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Abstract: In this work, we propose ShallowDeepNet, a novel system architecture that includes a
shallow and a deep neural network. The shallow neural network has the duty of data preprocessing
and generating adversarial samples. The deep neural network has the duty of understanding data and
information as well as detecting adversarial samples. The deep neural network gets its weights from
transfer learning, adversarial training, and noise training. The system is examined on the biometric
(fingerprint and iris) and the pharmaceutical data (pill image). According to the simulation results, the
system is capable of improving the detection accuracy of the biometric data from 1.31% to 80.65% when
the adversarial data is used and to 93.4% when the adversarial data as well as the noisy data are given
to the network. The system performance on the pill image data is increased from 34.55% to 96.03%
and then to 98.2%, respectively. Training on different types of noise can benefit us in detecting samples
from unknown and unseen adversarial attacks. Meanwhile, the system training on the adversarial data
as well as noisy data occurs only once. In fact, retraining the system may improve the performance
further. Furthermore, training the system on new types of attacks and noise can help in enhancing the
system performance.

Keywords: adversarial attacks; adversarial perturbations; adversarial training; biometric recognition;
convolutional neural networks; data security; deep learning; pill recognition; multiple subnetwork;
noise training; transfer learning

1. Introduction

The area of deep/machine learning has shown extreme effectiveness and capability in image
classification, object recognition, speech recognition, plagiarism detection, and language translation.
The application of this area can range from the information technology to automotive industries.
Traditionally, the deep/machine learning (D/ML) algorithmic engines need to be designed under
the assumption of training them with similar training and test data distributions. According to this
assumption, the test samples will be classified in their correct category. However, this assumption may
not always be correct, especially with the presence of intelligent adversaries. This has a severe impact
on security-critical applications and products. In this context, attacks are designed in a way to evade
machine learning-based detection systems. This means the trained models on fully clean data can be
vulnerable to maliciously engineered data. Szegedy et al. generated small perturbations on the images
for classification problems and fooled the state-of-the-art deep neural networks [1].

Many of the previously proposed defenses are not effective anymore [2-9], especially due to
the emergence of new attacks in this area. In fact, a well-engineered adversarial sample can fool
neural networks of different models, different architectures, and trained on different data. This is
called cross-model and cross-dataset properties of the defenses. It means the adversarial data can
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disrupt classification systems and their algorithms. The engineered data can bring weakness in
learned representations and classifiers. They show whether the systems are stable in confronting
the perturbations or not. As a result, it is important to determine how a neural network should be
trained to make it robust to adversarial samples. These attacks can fool applications of different kinds,
such as biometric recognition systems or pharmaceutical/clinical trials. For a biometric recognition
system, a face image can be modified in a way to cause gender misclassification, while it looks like
its original entity [10]. Similarly, a perturbation into the iris or the fingerprint of an entity can lead to
denial of services or unauthorized access. On the other hand, injecting malicious perturbations into
the pharmaceutical data can result in performing an act of terrorism or even committing murder.

In this work, we contribute to the area of adversarial example detection with application in
biometric and pharmaceutical data. Our contributions can be stated as (1) proposing a system called
ShallowDeepNet that includes a shallow and a deep neural network. The shallow neural network
is responsible for data preprocessing that is defined as generating adversarial samples in (G-Net).
The generated adversarial samples from this network are able to fool a deep neural network. The deep
neural network or RazorNet is responsible for understanding data and information as well as detecting
adversarial samples (D-Net). Therefore, a serial connection of G-Net and D-Net (G+D Net) helps us to
detect many of the unknown and unseen attacks. Leveraging a shallow neural network, an attacker is
able to disrupt the deep neural network without having access to its model as well as spending shorter
training time. (2) Engaging transfer learning for the application of adversarial examples detection:
This is one of the few researches that introduces the concept of transfer learning into the detection of
adversarial examples. (3) Using both adversarial training and noise training together in our system:
We, for the first time, introduce training on noisy data for making a neural network robust. The noisy
images can be helpful in making the neural network robust against unknown and unseen adversarial
attacks. Any new adversarial attack tries to inject noise/perturbation into images for the sake of fooling
the neural network. Therefore, training the deep neural network on diverse and adequate types of
noise possibly makes it robust for future adversarial attacks. (4) Utilizing four different types of noise in
improving knowledge of detector networks, namely Additive White Gaussian Noise (AWGN), motion
blur, reduced contrast and AWGN, and Perlin noise; (5) generating the adversarial versions of two
different types of data, biometric (fingerprint and iris) and pill image using well-known adversarial
attacks, namely (a) Fast Gradient Sign Method (FGSM)), (b) Jacobian-based Saliency Map Attack (JSMA),
(c) DeepFool, (d) Carlini and Wagner (C&W), and (e) Projected Gradient Descent (PGD); and (6)
assembling and integrating a comprehensive system consisting of all the discussed elements. This
shows the significance of this work in terms of implementation. An example of attacking an image by
FGSM is shown in Figure 1.

