
big data and 
cognitive computing

Article

InfoFlow: A Distributed Algorithm to Detect
Communities According to the Map Equation

Park K. Fung

Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, NY 11203,
USA; fylixeoi@gmail.com

Received: 25 April 2019; Accepted: 18 July 2019; Published: 22 July 2019
����������
�������

Abstract: Formidably sized networks are becoming more and more common, including in social
sciences, biology, neuroscience, and the technology space. Many network sizes are expected to
challenge the storage capability of a single physical computer. Here, we take two approaches to
handle big networks: first, we look at how big data technology and distributed computing is an
exciting approach to big data storage and processing. Second, most networks can be partitioned
or labeled into communities, clusters, or modules, thus capturing the crux of the network while
reducing detailed information, through the class of algorithms known as community detection. In this
paper, we combine these two approaches, developing a distributed community detection algorithm to
handle big networks. In particular, the map equation provides a way to identify network communities
according to the information flow between nodes, where InfoMap is a greedy algorithm that uses
the map equation. We develop discrete mathematics to adapt InfoMap into a distributed computing
framework and then further develop the mathematics for a greedy algorithm, InfoFlow, which has
logarithmic time complexity, compared to the linear complexity in InfoMap. Benchmark results
of graphs up to millions of nodes and hundreds of millions of edges confirm the time complexity
improvement, while maintaining community accuracy. Thus, we develop a map equation based
community detection algorithm suitable for big network data processing.

Keywords: graph; community detection; big data

1. Introduction

Formidably sized networks are becoming more and more common, including in social sciences,
biology, neuroscience, and the technology space, where the number of nodes and edges may exceed
millions or billions. In such cases, the sheer size of the network presents challenges in the processing,
visualizing, understanding, or even storing the network [1–3].

When the network data exceeds the memory or disk storage capacity of a single computer, big
data technology, including distributed filesystems and distributed processing techniques, can be used
to store and process the data [1–3]. The caveat with big data technology is that parallel algorithms
have to be designed and implemented in place of the original, serial algorithms [4].

Whilst big data technology provides a means to network storage and processing, for visualization
and analytical purposes, smaller sized networks are much favored. Thus, coarse-grained representations
of the big networks that preserve important network properties is paramount. For instance, many
social systems show homophily in their network representations: nodes with similar properties
tend to form highly connected groups called communities, clusters, or modules. Community
detection algorithms [5–10] have been an active area of research, with ample algorithms to identify
network communities.

Different approaches to community detection exists [5–10]. A more statistically oriented approach
is the clustering approach, where sets of points (nodes in the graph; edges information tend not to be
used) are categorized into groups called clusters, based on distance or density distributions in the state

Big Data Cogn. Comput. 2019, 3, 42; doi:10.3390/bdcc3030042 www.mdpi.com/journal/bdcc

http://www.mdpi.com/journal/bdcc
http://www.mdpi.com
http://www.mdpi.com/2504-2289/3/3/42?type=check_update&version=1
http://dx.doi.org/10.3390/bdcc3030042
http://www.mdpi.com/journal/bdcc


Big Data Cogn. Comput. 2019, 3, 42 2 of 11

space [11]. One popular algorithm is the k-means cluster algorithm, where each point is iteratively
assigned to the cluster with the nearest arithmetic mean [11].

When graph edges are considered, community detection algorithms often have an implicit
heuristic intra-community, wherein connections are more abundant than inter-community ones. Thus,
the most popular approach is based on maximizing some measures of modularity that quantify the ratio
of intra- and inter-community edges, relative to a random network, such as the Louvain algorithm [12].
However, such approaches suffer from problems of the “resolution limit”, where communities that
should be distinct are merged into a bigger community [13].

Another approach is the information theoretic approach, where we interpret the edges of the
network as transportation or flow between nodes. The map equation [14] provides an associated
information cost for describing the movements within the network, given a community partitioning. If
a network has regions in which a PageRank random surfer tends to stay for a long time, minimizing
the cost of movement as described by the map equation would identify such regions as communities.
Thus, this approach takes advantage of the duality between finding community structure in networks
and minimizing the description length of a random surfer′s movements on a network. Compared
to the modularity approach, which tends to view graph edges as structural connections, and where
the detected communities reflect how the network formed, the information theoretic approach sees
graph edges as flow, and detects communities reflect network dynamics [7]. In particular, the InfoMap
algorithm [15] is a greedy algorithm that uses the map equation to partition a network into communities,
performing well on both synthetic benchmarks and real networks [7]. Further, it does not suffer from
any resolution limit problems [16]. It is undergoing active research with successful extensions to
include those to capture higher-order flow, capturing time-dependent networks [17], overlapping
communities [18], and multi-level communities [19].

