extensions [9].

Edges are represented in the RDSEFF of a Basic Component. Each delegate RDSEFF models the
flow by using External Call Actions to invoke signatures of required Interfaces in the specified order
(i.e., Job0 invokes the prepare signature of IStage0). In the course of this, the input parameters are
forwarded and altered at specific points to model the data transmission factor te of an Edge.

If a Node contains a Resource Profile, we transform it by creating several model elements. In order
to call a group of tasks in parallel, we add two signatures to the corresponding Interface of the Node
(i.e., Stage0). The providing RDSEFF prepare is intended to create a set of parallel tasks. It uses a
Distributed Call Action to invoke the execute signature of the same Interface several times in parallel.
The parallelism is either defined by the number of partitions of a data source pds or the specified
parallelism of the Node pn. The execute RDSEFF acquires and releases a task slot before and after
prompting a task.

We create an additional Interface and Basic Component (i.e., TaskForStage) to model a task.
Its behavior run is responsible to execute the parametric resource demands of a task (Figure 4b).
Only the wait demand of a Resource Profile will be executed in the prior prepare RDSEFF as the demand
occurs once at the beginning of each stage and not for each task. We automatically assemble all Basic
Components of the Repository Model in order to derive Palladio’s System Model.

Since the Resource Architecture follows the concepts of Palladio’s Resource Environment Model,
the transformation is linear. We transform each Resource Node to a Resource Container and convert
the Cluster Specification and Resource Role accordingly. Additionally, we transform each Resource
Unit to an equivalent Processing Resource Unit including the specification of processing rates, number
of replicas (e.g., the number of cores), and scheduling policies. Finally, all Resource Containers are
connected to networks via a Linking Resource.

Big Data Cogn. Comput. 2019, 3, 47 14 of 24

In order to create the Allocation Model, we deploy all assembled Basic Components from the
System Model on the master Resource Container from the Resource Environment Model. Our previous
extensions [9] enable Palladio’s simulation framework SimuCom to distribute resource demands to
Resource Containers that represent worker nodes with a round robin policy.

Finally, we transform the Data Workload Architecture to a Usage Model. We create one Entry
Level System Call that invokes the delegate signature of the Application Interface. The required input
parameters are transformed based on the Data Model and Data Source. We specify the number of files,
the data size of one file, the default partition size, and the number of partitions. For the Single Data
Source, we create a simple closed Workload with a population of one, which means the Entry Level
System Call is triggered once.

All transformed models can be used by Palladio’s simulator to predict performance metrics.

6. Evaluation

This section evaluates the model extraction and performance simulation approach introduced in
this work.

6.1. Research Methodology

In order to validate our approach, we conduct three integrated controlled experiments
by modeling and simulating the execution of two different exemplary machine learning
applications [40]. Therefore, we formulate three claims by exemplary problems from a performance
management perspective.

First, engineers are interested in the performance behavior of applications and resources in case
data workload grows. This experiment evaluates the claim that data workloads can be changed
independently of Execution Architectures and Resource Architectures. We initially extract one
PerTract-DSL instance for each of the two applications based on monitoring data. Afterwards,
we adapt data sizes in Data Workload Architectures and compare predictions for response times
and CPU utilization with corresponding monitored measurements in several upscaling scenarios.

Second, engineers need to evaluate the scalability of applications if additional hardware resources
are allocated. This experiment evaluates the claim that resources can be altered independently of
Execution Architectures and Resource Architectures. We modify and add worker nodes in Resource
Architectures without changing Execution Architectures and Data Workload Architectures. Afterwards,
we compare predictions results with corresponding monitored measurements.

Third, engineers need to efficiently plan and manage capacities for given data workloads and
performance requirements [5]. This experiment evaluates the claim that data workloads as well as
resources can be changed independently of Execution Architectures. Similarly, we use the models
extracted in the first experiment and conduct several upscaling scenarios regarding data workload
and cluster size without modifying Execution Architectures. Afterwards, we compare the simulated
prediction results with corresponding measurements.

6.2. HiBench Benchmark Suite

In our experiments, we apply the HiBench benchmark suite to run representative and reproducible
applications and workloads for Apache Spark [41]. As the automatic extraction approach shall
allow for modeling complex applications, we use two machine learning applications. We chose a
random forest classification (RFC) since random forests represent frequently used machine learning
models for classification and regression. HiBench implemented the application using Apache Spark’s
machine learning library MLlib and provides an RFC-specific data generator. Additionally, we chose a
linear regression (LR) as it is a common approach for regression analysis and forecasting. Therefore,
HiBench’s implementation uses a model without regularization using a stochastic gradient descent to
predict label values. Similarly, it implements Spark’s MLlib and includes its own data generator.

Big Data Cogn. Comput. 2019, 3, 47 15 of 24

6.3. Experiment Setup

Tables 2 and 3 illustrates our testbed and data configurations. The hardware environment
includes five servers. Each server is connected to a storage area network (IBM System Storage EXP3512,
New York, NY, USA) via fibre channel allowing for eight gigabits per second (GBit/s). The servers are
also connected in a local area network (LAN) with one GBit/s.