Clean Data FGSM Perturbation Perturbed Data

Figure 1. The figure shows injecting a perturbation from the Fast Gradient Sign Method (FGSM) attack
into a sample image from the ten-class Canadian Institute for Advanced Research (CIFAR) dataset.
A high amount of perturbation is chosen during the simulation for better visual presentation.

Next, we propose a systematic defense based on leveraging the learned knowledge from a clean
unrelated dataset, an adversarial unrelated dataset, a noisy dataset, a related manipulated dataset
during training, and all the learned knowledge from the last steps in the detection of adversarial
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perturbations. The rest of this paper is organized as follows: We discuss the related works in Section 2.
Section 3 presents the background information including all the employed concepts and techniques.
The proposed systematic defense against the well-known adversarial attacks is illustrated in Section 4.
How the process of decision making on the biometric and pill image data can be improved using
transfer learning as well as the learned knowledge from the adversarial and the noisy data is explained.
The experimental approach along with the results are provided in Section 5. In Section 6, we discuss
how this system can be improved in the future and what its possible limitations are. The conclusion is
given in Section 7.

2. Related Work

In this section, the related works are described. The area of fooling neural networks is not
necessarily limited to images since it can include other types of data such as words. Accordingly, a
method has been proposed by Reference [11] that fools a reading comprehension system by adding
sentences to the ends of paragraphs by using crowdsourcing. Another work is random character
swaps [12] that breaks the output of neural machine translation systems. A similar method has been
proposed [13] that can generate a large number of input sentences through the replacement of a word
with its synonym. The authors in References [14-17] showed that having adversarial training can
help in holding great promise for learning robust models. The authors in Reference [18] presented an
application of a multi-threading mechanism for minimization of the training time through rejection
of the unnecessary selection of weights. In Reference [19], the authors proposed SeqGAN, that is a
sequence generation framework for solving the problems (a) of difficulty in passing the gradient update
from the discriminative model to the generative model and (b) of the limitation of the discriminative
model in assessing partially generated sequences. The second problem is similar to the problem of
assessing adversarial data. Application of image processing techniques for noise removal can be helpful
in overcoming the threats of adversarial examples, for example, taking the architectures for applying
multi-frame SR with JPEG2000 compression (working based on a modified adaptive Wiener filter) [20]
and leveraging a computer-aided lung nodule detection system into the context of adversarial example
detection [21]. Chivukula and Liu show an adversarial learning algorithm for supervised classification,
specifically convolutional neural networks [22]. The proposing algorithm has the duty of producing
minor changes to the data distribution defined over positive and negative class labels. The work is
further augmented by proposing a network capable of defending against unforeseen changes in the
data. Kwon et al. [23] proposed a multi-targeted adversarial example that is capable of misclassifying
each of the multiple models as each target class along with minimizing the distance of the original
sample. A poisoning attack called TensorClog has been proposed in Reference [24] according to which
the deep neural networks are jeopardized. The authors in Reference [25] proposed a novel hybrid
modular artificial neural network (ANN) architecture that is capable of constructing smooth polygonal
meshes from a single depth frame with beforehand knowledge. An investigation on the robustness
of the representations learned by the fooled neural network (analyzing the activations of its hidden
layers) has been done in Reference [26]. Through this investigation, they tested scoring approaches
employed for k-nearest neighbor classifications to distinguish between correctly classified authentic
clean images and adversarial images. A defense mechanism for the vulnerability of neural networks to
adversarial examples is presented in Reference [27].