In this paper, we adapt InfoMap into a distributed algorithm, given its strength in capturing
network dynamics, and numerous extension possibilities. Similar projects exist to parallelize
InfoMap [20–23], usually involving parallelizing a certain subset of the serial algorithm, with further
assumptions of thread-locking or graph locality on top of InfoMap. In this paper, we propose two
advancements: first, we develop discrete mathematics to adapt InfoMap into distributed computing
framework. This is distinct from other existing works, since the entire algorithm and all data structures
are parallelized and distributed, while keeping the algorithm identical to the serial InfoMap. Second,
we further develop the mathematics for a greedy algorithm, InfoFlow, which has logarithmic time
complexity, compared to the linear complexity in InfoMap. Benchmark results of graphs of up to
millions of nodes and hundreds of millions of edges confirm the time complexity improvement, while
maintaining community accuracy. Thus, we develop a map equation based community detection
algorithm suitable for big network data processing.

This paper is structured as follows: In Section 2, we adapt InfoMap into a distributed computing
framework, and develop the InfoFlow distributed algorithm. In Section 3, we perform benchmark and
review results. In Section 4, we summarize and discuss future directions.

2. Methodology

In this paper, we build on top of the map equation and InfoMap to found the distributed algorithm
InfoFlow, which has improved runtime complexity and can be easily deployed and applied to big
datasets. We quickly present the map equation in Section 2.1 for easy reference. Then, we develop
the discrete mathematics in Section 2.2, which allow InfoMap to be adapted to distributed computing
framework. In Section 2.3, we further develop the discrete math for the InfoFlow algorithm, which
has logarithmic time complexity, as compared to the linear time complexity in InfoMap. In Section 3,
I perform benchmarking for the two algorithms.

2.1. The Map Equation
For a given network partition, the map Equation [14] specifies the theoretical limit of how concisely

we can describe the trajectory of a PageRank random surfer on the network. The underlying code



Big Data Cogn. Comput. 2019, 3, 42 3 of 11

structure of the map equation is designed such that the description can be compressed if the network
has regions in which the random walker tends to stay for a long time.

Given a network with n nodes indexed in Greek alphabets, we first perform PageRank analysis.
The edges in the network will be interpreted as the transition probability, so that given an edge from
node α to node β, with weight ωαβ, a PageRank random surfer has probability proportional to the
edge weight to transit from node α to node β, not accounting teleportation probability yet. Since the
edges signify transition probability, the edge weights are normalized with respect to the outgoing
node, so that: ∑

α

ωαβ = 1

then, each node will be associated with its ergodic frequency pα.
The map Equation [14] specifies that, if we partition the network nodes into modules, where

each module is indexed with Latin alphabets, then the network will have an information entropy, or
codelength, associated with its PageRank random walk:

L = plogp

∑
i

qi

− 2
∑

i

plogp(qi) −
∑
α

plogp(pα) (1)

where:
plogp(x) = x log2 x (2)

pi is the ergodic frequency of the module. This is simply the sum of the ergodic frequencies of the
nodes within the module:

pi =
∑
α∈i

pα (3)

and qi is the probability of exiting the module, accounting for PageRank teleportation:

qi = τ
n− ni
n− 1

pi + (1− τ)
∑
α∈i

∑
β<i

pαωαβ (4)

ni being the number of nodes within module i, and τ is the probability of PageRank teleportation.

2.2. InfoMap
Here, we develop mathematics to construct pi and qi, the ergodic frequency, and the exit probability

of each module, thereby allowing calculation of Equation (1). In particular, the InfoMap algorithm [15]
starts by having each node being its own module, and then in each iteration, merge two modules into
one to reduce codelength. We develop maths to construct pi and qi, by providing formulae for the
quantities in the merged module based on those in the two modules to be merged.