We virtualized each server using the VMware ESXi hypervisor (VMware, Palo Alto, CA, USA)
and configured eight cores and 36-gigabyte (GB) memory for each virtualized machine (VM). On each
server, we allocated four VMs. On the first server, we use one VM as a master node for Apache HDFS
and YARN, one VM for managing the cluster (i.e., Apache Ambari), one VM for storing monitoring
data, and one VM for initiating the benchmark applications. On the remaining four servers, we use
each VM as a worker node. We deployed the Hortonworks Data Platform to use Apache Spark, YARN,
and HDFS. For HDFS, we kept the default configurations including a replication factor of three and a
data block size of 128 megabytes (MB). For YARN, we configured 26 GB and six virtual cores (vCores)
per container, for Spark executors 22 GB as well as six cores. Since we experienced that not all cores were
utilized when running applications, we changed the resource calculator to be dominant and enabled
CPU scheduling to address this issue. For evaluating the prediction accuracy, we compare the metrics
response time and CPU utilization. For simulations, we captured the simulated mean response time
(MRT) as well as the simulated mean CPU utilization (MCPU) across the cluster. For the benchmark
measurements, applications were executed four times for each experiment to avoid any distortions.
Similarly, monitored MRT and monitored MCPU on the user-level were calculated. Monitored response
times are derived from the Spark monitoring API and monitored CPU measurements from the Ambari
Metrics System (2.6.0).

Tables 4 and 5 list all simulated and monitored MRT and MCPU results, the root mean square
errors (RMSE), and the relative prediction errors. They provide the basis for presenting and discussing
our experiments in the following.

Table 2. Software and hardware configuration of the test system.

Software platform

4×

Hortonworks Data Platform (2.6.3.0-235)
- Apache Spark (2.2.0)
- Apache Hadoop (2.7.3)
- Apache Ambari (2.6.0)

Java virtual machine Oracle JDK (1.8.0_60)
Operating system CentOS Linux (7.2.1511)
Virtualization VMware ESXi (5.1.0), 8 cores, 36 GB RAM
CPU cores

5×

48 × 2.1 GHz
CPU sockets 4 × AMD Opteron 6172
Random access memory (RAM) 256 gigabyte (GB)
Hardware system IBM System X3755M3

Table 3. Data workload scenarios and configurations.

Application Scenario File Size Files Partitions Total Size

Random forest classification Small 1.89 gigabyte 8 128 15.12 gigabyte
Large 3.58 gigabyte 8 232 28.64 gigabyte
Huge 5.52 gigabyte 8 360 44.16 gigabyte

Linear regression Small 1.86 gigabyte 8 120 14.88 gigabyte
Large 3.49 gigabyte 8 224 27.92 gigabyte
Huge 5.59 gigabyte 8 360 44.72 gigabyte

Big Data Cogn. Comput. 2019, 3, 47 16 of 24

Table 4. Monitored and simulated mean response times (seconds).

Random Forest Classification Application Linear Regression Application

Worker Data Monitored Simulated Prediction Monitored Simulated Prediction
Nodes Workload MRT MRT RMSE Error MRT MRT RMSE Error

4 Small 264.79 262.71 4.47 0.78% 42.15 43.09 1.19 2.23%
Large 502.09 462.41 40.26 7.90% 71.96 76.60 4.73 6.45%
Huge 755.05 696.70 59.65 7.73% 124.21 116.38 13.39 6.30%

8 Small 222.46 199.04 24,92 10.53% 35.28 32.95 2.65 6.59%
Large 378.31 322.54 56.62 14.74% 52.24 49.74 3.66 4.79%
Huge 534.12 486.34 48.48 8.94% 76.73 73.54 4.60 4.15%

16 Small 196.62 196.46 4.34 0.08% 37.84 37.33 2.22 1.34%
Large 287.38 285.20 11.56 0.76% 40.86 45.24 4.48 10.74%
Huge 373.74 396.38 25.97 6.06% 53.27 56.96 4.05 6.93%

Table 5. Monitored and simulated mean CPU utilization.

Random Forest Classification Application Linear Regression Application

Worker Data Monitored Simulated Prediction Monitored Simulated Prediction
Nodes Workload MCPU MCPU RMSE Error MCPU MCPU RMSE Error

4 Small 48.96% 45.69% 3.31% 6.69% 48.86% 47.43% 2.53% 2.94%
Large 56.93% 48.70% 8.23% 14.45% 57.55% 52.06% 5.62% 9.53%
Huge 56.06% 49.66% 6.43% 11.42% 56.32% 55.45% 4.02% 1.54%

8 Small 35.23% 34.83% 0.91% 1,13% 36.03% 32.48% 3.72% 9.86%
Large 44.64% 39.60% 5.31% 11.29% 46.13% 42.51% 3.85% 7.85%
Huge 47.27% 40.66% 6.61% 13.98% 52.93% 48.15% 4.81% 9.04%