In addition to the above publications, a number of the proposed works in this area are based
on detection of adversarial examples by relying on adding an outlier class detection module to the
classifier [28-30]. A detection model has been presented in Reference [31] that operates based on kernel
density estimation and Bayesian neural network uncertainty. A work presented by Reference [32]
showed that all the defense methods can be bypassed. Other types of work in this area are based on
learning network features and on adapting them to different domains for the same task [33]. Similar
works are poisoning attacks that have been mainly explored in the context of binary classification. In a
recent work, the vulnerabilities of capsule networks to adversarial attacks (i.e., targeted and untargeted,
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black and white box, and individual universal) are studied. It is shown that these attacks, when applied
to the German Traffic Sign Recognition Benchmark (GTSRB), are capable of misleading the capsule
networks [34].

3. Technical Background

The fundamental concepts and techniques used in this work are discussed. These concepts and
techniques include data recognition system for fingerprint, iris, and pill image data; well-known
adversarial attacks for fooling neural networks; noise training; and shallow-deep CNN-based
system architecture.

3.1. Data Recognition System for Fingerprint, Iris, and Pill Image Data

Here, we discuss two targeted neural network-based systems for adversarial attacks, namely
Biometric Recognition System and Pill Recognition System. A scientific medium to distinguish different
objects in a reliable manner for a target application based on the physical or behavioral traits of entities
(such as fingerprint and iris) is called biometrics. A system for recognition of biometric data tries to find
patterns inside the data and to extract features from them to be compared against the reference data.
This type of recognition system has many security-related applications, including access control, time,
attendance management system, government and law enforcement, passport-free automated border
crossings, national ID systems, computer login, and other wireless-based devices for authentication.
Two reputable biometric data with significant gained attention are fingerprint and iris. The fundamental
and traditional biometric data is fingerprint with having recent applications in smart phones. This trait
uses the patterns of ridge and valleys on the surface of a fingertip. Using the print instance from multiple
fingers can further enhance the level of security. On the other hand, having small cuts or bruises along
with aging and exposure to the environmental disturbances can cause performance degradation of the
system. The other trait is iris that has newer applications. It is the annular region of the eye, surrounding
the pupil and having sclera on either side. This texture is formed during the fetal development as well
and is stabilized as we age. The unique information within this data helps perform recognition and
identification tasks. Therefore, having a biometric recognition system with fingerprint and iris image
instances as its inputs is one of the best candidates in security provision.

Recently, the usage of prescription drugs has been increased tremendously compared to the
past, especially among the elderly. Consequently, the possibility of pill misrecognition has increased
significantly. The misrecognition can happen due to the similarities in colors, shapes, imprints, and
scorings of the pills. A typical pill recognition system has two modes of learning mode and recognition
mode. In the learning mode, we have pill profiling (using the images of pills from a database) and
storage. The other mode starts with acquiring the image containing marker and pill. During this process,
we have the normalization of image sizes, the detection of markers, the performance of profiling based
on the pill shape, size estimation, and color detection. The stored data in the database is used for further
consultation. On the other hand, the recognition mode aims for pill detection based on pill profile
and feature filtering. The data preprocessing in this mode is similar to the previous mode. Usually,
the pill recognition systems are mounted on the mobile devices. In this case, we may have the same
issues discussed earlier like low quality images that can lead to misclassification of a pill image. Also,
adversarial perturbations can be introduced into the pill images with malicious intent in order to worsen
the health condition of a patient. A neural network-based biometric recognition system and a pill
recognition system are shown in the top and the bottom parts of Figure 2.
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Figure 2. A neural network-based biometric recognition system and a pill recognition system.

3.2. Threat Model: Well-Known Adversarial Attacks for Fooling Neural Networks

The employed well-known adversarial attacks for fooling neural networks are briefly discussed.
The attacks are Fast Gradient Sign Method, Jacobian-Based Saliency Map Attack, DeepFool, Carlini and
Wagner Attack, and Projected Gradient Descent. These attacks generate adversarial examples, which
are instances of small and intentional feature perturbations that let a machine/deep learning model
make a false prediction. These attacks can be modeled by defining F as a classification regime that can
output the predicted label F(x) for a given data sample x. Generation of a perturbation R specific to the
data sample can cause misclassification based on the equation of F(x + ) # F(x). In this perturbation, r
should not be distinct enough to be perceived by human beings. Sample instances from this attack are
shown in Figure 3.