We can rewrite Equation (4) as:

qi = τ
n− ni
n− 1

pi + (1− τ)wi (5)

with:
wi =

∑
α∈i

∑
β<i

pαωαβ (6)

being the exit probability without teleportation.
We can define a similar quantity, the transition probability without teleportation from module j to

module k:
w jk =

∑
α∈ j

∑
β∈k

pαωαβ (7)



Big Data Cogn. Comput. 2019, 3, 42 4 of 11

Now, if we merge modules j and k into a new module with index i, the exit probability would be
follow Equation (5) with:

ni = n j + nk (8)

pi = p j + pk (9)

and the exit probability without teleportation can be calculated via:

wi =
∑
α∈i

∑
β<i

pαωαβ (10)

=
∑

α∈i or α∈k

∑
β<i and β<k

pαωαβ (11)

=
∑
α∈ j

∑
β<i and β<k

pαωαβ +
∑
α∈k

∑
β<i and β<k

pαωαβ (12)

since we are looking at the exit probability of a module, there are no self-connections within modules,
so that the specification of pα ωαβ given α ∈ i, β < i is redundant. Then we have:

ωi =
∑
α∈ j

∑
β<k

pαωαβ +
∑
α∈k

∑
β< j

pαωαβ (13)

which conforms with intuition, that the exit probability without teleportation of the new module is
equal to the exit probability of all nodes without counting for the connections from j to k, or from k to j.

We can further simplify the math’s by expanding the non-inclusive set specification:

ωi =
∑
α∈ j

∑
β

pαωαβ −
∑
β∈k

pαωαβ

+ ∑
α∈k

∑
β

pαωαβ −
∑
β∈ j

pαωαβ

 (14)

Expanding gives:

ωi =
∑
α∈ j

∑
β

pαωαβ −
∑
α∈ j

∑
β∈k

pαωαβ +
∑
α∈k

∑
β

pαωαβ −
∑
α∈k

∑
β∈ j

pαωαβ (15)

which by definition is:
ωi = ω j − ω jk + ωk + ωkj (16)

So that now, we can calculate ωi and by Equation (5) we can calculate qi.
We can do similar for ωil, if we merged modules j and k into i, and l is some other module:

wil =
∑
α∈i

∑
β∈l

pαωαβ (17)

=
∑

α∈ j or αεk

∑
β∈l

pαωαβ (18)

=
∑
α∈ j

∑
β∈l

pαωαβ +
∑
α∈k

∑
β∈l

pαωαβ (19)

= ω jl + ωkl (20)

and similarly for ωli:
ωli = ωl j + ωlk (21)



Big Data Cogn. Comput. 2019, 3, 42 5 of 11

With these calculations, we are able to construct the modular properties after each pair-wise
merging, where the relevant properties include ni, pi, wi, and wij. We can forget about the actual nodal
properties; after each merge, we only need to keep track of modular properties.

Now, we can implement the InfoMap algorithm, where initially each node is its own module, and
then in each iteration, we merge the two modules that offer the greatest reduction in codelength, with
the new module having modular properties according to Equations (8), (9), (16), (5), (20), and (21). The
algorithm terminates when no more merges are possible to reduce codelength. Since the maximum
number of merges is e − 1 merges, where e is the number of edges in the network, the number of
merges have complexity O(e). A graphical illustration of the InfoMap algorithm is shown in Figure 1.

Big Data Cogn. Comput. 2019, 3, x FOR PEER REVIEW 5 of 12 

 

𝝎𝒍𝒊 =  𝝎𝒍𝒋 + 𝝎𝒍𝒌 (21) 

With these calculations, we are able to construct the modular properties after each pair-wise 
merging, where the relevant properties include ni, pi, wi, and wij. We can forget about the actual nodal 
properties; after each merge, we only need to keep track of modular properties. 

Now, we can implement the InfoMap algorithm, where initially each node is its own module, 
and then in each iteration, we merge the two modules that offer the greatest reduction in codelength, 
with the new module having modular properties according to Equations (8), (9), (16), (5), (20), and 
(21). The algorithm terminates when no more merges are possible to reduce codelength. Since the 
maximum number of merges is e − 1 merges, where e is the number of edges in the network, the 
number of merges have complexity O(e). A graphical illustration of the InfoMap algorithm is shown 
in Figure 1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

(e) (f) 

 
(g) 

 

Figure 1. Graph with 25 nodes as visual illustration of InfoMap algorithm. Each node is labeled with a
node number for reference and is colored according to its assigned community. We show the first four
merges, and last two merges according to the InfoMap algorithm. In each step, two communities are
merged into one. There are 21 merges in total. For brevity, only the first four and last two merges are
shown. (a) In the initial graph, each node is its own module; (b) nodes 23 and 24 are merged; (c) node
22 is merged with module 23–24; (d) nodes 17 and 19 are merged; (e) node 25 is merged with module
22–23–24; (f,g) for brevity, we skip to the last two merges, where we are left with a final partitioning of
four communities.