16 Small 22.65% 22.12% 0.84% 2.32% 22.05% 19.34% 2.91% 12.26%
Large 31.23% 27.61% 3.65% 11.57% 31.85% 28.99% 3.06% 8.97%
Huge 34.00% 30.72% 3.39% 9.63% 38.22% 35.59% 3.13% 6.89%

6.4. Collecting Resource Demands and Extracting Execution Architectures

The extraction and transformation process follows the overview illustrated in Figure 1. In order
to extract an Execution Architecture for one application, we monitor the application using our profiler
presented in Section 4.1 to extract stack traces and corresponding CPU times. Additionally, the Spark
framework itself monitors an application. As described in Section 4.2, execution components and
inter-component interactions are extracted using Spark’s interfaces. For each execution component,
CPU resource demands are generated by processing corresponding CPU times and interrelating them
with data input information of each component as explained in Section 4.3.

In order to evaluate the three proposed claims, we derive one initial PerTract-DSL instance for each
of the two machine learning applications that we use throughout all experiments. According to each
experiment and scenario, we adapt the PerTract-DSL instance and simulate it to derive predictions.

6.5. Evaluating Data Workload Changes

In order to evaluate our first claim that data workload changes can be modified independently,
we specified three different scenarios small, large, and huge for both applications. Table 3 shows the
corresponding number of files, file sizes, total partitions and total sizes for each scenario. The basis for
evaluating workload changes of each application provides one initial PerTract-DSL instance each. We
extracted this instance from a monitored experiment with a small data workload in a cluster of four
worker nodes. Afterwards, we changed the Data Workload Architecture according to the scenarios
large and huge and simulated the model instances. The simulation and monitoring results are part of
Tables 4 and 5.

The starting experiment (i.e., four nodes and small workload) shows a response time prediction
error of 0.78% for the RFC and 2.23% for the LR application. CPU prediction errors amount to 6.69%
and 2.94%. Changing the data workload according to the large and huge scenarios leads to a response
time prediction error of 7.90% and 7.73% for the RFC and 6.45% and 6.30% for the LR applications.
Similar to the prediction errors, the RMSE increased in both scenarios. For the huge scenario, Figure 5
illustrates the response time statistics of simulated and monitored Spark tasks for each stage. For both

Big Data Cogn. Comput. 2019, 3, 47 17 of 24

applications, we predict the median of the tasks for 16 of 21 stages with errors below 30%. However,
the monitored results show an increased deviation compared to the simulation results, especially,
for the LR application. This is due to the monitored delays and task processing, which showed great
variances. While we model delays with probability distributions, we only use the mean for estimating
CPU demands and did not depict this behavior. For the RFC application, tasks for stages 05, 07, 09,
and 11 also differ significantly. These stages contain reduce operations for which the input data size
does not exactly scale linearly with increasing data workload for this RFC application. However,
the error only has a minor effect on the overall application response time as stages for reduce tasks
consist of only eight tasks compared to 360 tasks for each of the other stages.

For the large and huge workload scenarios, the RMSE for CPU consistently remain below 9%. CPU
prediction errors amount to 14.45% and 11.42% for the RFC and 9.53% and 1.54% for the LR application.
Figure 6 illustrates the CPU utilization over time for one experiment run. In order to avoid illustrating
too many lines, we calculated the mean across the worker nodes. Although underestimating the CPU
utilization by 6.4% for the RFC application, the graphs of the simulated and monitored values map
very closely.

The results for response time and resource utilization show accurate prediction results based
upon averages for upscaling workload changes. Therefore, we validated the claim of being able to
change data workloads independent of Execution Architectures and Resource Architectures.

0 5 10 15 20 25 300 5 10 15 20 25 30

Stage 00

Stage 01

Stage 02

Stage 03

Stage 04

Stage 05

Stage 06

Stage 07

Stage 08

Stage 09

Stage 10

Stage 11

Stage 12

Stage 13

Monitored
Simulated

Response time (seconds)

(a) Random forest classification

0 1 2 30 1 2 3

Stage 00

Stage 01

Stage 02

Stage 03

Stage 04

Stage 05

Stage 06

Monitored
Simulated

Response time (seconds)

(b) Linear regression

Figure 5. Response time statistics of Spark tasks for each stage (four worker nodes, huge data
workload).

0 50 110 180 250 320 390 460 530 600 670 740
0%

20%

40%

60%

80%

100%

Elapsed time (seconds)

U
ti

liz
a

ti
o

n

Monitored MCPU Simulated MCPU

(a) Random forest classification

0 20 40 60 80 100 120
0%

20%

40%

60%

80%

100%

Elapsed time (seconds)

U
ti

liz
a

ti
o

n

Monitored MCPU Simulated MCPU

(b) Linear regression

Figure 6. Mean CPU utilization of four worker nodes (huge data workload).

6.6. Evaluating Resource Changes

We increased the initial cluster size of four worker nodes by factors two and four in order
to evaluate our second claim that hardware resources can be changed independently of Execution
Architectures and Data Workload Architectures.