Fast Gradient Sign Method: FGSM is a fast method for generating adversarial examples [35].
Using this technique, a one-step gradient update is performed along the direction of gradient at
each pixel.

Jacobian-Based Saliency Map: A JSMA attack is an efficient saliency adversarial map under Ly
distance [35]. In this attack, a Jacobian matrix is computed with a given sample X and is expressed as

]f(x) - % - [%]M

DeepFool: This attack finds the closest distance from the original input to the decision boundary
of adversarial samples [35].

Carlini and Wagner: A targeted C&W attack has been offered by Reference [35] for the purpose
of defeating the defensive distillation. This attack can bypass most of the existing adversarial
detecting defenses.

0 20 40 60 80 100 120

(a) FGSM attack

Figure 3. Cont.
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(e) Projected Gradient Descent (PGD) attack

Figure 3. Sample instances for (a) an FGSM attack; (b) JSMA; (c) DeepFool attack; (d) C&W attack; and
(e) PGD attack: For each attack, there is pill image data on the left side and the iris biometric data on
the right side.

Projected Gradient Descent: A PGD attack model for generating adversarial example has been
proposed in Reference [36] according to which the objective problem of maxs <. L(6,x + 0, ttrue)
is solved.

The parameters used for fooling the shallow neural network are selected based on making the
images of original and fooling data look similar to the human eye and have small difference based on
the distance measures among the images. In this way, their level of sneakiness will be more difficult to
catch using the ordinary defense methods. What we chose for the epsilon perturbation parameter is 0.1
for FGSM, 10 for JSMA, 10 DeepFool, 10 for C&W, and 0.1 for PGD. The attacks are run for 4 epochs.
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We performed distance measurements on the original and the perturbed images from the biometric
and the pill image datasets. The distance measures are the Euclidean, Manhattan, and Chebyshev
distances and the correlation coefficient. Their formulas are presented in Equations (1)—(4). Also, the
average of these distances among 100 instances of the original and the adversarial images are shown in
Table 1. The method of averaging can be described as (a) finding the distance value between each pair
of original and perturbed image; (b) constructing an array of calculated distances; and (c) calculating
the average value of the constructed array.

Euclidean Distance : d(x, y) = (1)
Manhattan Distance : d(x, y) = (2)
Chebyshev Distance : d(x, y) = max ( - |) 3)

"o =-%).(yi-vy
Correlation Coefficient : d(x,y) = (i %)y~ Y) 4)

\/anzl (5 =D)LL (- 9)?
We carry out another statistical analysis in order to show the difference between the fingerprint,
iris, and pill image samples. Using this analysis, we can determine the extensibility of our system in
recognizing different types of images as well as in defending in front of their adversarial versions.
In other words, if there is a unique pattern and similarity among the images used in our experiment,
then we cannot determine the system strength because it was successful only in recognizing a certain
pattern of data and injections of perturbations inside that specific pattern. In this regard, we run
correlation analyses on the iris, fingerprint, and pill image datasets, shown in Figure 4. As it can be seen
from the plots in this figure, the correlation coefficients among these images is low enough (below 0.5)
to determine that they are not related. In fact, we can say the patterns of iris, fingerprint, and pill
are not related. Therefore, it can be said that if our proposing defense system demonstrates perfect
performance in recognition and adversarial detection for each of these type of data separately, then
the system is extensible and can show a strong performance in recognizing other types of data and
detection of adversarial examples for that dataset.
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Figure 4. The analysrs of similarities among the images of fingerprint, iris, and pill datasets.
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Table 1. The average of distance measures between the original images, perturbed images from biometric, and pill image datasets.