Big Data Cogn. Comput. 2019, 3, 42 6 of 11

2.3. InfoFlow

InfoMap merges two modules on each iteration, giving O(e) loops. One obvious improvement
possibility is to perform multiple merges per loop. However, this idea is not compatible with the idea
of performing pair-wise merges, unless we can make sure no module is involved with more than one
merge at once.

Here, rather than focusing on making sure that no module is involved with more than one merge
at once, we can explore the idea of merging multiple modules at once. Thus, we can perform parallel
merges in the same loop iteration, where possibly all modules are involved in some merge.

Consider multiple modules ~Mi merging into a module M. Another way to express this equivalently
is to say that a module M is partitioned into i non-overlapping subsets:

M =
∑

i

Mi (22)

Then we can expand the nodal sum over module M into the sum over all nodes in all submodules
Mi, the exit probability of the merged module M becomes:

ωM =
∑
Mi

∑
α∈Mi

∑
β<M

pαωαβ (23)

=
∑
Mi

∑
α∈Mi

∑
β

pαωαβ −
∑
β∈M

pαωαβ

 (24)

=
∑
Mi

∑
α∈Mi

∑
β

pαωαβ −
∑
Mi

∑
α∈Mi

∑
β∈Mi

pαωαβ (25)

=
∑
Mi

∑
α∈Mi

∑
β

pαωαβ −
∑
Mi

∑
α∈Mi

∑
M j

∑
β∈M j

pαωαβ (26)

where we expand the second term with respect to the M j
′s to give:

ωM =
∑
Mi

∑
α∈Mi

∑
β

pαωαβ −
∑
Mi

∑
α∈Mi

∑
M j,Mi

∑
β∈M j

pαωαβ −
∑
Mi

∑
α∈Mi

∑
β∈Mii

pαωαβ (27)

Combining the first and third terms,

ωM =
∑
Mi

∑
α∈Mi

∑
β<Mi

pαωαβ −
∑
Mi

∑
α∈Mi

∑
M j,Mi

∑
β∈M j

pαωαβ (28)

which we can recognize as:
ωM =

∑
Mi

ωMi −

∑
Mi

∑
M j,Mi

ωMiM j (29)

ωMi =
∑
α∈Mi

∑
β<Mi

pαωαβ (30)

ωMiM j =
∑
α∈Mi

∑
β∈M j

pαωαβ (31)



Big Data Cogn. Comput. 2019, 3, 42 7 of 11

where we can immediately see that Equation (29) is a linear generalization of Equation (16), while
Equations (30) and (31) are identical to previous definitions, and may be calculated iteratively as the
previous algorithm. We can calculate ωMiM j by expanding on the partitioning:

ωMiM j =
∑

Mk∈Mi

∑
α∈Mk

∑
Mk′∈M j

∑
β∈Mk′

pαωαβ (32)

=
∑

Mk∈Mi

∑
Mk′∈M j

ωMkMk′ (33)

so that when we merge a number of modules together, we can calculate its connections with other
modules by aggregating the existing modular connections. This is directly analogous to Equation (20).

Thus, the mathematical properties of merging multiple modules into one are identical to that of
merging two modules. This is key to developing my multi-merge algorithm, InfoFlow.

As InfoMap, each node is initially its own module. During each iteration, each module seeks to
merge with a connected module that offers the greatest reduction in codelength, if only the merging of
the two modules are considered. If no such merge exists, the module does not seek to merge. Then, the
weakly connected modular components connected via the merge seeking are merged into one module,
according to Equations (29) and (33). This is repeated seek-merging and bulk-merging is iterated until
the codelength cannot be reduced. A graphical illustration of InfoFlow is shown in Figure 2.