Big Data Cogn. Comput. 2019, 3, 47 18 of 24

Similarly, the evaluation is based on one initial PerTract-DSL instance for each application,
which is the same as for the data workload evaluation and was extracted from a monitored experiment
with four worker nodes. Afterwards, we increased the worker nodes to eight and 16 nodes in
the Resource Architecture. Additionally, we adapted the number of executors e in the application
configuration of the Execution Architecture to match the number of worker nodes. The simulation and
monitoring results are part of Tables 4 and 5.

In the previous subsection, we already discussed the same starting experiment, which does not
include any changes. For eight worker and 16 worker nodes, response time prediction errors amount
to 10.53% and 0.08% for the RFC application and 6.59% and 1.34% for the LR application, respectively.
Compared to the data workload changes, the RMSE is lower throughout the resource changes for
both applications. Figure 7 additionally shows the detailed response time statistics of Spark tasks
for each stage of the applications. Compared to the data workload evaluation, the median values of
simulated and monitored results lie closer together. The distance of the first and third quartiles are
also predicted more accurately for most stages of both applications. For a few stages such as Stage 01,
minimum, maximum, and quartiles differ significantly. Nonetheless, response time predictions errors
on application-level remain below 15% in total.

For eight worker and 16 worker nodes, CPU prediction errors come to 1.13% and 2.32% for the
RFC application and to 9.86% and 12.26% for the LR application, respectively. Figure 8 illustrates the
CPU utilization over time for one experiment run. For the RFC application, the simulated CPU usage
overestimates several peaks and underestimates negative peaks. However, it depicts the progression
of the monitored results overall. For the LR application, the predicted CPU utilization is very precise.

In total, the simulation results show accurate prediction results for upscaling hardware resource
changes with mean prediction errors below 15% and validate the claim that hardware resource can be
modified without changing Execution Architectures and Data Workload Architectures.

5 10 15 205 10 15 20

Stage 00

Stage 01

Stage 02

Stage 03

Stage 04

Stage 05

Stage 06

Stage 07

Stage 08

Stage 09

Stage 10

Stage 11

Stage 12

Stage 13

Monitored
Simulated

Response time (seconds)

(a) Random forest classification

0 5 10 15 200 5 10 15 20

Stage 00

Stage 01

Stage 02

Stage 03

Stage 04

Stage 05

Stage 06

Monitored
Simulated

Response time (seconds)

(b) Linear regression

Figure 7. Response time statistics of Spark tasks for each stage (16 worker nodes, small data workload).

0 20 40 60 80 100 120 140 160 180 200
0%

20%

40%

60%

80%

100%

Elapsed time (seconds)

U
ti

liz
a

ti
o

n

Monitored MCPU Simulated MCPU

(a) Random forest classification

0 10 20 30 40
0%

20%

40%

60%

80%

100%

Elapsed time (seconds)

U
ti

liz
a

ti
o

n

Monitored MCPU
Simulated MCPU

(b) Linear regression

Figure 8. Mean CPU utilization of 16 worker nodes (small data workload).

Big Data Cogn. Comput. 2019, 3, 47 19 of 24

6.7. Evaluating Data Workload and Resource Changes

In order to evaluate our claim that data workload and hardware resources can be modified
without changing application Execution Architectures, we applied both upscaling scenarios together,
regarding data workload as well as worker nodes. The simulation and monitoring results are part of
Tables 4 and 5. Again, the evaluation is based on the same initially extracted PerTract-DSL instance for
each application.

For eight worker nodes and a large data workload, response time prediction errors amount to
14.74% for the RFC and 4.79% for the LR application. For huge data workload, the errors are 8.94% and
4.15%, respectively. For 16 worker nodes and a large data workload, response time prediction errors
come to 0.76% for the RFC and 10.74% for the LR application. With huge data workload, the errors
are 6.06% and 6.93%, respectively. The RMSE results consistently behave similarly to prediction
errors. The highest RMSE amounts to 56.62 s, which equals 14.97% of the corresponding monitored
response times. For all scenarios, prediction errors constantly remain below 15%. Figure 9 additionally
shows the response time statistics of results with 16 worker nodes and huge workload. Compared
to the two previous evaluations, the simulation results depict monitoring results as the closest for
both applications.

0 5 10 15 20 25 300 5 10 15 20 25 30

Stage 00

Stage 01

Stage 02

Stage 03

Stage 04

Stage 05

Stage 06

Stage 07

Stage 08

Stage 09

Stage 10

Stage 11

Stage 12

Stage 13

Monitored
Simulated

Response time (seconds)

(a) Random forest classification

0 2 4 6 8 10 120 2 4 6 8 10 12

Stage 00

Stage 01

Stage 02

Stage 03

Stage 04

Stage 05

Stage 06

Monitored
Simulated

Response time (seconds)

(b) Linear regression

Figure 9. Response time statistics of Spark tasks for each stage (16 worker nodes, huge data workload).