8of17

Type of Distance Euclidean Manhattan Chebyshev Correlation Coefficient
Type of Data Fingerprint Iris Pill Fingerprint Iris Pill Fingerprint Iris Pill Fingerprint Iris Pill
FGSM 0.12 0.01 0.10 0.37 0.08 0.24 0.11 0.05 0.10 0.99 0.50 0.33
Typeof  JSMA  186x107* 815x107° 652x107° 4.88x10™* 220x10* 163x107* 855x107° 3.05x107° 3.26x107° 1.0 0.50 0.33
Attack DeepFool 0.08 0.01 0.05 0.21 0.05 0.11 0.06 0.01 0.04 1.00 0.50 0.33
C&W 0.02 0.01 0.05 0.11 0.05 0.11 0.01 0.001 0.04 1.00 0.50 0.33
PGD 0.11 0.01 0.10 0.38 0.10 0.28 0.10 0.01 0.10 0.99 0.49 0.31
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3.3. Noise Training

One of the methods in improving the system performance is the addition of noise to the input
data of a neural network when it is under training. It has been shown that training a network with
noise can be realized as a form of regularization according to which an extra term is added to the error
function. The process is performed based upon mixing the noise segments with the original training
data [37-39]. The types of noise employed in our work are additive white Gaussian noise (AWGN),
motion blur, reduced contrast enhanced AWGN, and Perlin noise. The noisy data helps us learn more
information and features that can make the network more knowledgeable to distinguish the difference
between clean, adversarial, and noisy data. In fact, its randomness and diversity can be the reason it
can detect samples from unknown and unseen attacks.

3.4. Shallow-Deep CNN-Based System Architecture

The authors in Reference [40] proposed a system architecture for the diagnosis of breast cancer
according to which the relationships between low energy and recombined images will be discovered.
The architecture is capable of applying full field digital mammography for rendering “virtual”
recombined images. The classification models have the functionality of performing diagnoses. In simple
words, the shallow CNN has the duty of “image reconstruction”, and the deep CNN has the duty
of “feature extraction”. Considering two parallel paths of (a) entering images to a shallow CNN for
image reconstruction and giving the output to a deep CNN for feature extraction and (b) using a
deep CNN for feature extraction, the features from these paths are combined before determination
of the “benign” and the “cancer” image samples. We use a similar idea in our work with the goal
strengthening detection of adversarial examples.

We use a similar architecture in the domain of adversarial examples detection—a deep neural
network for detection of the adversarial examples generated by the shallow neural network. The concept
of Razor is that the supply voltage is tuned for monitoring the error rate during operation [41]. The error
detection provides in situ monitoring of the actual circuit delay. This technique relies on a mixture
of architectural and circuit level techniques for efficient and effective error detection and correction
of delay path failures. This concept can be practically described as augmenting each flip-flop with
a so-called shadow latch or Razor latch, controlled by a delayed clock. The Razor latch corrects any
error in operation of the main flip-flop since it holds the correct data. According to this concept, we
can call the deep neural network RazorNet in our system architecture and it has the duty of detecting
error/adversarial samples generated by the shallow neural network.

4. Proposed System and Methodology

We propose a system for the detection of adversarial samples based on three main ideas of (a)
shallow-deep system architecture; (b) transfer learning; and (c) adversarial and noisy data training.
Two other ideas that can be incorporated into this architecture are retraining on the existing and
the future adversarial and noisy data as well as running noise removal techniques on the testing
data. The generated adversarial samples along with clean data as well as the noisy data samples will
be given to deep CNN for detecting malicious activities. The deep neural network has the duty of
understanding those adversarial data.

The architecture of our system is shown in Figure 5. This architecture consists of a generator (fgen)
and a detector (fge). feen has the duty of generating data with adversarial features and gets normal
data as its input. f4; has the duty of detecting new data with adversarial features and gets normal
data, adversarial data, and noisy data as its inputs. Therefore, we have a hybrid training set for the
detector. This can be formulated as Dyrs = {(XNmmul, Ynormal), (Xado, Y adv.) (XNm-sy, YNm-Sy)}. They
have different parameters and layers for feature extraction and training in way f;,; operates stronger
than fee,. The detected adversarial data can be fed back to the deep neural network for retraining
that causes better classification accuracy. Based on the concept of Razor latch discussed earlier, the
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deep neural network is defined as a Razor neural network (or RazorNet), which has the function of
detecting the errors generated by the shallow neural network.

Attacking Engine for
Adversarial Samples
(FGSM, JSMA, DeepFool, CW, and PGD)

!

Attack Phase

Dataset of Clean Data Samples Convolution Layer Convolution Layer Maximum Pooling Layer

T

—( ) D™
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) 4
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"/(-\ m f\\“- loYole ‘;

Dataset of Adversarial Data Samples 4
!