Big Data Cogn. Comput. 2019, 3, x FOR PEER REVIEW 7 of 12 

 

𝝎𝑴𝒊𝑴𝒋 =  𝒑𝜶𝝎𝜶𝜷𝜷∈𝑴𝒋𝜶∈𝑴𝒊  (31) 

where we can immediately see that Equation (29) is a linear generalization of Equation (16), while 
Equation (30) and (31) are identical to previous definitions, and may be calculated iteratively as the 
previous algorithm. We can calculate 𝝎𝑴𝒊𝑴𝒋 by expanding on the partitioning: 𝝎𝑴𝒊𝑴𝒋 =  𝒑𝜶𝝎𝜶𝜷𝜷∈𝑴𝒌𝑴𝒌 ∈𝑴𝒋𝜶∈𝑴𝒌𝑴𝒌∈𝑴𝒊  (32) 

=  𝝎𝑴𝒌𝑴𝒌𝑴𝒌 ∈𝑴𝒋𝑴𝒌∈𝑴𝒊  (33) 

so that when we merge a number of modules together, we can calculate its connections with other 
modules by aggregating the existing modular connections. This is directly analogous to Equation 
(20). 

Thus, the mathematical properties of merging multiple modules into one are identical to that of 
merging two modules. This is key to developing my multi-merge algorithm, InfoFlow. 

As InfoMap, each node is initially its own module. During each iteration, each module seeks to 
merge with a connected module that offers the greatest reduction in codelength, if only the merging 
of the two modules are considered. If no such merge exists, the module does not seek to merge. Then, 
the weakly connected modular components connected via the merge seeking are merged into one 
module, according to Equations (29) and (33). This is repeated seek-merging and bulk-merging is 
iterated until the codelength cannot be reduced. A graphical illustration of InfoFlow is shown in 
Figure 2. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. The same 25-node graph, showing all merges according to the InfoFlow algorithm. There 
are totally 2 loops, compared to 21 in InfoMap. (a) The initial graph is shown for easy reference; (b) 
after one loop, the 25 communities are merged into 9, which is roughly the geometric mean between 
25 and 4; (c) The final partitioning is identical to that of InfoMap. 

Next, n nodes are partitioned into m final modules according to InfoFlow. If we assume in each 
loop, k modules merge into one on average, and that there are l loop, we have: 𝑛 𝑘 = 𝑚 (34) 

Figure 2. The same 25-node graph, showing all merges according to the InfoFlow algorithm. There are
totally 2 loops, compared to 21 in InfoMap. (a) The initial graph is shown for easy reference; (b) after
one loop, the 25 communities are merged into 9, which is roughly the geometric mean between 25 and
4; (c) The final partitioning is identical to that of InfoMap.

Next, n nodes are partitioned into m final modules according to InfoFlow. If we assume in each
loop, k modules merge into one on average, and that there are l loop, we have:

n k−l = m (34)

kl =
n
m

(35)

l = logk n− logk m (36)



Big Data Cogn. Comput. 2019, 3, 42 8 of 11

so that we have O(logk n) merges, while within each merge, there is O(k) time complexity related to the
connected component with O(k) modules. Thus, the overall average time complexity is O(k logk n).

The worst case complexity comes in two cases: first, when we degenerate into InfoMap, i.e., we
have O(e) loops, each loop we merge only two modules into one; second when l = 1 and k = n/m, and
the overall complexity is O(k) = O(n/m).

3. Simulation and Results

InfoMap and InfoFlow are implemented on Apache Spark [24] using the Scala language. The code,
which is open source and can be accessed online [25] is set up and run on a local desktop computer, the
Dell Precision T3610, running Windows 7 Professional. For easy referencing, the specifications for the
computer is Intel Xeon CPU E5-1620 v2 @3.70 GHz 3.70 GHz, with 64 Gb RAM. Apache Spark 2.1.1
and Hadoop 2.7 are used. When possible, RAM disk was used to speed up simulations.

First, we ran real world data of small to moderately sized graphs from [26–28], with both InfoMap
and InfoFlow, and compared the runtime performance and resultant communities. The results are
tabulated in Table 1, listing the nodes and edges of the graph, the number of loops ran before the
algorithms completed, the runtime (for the sake of comparison, common runtime between the two
algorithms, including initialization time and PageRank runtime, are not counted), and final partitioning
codelength. The normalized mutual information between the community partitioning’s given by the
two algorithms is also tabulated.