Looking at the CPU results for eight worker nodes and a large data workload, prediction errors
amount to 11.29% for the RFC application and 7.85% for the LR application. For a huge workload,
the errors remain similarly with 13.98% and 9.04%. For 16 worker nodes and a large data workload,
the errors also remain 11.57% and 8.97%. With a huge data workload, they decrease a little to 9.63%
and 6.89%, similar to the response time prediction.

Figure 10 shows the CPU utilization over time of one run with 16 worker nodes and a huge
data workload. In case of the RFC application, the simulation graph depicts the progression of the
monitored measurements. However, it shifts as the response time differs. In case of the LR application,
the simulated CPU utilization is also slightly shifted due to the different response times. Otherwise, it
depicts the monitored utilization except for one peak at the beginning. This is due to overestimating
the CPU demand for Stage 00. Similarly, the task response time also significantly differs for Stage 00
for both applications throughout all experiments. The reason for the overestimation is that this stage
consists of only one task, which does not scale linearly with the dependent data size. This is a case that
we intentionally did not consider and could not cover as it requires metaknowledge of the application
that we do not expect in an automatic extraction process.

Big Data Cogn. Comput. 2019, 3, 47 20 of 24

0 30 60 90 130 170 210 250 290 330 370
0%

20%

40%

60%

80%

100%

Elapsed time (seconds)

U
ti

liz
a

ti
o

n

Monitored MCPU Simulated MCPU

(a) Random forest classification

0 10 20 30 40 50 60
0%

20%

40%

60%

80%

100%

Elapsed time (seconds)

U
ti

liz
a

ti
o

n

Monitored MCPU
Simulated MCPU

(b) Linear regression

Figure 10. Mean CPU utilization of 16 worker nodes (huge data workload).

Overall, the simulated results for response times on an application-level as well as CPU utilization
show accurate predictions for both data workload changes and hardware resources. The mean
prediction errors remained below 15% as well as the RMSE compared to the monitored results.
In performance evaluation literature, prediction errors of 30% across cluster sizes are expected [20].
Therefore, we validated the claim of being able to change data workloads and resources’ architectures
independent of Execution Architectures. Our approach enriches related work by predicting CPU
utilization across clusters and over time.

6.8. Threats to Validity

Although we applied some sophisticated machine learning applications, we generated data and
used only a set of sample applications from one benchmark suite. As they are far more complex
applications and have deviating data in praxis, this represents a threat to external validity [42].

Furthermore, we evaluated our approach only for one technology (i.e., Apache Spark) and one
type of application (i.e., batch). In previous work, we showed that our approach is also applicable for
Spark Streaming applications [11]. However, we claim that the DSL builds a foundation to specify
other technologies as well, such as Apache Flink and Apache Storm. Extensions might be required
(e.g., additional parameters) to support modeling and accurate predictions. We plan to evaluate this in
our future work.

We used several visualizations and statistical measures such as mean, standard deviation,
and relative error to ensure statistical conclusion validity. While the results of one measure can
be close to each other (e.g., mean), another measure can differ significantly (e.g., minimum value).

6.9. Assumptions and Limitations

We allocated one Spark executor to each node during our experiments. It is also possible to size
less cores and memory for Spark executors, which would enable Spark to allocate multiple executors
to one node. Although we are also able to model and simulate these scenarios, we did not evaluate
such a case. We evaluated our experiments in a virtualized, but exclusive cluster in which no other
applications were running in parallel and using any CPU, disk drives, or networks. For data analytics
applications, CPU is usually the bottleneck [37]. As HiBench and other industry benchmarks mainly
consist of only compute-intensive applications, we did not evaluate our approach for a wider variety
of applications.

Regarding our modeling approach, we specified the input of a subsequent Spark stage
probabilistically depending on the output data of a previous stage. Therefore, our prediction error will
increase, if the properties of the initial underlying data set change significantly (e.g., the number of
distinct words in case of a word count application). Another limitation is that we only include network
delays in our models and simulations, but did not simulate network throughput and bandwidth
yet. The same applies to disk drives. In addition, we also did not consider rack awareness in our
specification. Regarding big data features and PCM, Heinrich et al. [43] discuss current challenges and
potential solutions, for instance, for modeling data structures and continuous data flows.

Big Data Cogn. Comput. 2019, 3, 47 21 of 24

7. Conclusions and Future Work

Modeling and predicting the performance of big data applications are essential for planning
capacities and evaluating configurations. Automatically deriving models, specifying applications
tool-agnostic, and gaining insights into performance-relevant factors of system architectures and
dependencies are complex challenges. We present PerTract, an approach to automatically extract
model specifications and transform them to the model-based performance evaluation tool Palladio.
A PerTract-DSL allows the specification of (i) application execution architectures including components,
parametric dependencies, and resource demands, (ii) computing resources, and (iii) data workloads.
It is specifically designed for big data systems, decreases the complexity compared to full performance
models, and simplifies the changeability to users. We demonstrated the extraction of DSL instances by
the example of Apache Spark applications, Apache YARN resources, and Apache HDFS data. This is
the first white-box approach to present an automated way to integrate measurements and estimate
resource demands to produce performance models that can be simulated. We used two machine
learning applications of the HiBench benchmark suite in the evaluation and upscaled data sizes as well
as cluster sizes in different scenarios. We are able to predict mean response times on application-level
and CPU usage with accurate predictions errors below 15%.