— 2w —{

“ENEDDEeL -

Dataset of Noisy Data Samples
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Dense Block 3
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!

/ (Convolution
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Figure 5. The architecture of our system (G+D Net) for detecting adversarial examples.

The original biometric data as well as the pill images are given to the shallow neural network.
The adversarial images generated from this network along with the dataset of clean data, adversarial
data, and noisy data samples are input to deep CNN for the detection of malicious patterns. The elements
in the architecture of shallow neural network are in the following order: (a) two-dimensional convolution
with the filter size of 64 and kernel size of 64; (b) two-dimensional convolution with the filter size of
64, padding of the same, and activation of the rectified linear unit (ReLU); (c) the two-dimensional
max pooling with pooling size of (2,2) and stride of 2; (d) two-dimensional convolution with the filter
size of 64 and kernel size of 64; (e) two-dimensional convolution with the filter size of 64, padding
of the same, and activation of the ReLU; (f) the two-dimensional max pooling with pooling size of
(2,2) and stride of 2; (g) flatten layer; (h) two fully connected layers, and (i) a dense layer with four
units and one unit for the biometric data (including the left and the right iris and fingerprint data
samples) and the pill image data respectively. The deep convolutional neural network is DensetNet
with the architecture of a convolution layer, a dense block 1, a convolution layer, a pooling layer, a
dense block 2, a convolution layer, a pooling layer, a dense block 3, a pooling layer, and a linear layer.
These architectures are summarized in Table 2.

The attacks used in this system are FGSM, JSMA, DeepFool, C&W, and PGD. These attacks try to
fool the network with the purpose of causing accuracy drop. The noisy data to be used in this system
are (a) additive white Gaussian noise, reduced contrast version of AWGN, and motion blur of the
noisy Bangla handwritten digit dataset [42] and (b) added Perlin noise to the CIFAR-10 and Center
for Biometrics and Chinese Academy of Sciences’ Institute of Automation (CASIA). The generated
samples from this network will construct the dataset of adversarial data samples. These samples along
with the noisy samples will be used to retrain the deep neural network.

Both the biometric data and the pharmaceutical data are split into the training and the testing
sets. This means the system is trained on the training sets and examined on the testing sets. In other
words, the system response beyond the training adversarial procedures determines the reported
system detection accuracy. Our number of samples for the original biometric data (including iris and
fingerprint) is equal to 6664. The ratios of training and testing are 0.8 and 0.2 for this dataset. From the
training part of the dataset, a ratio of 0.1 is chosen for validation part of the training. The attacked
version of this dataset by the well-known attacks of FGSM, JSMA, DeepFool, C&W, and PGD includes
33,320 image samples.
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Table 2. The architectures of the shallow neural network and deep neural network used in our system
of adversarial detection.

Shallow Neural Network Deep Neural Network
Convolution : Filter = 64; Kernel = (3,3); Same Padding Convolution : 7 X 7; Stride = 2
Convolution : Filter = 64; Kernel = (3,3); Same Padding Pooling Layer = 3 X 3; Stride = 2
. . . 1x1 Conv
Pooling Side = [2,2]; Stride = 2 Dense Block (1) = [ 3%3  Como ] 6
Convolution : Filter = 128; Kernel = (3,3); Same Padding 1 x 1 Convolution

Pooling Layer = 2 X 2; Stride = 2

Convolution : Filter = 128; Kernel = (3,3); Same Padding Dense Block (2) = Ix1 Cono 12
3x3 Conv
Max Pooling; Pooling Size (3,3) 1 x 1 Convolution
Flatten Layer Pooling Layer = 2 X 2; Stride = 2
1x1 Conv
Fully Connected Layer 1 Dense Block (3) = [ 3%3  Comv ] 32
Fully Connected Layer 2 1 x 1 Convolution
Dense Units = 1/4 Pooling Layer = 2 X 2; Stride = 2
1x1 Conv
Softmax Dense Block (4) = 3%3  Conv ] 32

Pooling Layer =7 X7

Softmax

The pharmaceutical dataset specifically for pill image data is divided into the training and the
testing records, each containing 7291 and 800 number of images respectively. The attacked version
of these records includes 36,455 and 4000 images, respectively. Our noisy Bangla handwritten digit
dataset has 197,889 for each type of noise, including AWGN, motion blur, and reduced contrast and
AWGN. Our Perlin dataset comprises 100,000 items (including both CIFAR-10 and CASIA data samples).
The retrained network will be able to detect the adversarial examples. The system can be set adaptive in
order to adjust its security level for (a) clean data; (b) adversarial data; (c) noisy data; and (d) altogether
in different phases in order to adjust itself with respect to the strength of the fooling attacks. In other
words, only one case of defense is used if the attack is not strong enough. On the other hand, all cases of
the attack can be used if the attack is strong enough to fool the neural network. The Algorithm 1 is
shown below.