Table 1. Benchmarking results for InfoMap and InfoFlow, for datasets of various size, on the Dell
Precision T3610. To aid comparison we do not include common performance runtime, including file
reading time and PageRank runtime from the table. Runtime in unit of seconds. In these test cases,
while runtime complexity is linear in the case of InfoMap, it is pseudo-constant in InfoFlow, while
keeping very high accuracy in the final partitioning, according to normalized mutual information
(NMI). The datasets are real world graphs taken from [26–28].

Nodes Edges InfoMap InfoFlow
Normalized

Mutual
Information

Loops Time Codelength Loops Time Codelength

396 994 90 7 3.449 2 3 3.875 94%
674 613 325 16 3.380 2 3 3.408 99%
1059 4919 568 53 5.617 2 6 6.206 86%
1490 19,090 1006 86 7.786 3 6 8.044 85%
2114 2277 1082 72 4.532 2 4 4.862 95%
3084 10,413 1763 193 6.041 3 8 6.748 87%
4470 12,731 1915 232 4.780 3 7 5.042 95%
4941 13,188 4449 423 6.953 3 7 7.204 90%
6752 54,233 4661 1057 7.291 4 10 7.811 85%
7343 11,898 4133 422 4.897 3 8 5.011 100%
8843 41,601 4741 997 6.285 4 13 6.752 92%

10,617 72,168 4571 1194 7.206 3 9 7.354 95%
13,308 148,035 10,298 3623 9.013 1 10 9.395 82%
13,356 120,238 12,642 3492 9.968 3 11 10.78 76%
23,219 325,593 7803 7120 8.231 3 16 8.419 95%
27,770 352,807 25,166 12,352 9.823 4 25 10.47 74%

We see that, for InfoMap, the number of loops and runtime follow a linear complexity relationship
with the size of the graph, while the number of loops in InfoFlow is kept within 4, and the runtime
within 30 s, so that a pseudo-constant, or logarithmic complexity relationship with the size of the graph,
along the estimation of Equation (36), is confirmed. As a solid example of the speedup in InfoFlow, for
the graph with 27,770 nodes and 352,807 edges, there are 1000 times less loops in InfoFlow, and the
runtime is nearly 3.5 h for InfoMap, and 25 s for InfoFlow, representing nearly a 500-time speedup.



Big Data Cogn. Comput. 2019, 3, 42 9 of 11

As analyzed in Equations (34)–(36), this speedup in runtime and complexity is a direct consequence
of going from pair-wise merge in InfoMap to the multi-merging in InfoFlow. In terms of partitioning
accuracy, it might be a concern whether the bulk-merging of InfoFlow might sacrifice partitioning
accuracy. From the results of Table 1, we see that the codelength difference between the two algorithms
are very similar, rarely exceeding a 5% difference. The normalized mutual information (NMI) is often
kept higher than 80%, so the accuracy in community detection is not compromised when going from
InfoMap to InfoFlow.

Having compared the runtime and accuracy between InfoMap and InfoFlow, we now apply
InfoFlow to bigger data, with graphs going up to millions of nodes and hundreds of millions of
edges [26–28], until the limit of the computing resource is challenged on the Dell Precision T3610. The
results of the simulations are tabulated in Table 2. We see that the number of loops is kept within 20,
so a pseudo-constant or logarithmic complexity is well followed, while the runtime is kept within a
few hours. The runtime does not follow any obvious relationship with the number of nodes or edges,
since the processing of the dataset challenges the limit of the computer, and complex performance
issues with memory caching and paging comes into play. Importantly, the runtime is in the same order
of magnitude with PageRank calculation time. Since the latter is a prerequisite for the map equation
approach, the benchmarking results indicate we have optimal runtime complexity within the map
equation approach to community detection.

Table 2. Benchmarking results for InfoFlow, on the Dell Precision T3610, for datasets that challenge
the limit the computer resource. The runtime for graph reading and PageRank calculations are listed
to add perspective on community detection speed. Importantly, the number of loops are very small,
indicating logarithmic complexity, and that the community detection runtime is on the same order of
magnitude as PageRank. Since the latter is a prerequisite for the map equation approach to community
detection, InfoFlow may have optimal runtime complexity for this class of algorithm. Runtime unit in
seconds. The datasets are real world graphs taken from [26–28].