In our future work, we plan to extract DSL instances from more technologies. We already provide
a way to extract the execution architecture of Apache Flink applications, but need further investigations
to estimate accurate resource demands. Additional technologies include Apache Mesos for modeling
computing resources and Apache Kafka for characterizing data workload. We also plan to implement
direct transformations from the DSL to a scalable event-oriented discrete-event simulation as we
are reaching the limit for simulating continuous sources (data streams). Finally, we will extend the
specification of continuous data sources to include load intensity profiles that model variations in
arrival rates [44].

Author Contributions: Conceptualization: J.K. and H.K.; Resources: H.K.; Software: J.K.; Validation: J.K.;
Writing—original draft: J.K.; Writing—review and editing: J.K. and H.K.; Supervision: H.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CPU Central processing unit
DSL Domain-specific language
EMF Eclipse modeling framework
GB Gigabyte
HDFS Hadoop distributed file system
LAN Local area network
LR Linear regression
MB Megabytes
MCPU Mean CPU utilization
MRT Mean response time
PCM Palladio component model
PDF Probability density function
RDD Resilient distributed dataset
RDSEFF Resource demanding service effect specification
RFC Random forest classification
RMSE Root mean square error
VM Virtualized machine

Big Data Cogn. Comput. 2019, 3, 47 22 of 24

References

1. Schermann, M.; Hemsen, H.; Buchmüller, C.; Bitter, T.; Krcmar, H.; Markl, V.; Hoeren, T. Big Data—An
interdisciplinary opportunity for information systems research. Bus. Inf. Syst. Eng. 2014, 6, 261–266.
[CrossRef]

2. Brunnert, A.; Vögele, C.; Danciu, A.; Pfaff, M.; Mayer, M.; Krcmar, H. Performance management work.
Bus. Inf. Syst. Eng. 2014, 6, 177–179. [CrossRef]

3. Wang, K.; Khan, M.M.H. Performance Prediction for Apache Spark Platform. In Proceedings of the 17th
International Conference on High Performance Computing and Communications, New York, NY, USA,
24–26 August 2015; pp. 166–173.

4. Brosig, F.; Meier, P.; Becker, S.; Koziolek, A.; Koziolek, H.; Kounev, S. Quantitative Evaluation of Model-Driven
Performance Analysis and Simulation of Component-Based Architectures. IEEE Trans. Softw. Eng. 2015,
41, 157–175. [CrossRef]

5. Brunnert, A.; van Hoorn, A.; Willnecker, F.; Danciu, A.; Hasselbring, W.; Heger, C.; Herbst, N.;
Jamshidi, P.; Jung, R.; von Kistowski, J.; et al. Performance-Oriented DevOps: A Research Agenda;
Technical Report SPEC-RG-2015-01; SPEC Research Group—DevOps Performance Working Group,
Standard Performance Evaluation Corporation (SPEC): Gainesville, FL, USA, 2015. Available
online: http://research.spec.org/fileadmin/user_upload/documents/wg_devops/endorsed_publications/
SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf (accessed on 8 August 2019).

6. Becker, S.; Koziolek, H.; Reussner, R. The Palladio component model for model-driven performance
prediction. J. Syst. Softw. 2009, 82, 3–22. [CrossRef]

7. Kroß, J. PerTract. Available online: https://github.com/johanneskross/pertract (accessed on 7 August 2019).
8. Kroß, J.; Brunnert, A.; Prehofer, C.; Runkler, T.; Krcmar, H. Stream Processing on Demand for Lambda

Architectures. In Computer Performance Engineering; Beltrán, M., Knottenbelt, W., Bradley, J., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9272,
pp. 243–257.

9. Kroß, J.; Brunnert, A.; Krcmar, H. Modeling Big Data Systems by Extending the Palladio Component Model.
In Proceedings of the 2015 Symposium on Software Performance, Munich, Germany, 4–6 November 2015.

10. Kroß, J.; Krcmar, H. Modeling and Simulating Apache Spark Streaming Applications. In Proceedings of the
2016 Symposium on Software Performance, Kiel, Germany, 8–9 November 2016.

11. Kroß, J.; Krcmar, H. Model-based Performance Evaluation of Batch and Stream Applications for Big
Data. In Proceedings of the IEEE 25th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), Banff, AB, Canada, 20–22 September 2017;
pp. 80–86.