Algorithm 1: The protocol and overall scheme of the system of shallow-deep neural network architecture,
adversarial training, and transfer learning in detection of adversarial perturbations.

01: Input: Dataset of clean data samples (X), dataset of noisy data samples (Y), weights from Imagenet (W),
shallow neural network model (SM), and deep neural network model (DM)

02: Output: Detection of adversarial samples

03: K < AdversarialSampleGenerator(X, SM)

04: AdversarialSampleDetection < AdversarialSampleDetector(X, Y, W, K, DM)

5. Experimental Results and Evaluation

In order to evaluate the effectiveness of our architectural model, we used two datasets of CASIA
biometric data and 1k Pharmaceutical Pill Image Dataset [43—45]. The real biometric data are chosen
from the biometric dataset, and all images of the pill image dataset are used as the clean data. For all
these data, their adversarial versions are generated using the attacking engine (which includes FGSM,
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JSMA, DeepFool, C&W, and PGD attack functions). Before inputting the adversarial data into the deep
neural network, we provide ImageNet weights to the network. This provides an initial knowledge
to the network. Besides the adversarial data, the noisy data (AWGN, motion blur, reduced AWGN,
and Perlin) are given to the neural network to further augment its understanding and make it capable
of distinguishing the clean, adversarial, and noisy data. As it was mentioned earlier, the noisy data
can strengthen RazorNet to possibly detect samples from unseen and unknown adversarial attacks.
In fact, the network is retrained in this step due to the given weights to the network. The images are all
resized with the shape of 32 X 32 x 3 (width X height x channel).

The library used in the implementation of our system is the Keras machine learning library. Also,
we used Scikit-learn for getting the performance parameters. The deep neural network is pretrained with
ImageNet weights and retrained on the adversarial and the noisy data only once [46]. The retraining
has been done for five epochs with the shuffled data. The optimizer employed in our experiment is
stochastic gradient descent (SGD) [47]. The learning rate is 0.01, the decay is 107, and the momentum
is 0.9.

According to the simulation results on the biometric data, the system is capable of detecting the
adversarial data with 80.65% accuracy when the adversarial data are given into the network and it
goes up to 93.4% when both adversarial data and clean data are given into the network. For the pill
image data, the system accuracy is improved from 34.55% to 96.03% when the adversarial data is input
to the network and from 96.03% to 98.20% when the adversarial data as well as the noisy data are input
to the network. In order to make sure that the results are generalizable, we performed five rounds of
simulation. According to the simulation results, the system performs completely the same in these
runs. Applying the Friedman test on the system outputs will acknowledge this statement. Having
this amount of improvement in the results is not out of sight due to the presence of multiple effective
components (i.e., adversarial training, noise training, transfer learning, and stronger detection network
in terms of the number of layers) in our system. Another reason for the quality of our system is its
excellent operation on the datasets from two different domains. In fact, there is no similarity between
the biometric and pill image data. Having high performance on these unrelated datasets proves the
strength and generalizability of our defense strategy. Meanwhile, the defense system is extensible to
other types of data based on the discussion that was provided earlier regarding independency of iris,
fingerprint, and pill image data from each other.

The results from examining our system along with other systems for comparison are shown in
Table 3. The proposed system can be further improved when we retrain the neural network using the
existing and future adversarial and noisy data. for example, retraining the RazorNet using the samples
from the obfuscated gradient, one-pixel, and universal perturbation attacks. Other types of noise to be
included during training can be brown noise, salt and pepper noise, black noise, and Cauchy noise.
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Table 3. The results of our system in detecting adversarial examples (samples).