12. Vianna, E.; Comarela, G.; Pontes, T.; Almeida, J.; Almeida, V.; Wilkinson, K.; Kuno, H.; Dayal, U. Analytical
Performance Models for MapReduce Workloads. Int. J. Parallel Program. 2013, 41, 495–525. [CrossRef]

13. Verma, A.; Cherkasova, L.; Campbell, R.H. Profiling and evaluating hardware choices for MapReduce
environments: An application-aware approach. Perform. Eval. 2014, 79, 328–344. [CrossRef]

14. Zhang, Z.; Cherkasova, L.; Loo, B.T. Benchmarking Approach for Designing a Mapreduce Performance
Model. In Proceedings of the ACM/SPEC International Conference on Performance Engineering, Prague,
Czech Republic, 21–24 April 2013; ACM Press: New York, NY, USA, 2013; pp. 253–258.

15. Zhang, Z.; Cherkasova, L.; Loo, B.T. Performance Modeling of MapReduce Jobs in Heterogeneous Cloud
Environments. In Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing,
Santa Clara, CA, USA, 28 June–3 July 2013; IEEE: Washington, DC, USA, 2013; pp. 839–846.

16. Zhang, Z.; Cherkasova, L.; Loo, B.T. Exploiting Cloud Heterogeneity to Optimize Performance and Cost of
MapReduce Processing. SIGMETRICS Perform. Eval. Rev. 2015, 42, 38–50. [CrossRef]

17. Barbierato, E.; Gribaudo, M.; Iacono, M. Performance evaluation of NoSQL big-data applications using
multi-formalism models. Future Gener. Comput. Syst. 2014, 37, 345–353. [CrossRef]

18. Ardagna, D.; Bernardi, S.; Gianniti, E.; Karimian Aliabadi, S.; Perez-Palacin, D.; Requeno, J.I. Modeling
Performance of Hadoop Applications: A Journey from Queueing Networks to Stochastic Well Formed
Nets. In Algorithms and Architectures for Parallel Processing; Carretero, J., Garcia-Blas, J., Ko, R.K., Mueller, P.,
Nakano, K., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland,
2016; pp. 599–613.

http://dx.doi.org/10.1007/s12599-014-0345-1
http://dx.doi.org/10.1007/s12599-014-0323-7
http://dx.doi.org/10.1109/TSE.2014.2362755
http://research.spec.org/fileadmin/user_upload/documents/wg_devops/endorsed_publications/SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf
http://research.spec.org/fileadmin/user_upload/documents/wg_devops/endorsed_publications/SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf
http://dx.doi.org/10.1016/j.jss.2008.03.066
https://github.com/johanneskross/pertract
http://dx.doi.org/10.1007/s10766-012-0227-4
http://dx.doi.org/10.1016/j.peva.2014.07.020
http://dx.doi.org/10.1145/2788402.2788409
http://dx.doi.org/10.1016/j.future.2013.12.036

Big Data Cogn. Comput. 2019, 3, 47 23 of 24

19. Lehrig, S. Applying Architectural Templates for Design-Time Scalability and Elasticity Analyses of SaaS
Applications. In Proceedings of the 2nd International Workshop on Hot Topics in Cloud Service Scalability,
Dublin, Ireland, 22 March 2014; pp. 2:1–2:8.

20. Ardagna, D.; Barbierato, E.; Evangelinou, A.; Gianniti, E.; Gribaudo, M.; Pinto, T.B.M.; Guimarães, A.;
da Silva, A.P.C.; Almeida, J.M. Performance Prediction of Cloud-Based Big Data Applications. In Proceedings
of the ACM/SPEC International Conference on Performance Engineering, Berlin, Germany, 9–13 April 2018;
pp. 192–199.

21. Singhal, R.; Singh, P. Performance Assurance Model for Applications on SPARK Platform. In Performance
Evaluation and Benchmarking for the Analytics Era; Nambiar, R., Poess, M., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 131–146.

22. Venkataraman, S.; Yang, Z.; Franklin, M.; Recht, B.; Stoica, I. Ernest: Efficient Performance Prediction for
Large-Scale Advanced Analytics. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), Santa Clara, CA, USA, 13–17 March 2016; USENIX Association:
Santa Clara, CA, USA, 2016; pp. 363–378.

23. Alipourfard, O.; Liu, H.H.; Chen, J.; Venkataraman, S.; Yum, M.; Zhang, M. CherryPick: Adaptively
Unearthing the Best Cloud Configurations for Big Data Analytics. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, 27–29 March
2017; USENIX Association: Boston, MA, USA, 2017; pp. 469–482.

24. Witt, C.; Bux, M.; Gusew, W.; Leser, U. Predictive performance modeling for distributed batch processing
using black box monitoring and machine learning. Inf. Syst. 2019, 82, 33–52. [CrossRef]

25. Castiglione, A.; Gribaudo, M.; Iacono, M.; Palmieri, F. Modeling performances of concurrent big data
applications. Softw. Pract. Exp. 2014, 45, 1127–1144. [CrossRef]

26. Niemann, R. Towards the Prediction of the Performance and Energy Efficiency of Distributed Data
Management Systems. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering, Delft, The Netherlands, 12–16 March 2016; pp. 23–28.

27. Casale, G.; Ardagna, D.; Artac, M.; Barbier, F.; Nitto, E.D.; Henry, A.; Iuhasz, G.; Joubert, C.; Merseguer, J.;
Munteanu, V.I.; et al. DICE: Quality-driven Development of Data-intensive Cloud Applications.
In Proceedings of the Seventh International Workshop on Modeling in Software Engineering, Florence, Italy,
16–24 May 2015; pp. 78–83.

28. Guerriero, M.; Tajfar, S.; Tamburri, D.A.; Di Nitto, E. Towards a Model-driven Design Tool for Big Data
Architectures. In Proceedings of the 2nd International Workshop on BIG Data Software Engineering, Austin,
TX, USA, 2016; pp. 37–43.

29. Gómez, A.; Merseguer, J.; Di Nitto, E.; Tamburri, D.A. Towards a UML Profile for Data Intensive Applications.
In Proceedings of the 2Nd International Workshop on Quality-Aware DevOps, Saarbrücken, Germany,
21 July 2016; pp. 18–23.

30. Ginis, R.; Strom, R.E. Method for Predicting Performance of Distributed Stream Processing Systems.
U.S. Patent 7,818,417, 19 October 2010.

31. Steinberg, D.; Budinsky, F.; Paternostro, M.; Merks, E. EMF: Eclipse Modeling Framework, 2nd ed.;
Addison-Wesley: Boston, MA, USA, 2009.

32. King, B. Performance Assurance for IT Systems; Auerbach Publications: Boston, MA, USA, 2004.
33. Brandl, R.; Bichler, M.; Ströbel, M. Cost accounting for shared IT infrastructures. Wirtschaftsinformatik 2007,

49, 83–94. [CrossRef]
34. Brunnert, A.; Krcmar, H. Continuous Performance Evaluation and Capacity Planning Using Resource

Profiles for Enterprise Applications. J. Syst. Softw. 2017, 123, 239–262. [CrossRef]
35. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.J.; Shenker, S.;

Stoica, I. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing.
In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, San Jose,
CA, USA, 25–27 April 2012; USENIX Association: Berkeley, CA, USA, 2012; p. 2.

36. Apache Spark. Lightning-Fast Cluster Computing. Available online: https://spark.apache.org (accessed on
19 February 2018).

http://dx.doi.org/10.1016/j.is.2019.01.006
http://dx.doi.org/10.1002/spe.2269
http://dx.doi.org/10.1007/s11576-007-0030-9
http://dx.doi.org/10.1016/j.jss.2015.08.030
https://spark.apache.org

Big Data Cogn. Comput. 2019, 3, 47 24 of 24

37. Ousterhout, K.; Rasti, R.; Ratnasamy, S.; Shenker, S.; Chun, B.G. Making Sense of Performance in Data
Analytics Frameworks. In Proceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation, Oakland, CA, USA, 4–6 May 2015; USENIX Association: Oakland, CA, USA, 2015;
pp. 293–307.

38. Apache Hadoop. Welcome to Apache Hadoop! Available online: https://hadoop.apache.org/ (accessed on
1 January 2017).

39. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008,
51, 107–113. [CrossRef]

40. Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. 2004,
28, 75–105. [CrossRef]

41. Huang, S.; Huang, J.; Dai, J.; Xie, T.; Huang, B. The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. In Proceedings of the 26th International Conference on Data Engineering
Workshops, Long Beach, CA, USA, 1–6 March 2010; pp. 41–51.

42. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software
Engineering; Springer: Berlin/Heidelberg, Germany, 2012.

43. Heinrich, R.; Eichelberger, H.; Schmid, K. Performance Modeling in the Age of Big Data—Some Reflections
on Current Limitations. In Proceedings of the 3rd International Workshop on Interplay of Model-Driven
and Component-Based Software Engineering, Saint-Malo, France, 2 October 2016; pp. 37–38.

44. Kistowski, J.V.; Herbst, N.; Kounev, S.; Groenda, H.; Stier, C.; Lehrig, S. Modeling and Extracting Load
Intensity Profiles. ACM Trans. Auton. Adapt. Syst. 2017, 11, 23:1–23:28. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://hadoop.apache.org/
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.1145/3019596
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Modeling Approach
	Formalism
	Application Execution Architecture
	Resource Profile
	Data Workload Architecture
	Resource Architecture

	PerTract-DSL

	Extracting Model Instances by the Example of Apache Spark, Apache YARN and Apache HDFS
	Extraction of Resource Demands
	Extraction of Execution Architectures
	Extraction and Estimation of Resource Profiles
	Extraction of Data Workload Architectures
	Extraction of Resource Architectures

	Transformation to Performance Models
	Palladio Component Model
	Transformation to PCM

	Evaluation
	Research Methodology
	HiBench Benchmark Suite
	Experiment Setup
	Collecting Resource Demands and Extracting Execution Architectures
	Evaluating Data Workload Changes
	Evaluating Resource Changes
	Evaluating Data Workload and Resource Changes
	Threats to Validity
	Assumptions and Limitations

	Conclusions and Future Work
	References