System Detection System Detection

Dataset Accuracy on Accuracy on Attacked System Detection Accuracy on Attacked Data
Clean Data Data Without Defense
Ours - Biometric  Chinese Academy of Sciences’ Institute of . . N dClean I?alt?:) + CIE?:;I Data + Ad\grsarial
Dataset Automation (CASIA) Dataset—Images of 90.58% 1.31% versarial Data ata + Noisy Data
iris and fingerprint data 80.65% 93.4%
Icrggsé [I;:i::e"t Pillbox Dataset—Images of pill 99.92% 34.55% 96.03% 98.20%
[48] CIFAR 92% 10% 86%
[49] MNIST N/A 19.39% 75.95%
[49] CIFAR N/A 8.57% 71.38%
[50]—ResNet MNIST 88% 0% (Strongest Attack) 83% (Strongest Attack)
[50]—VGG MNIST 89% 36% (Strongest Attack) 85% (Strongest Attack)
[50]—ResNet CIFAR 85% 7% (Strongest Attack) 71% (Strongest Attack)
[50]—VGG CIFAR 82% 37% (Strongest Attack) 80% (Strongest Attack)
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6. Limitations and Future Work

While initial experiments and simulations offer a very promising defense system for adversarial
example generation, this architecture may be vulnerable due to a number of reasons: (a) the emergence
of new threats for fooling a neural network can break this system via an obfuscated gradient or one-pixel
attack. In fact, when a new type of attack is introduced, this system may not be effective due to lack
of knowledge for that specific adversarial data. We can tackle this issue by periodically updating the
RazorNet. Meanwhile, training RazorNet on the existing and the future noisy data may reinforce the
system to detect samples from unknown and unseen adversarial attacks. (b) Considering only one
adversarial data generator network (fgen) for the generation of adversarial samples: This is not sufficient
in real-world applications, and it is more potent to include diverse types of network models. It means
including multiple (N) adversarial data generator networks with different architectures in our system.
Figure 6 shows the system of NG+D Net. (c) For higher levels of extensibility of our system, it is
beneficial to engage datasets from different domains and to pretrain the detector with diverse types
of weights. (d) In order to increase the knowledgeability of our detector, various types of noise and
perturbations can be injected into the selected datasets and can perform noise training on the D-Net.
Another possibility for extending this work is employing advanced image processing methods for noise
removal into our system architecture to overcome the threats of adversarial examples, especially the
ones belonging to unknown and unseen attacks. At last, some of the emerging recognition system
architectures can be examined in the domain of securing neural networks, namely bilinear CNN [51],
gated Siamese CNN architecture [52], HyperFace [53], and EndoNet [54].
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(Obfuscated Gradient, One-Pixel,

Universal Perturbation, and etc.)

(e 6 ) B G

Dataset of Clean Data Samples
e ————

P |
HEeke &
BIS% %

D-Net

Datasets of Adversarial Data Samples d
/
m "
- H
i
\
N

[EIII@&
% » EENE

Dataset of Noisy Data Samples
(AWGN + ReducedContrastAWGN + Perlin + MotionBlur)

Dense Block 2

Convolutional Neural Network

N
Dense Block 3 5 Detection of
(w H Adversarial Samples

Pooling Layer|
Pooling Layer|
Pooling Layer|

¢ (Convolution) %
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Figure 6. The diagram of the NG+D Net system for detecting adversarial examples.

7. Conclusions

In this work, we propose a defense system called ShallowDeepNet (or G+D Net) that is able to
resist in confronting adversarial attacks. The proposed system includes a shallow neural network and
a deep neural network. The shallow neural network is responsible for executing the data preprocessing
tasks, while the deep neural network (known as RazorNet) needs to perform the main data processing.
The data preprocessing is defined as the generation of the adversarial examples (or error-contained
data). It is done through fooling a shallow neural network coupled with an attacking engine that
includes certain well-known attacks, namely FGSM, JSMA, DeepFool, C&W, and PGD. The generated
adversarial examples from this engine are used in retraining the pretrained RazorNet. Inclusion of
multiple elements into our system, namely detector neural network, transfer learning, adversarial
training, and noise training, makes this system strong and robust enough to recognize and detect
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clean and malicious data from different domains. The simulation results from running the biometric
(fingerprint and iris) and the pill image data on this system proves its capability in detecting the
malicious versions of these data with accuracies of 93.4% and 98.20% respectively.
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