Nodes Edges Read Time PageRank Time InfoFlow

Loops Time

50,515 819,306 6 33 7 63
82,670 133,445 3 36 4 68

325,729 1,497,134 9 138 8 420
281,903 2,312,497 20 160 5 1269
685,230 1,600,595 51 449 7 2618

1,632,803 30,622,564 239 1298 19 3816
3,744,768 16,518,948 139 497 11 3134
4,847,571 68,993,773 635 9531 20 21,540
9,845,725 57,156,537 574 9531 7 70,379

98,303 100,245,742 452 1183 1 1437
5,154,859 99,199,551 2079 13,531 8 9276

4. Conclusions

With a view of developing a distributed community detection algorithm, we developed discrete
mathematics on the map equation to provide formulae for the modular properties for merged pairwise
modules, which enabled the implementation of InfoMap algorithm on distributed computing. We then
generalized this from a pairwise merge to merging arbitrary number of modules, which prompted
the algorithm InfoFlow. Benchmarking results on an Apache Spark implementation confirmed that
the runtime complexity of InfoFlow had logarithmic runtime complexity, compared to the linear time
complexity of InfoMap, while retaining accuracy in the community results.

Similar projects to develop distributed community detection algorithms, in particular InfoMap,
exist [20–23]. These projects parallelize certain segments of the algorithm while keeping other segments
and data structures in serial, with assumptions on thread locking or graph locality. In contrast, in this



Big Data Cogn. Comput. 2019, 3, 42 10 of 11

paper, we developed discrete math to adapt InfoMap into distributed computing framework, while
keeping the algorithm identical, with no additional assumptions being made. In other words, we
developed the mathematical formulation that enables parallel and distributed computing, rather than
developing an inherently parallel algorithm. This is a significant development in InfoMap. InfoFlow
was built with only one additional development of multi-merging, as opposed to the pair-wise
merging in InfoMap. Benchmark results showed that this development improves runtime complexity
while retaining result accuracy. Thus, the mathematics is a significant contribution to the research in
InfoMap, which will be valuable future research in InfoMap extensions such as hierarchical structures,
overlapping structures, and higher-order Markov dynamics [17–19].

The coding implementation [25] is open source and implemented in Apache Spark, which is
actively maintained, with proven performance, reliability and scalability, with contributions from
companies such as Google, Facebook, and IBM [29]. It can be easily configured and deployed on
clusters and cloud platforms. This is in contrast to, for example, the implementation in [23], which
used the GraphLab PowerGraph library [30] which was not actively maintained. Another example
is [20], which used the Thrill library [31], which is still in the experimental phase. The choice of
distributed computing library framework, along with computational environment, is one of the
major factors affecting runtime, memory consumption and other performance metrics. Meanwhile,
algorithmic performance, which is agnostic to the coding implementation and library environment,
may be measured via theoretical space and time complexity, where the logarithmic runtime complexity
of InfoFlow shines.

Funding: This research received no external funding.

Acknowledgments: The author thank Meena Rajani and Martin Rosvall for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, C.L.P.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on
Big Data. Inf. Sci. 2014, 275, 314–347. [CrossRef]

2. Oussous, A.; Benjelloun, F.Z.; Lahcen, A.A.; Belfkih, S. Big Data technologies: A survey. J. King Saudi Univ.
Comput. Inf. Sci. 2018, 30, 431–448. [CrossRef]

3. Hashem, I.; Yaqoob, I.; Mokhtar, Y.A.S.; Gani, N.A.; Khan, S. The rise of “big data” on cloud computing:
Review and open research issues. Inf. Syst. 2015, 47, 98–115. [CrossRef]

4. Hwu, W.M. What is ahead for parallel computing. J. Parallel Distrib. Comput. 2014, 74, 2574–2581. [CrossRef]
5. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci.

USA 2002, 99, 7821–7826. [CrossRef] [PubMed]
6. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
7. Lancichinetti, A.; Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E 2009,

80, 056117. [CrossRef] [PubMed]
8. Aldecoa, R.; Marin, I. Exploring the limits of community detection strategies in complex networks. Sci. Rep.

2013, 3, 2216. [CrossRef]
9. Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44.

[CrossRef]
10. Javed, M.A.; Younis, M.S.; Latif, S.; Qadir, J.; Baig, A. Community detection in networks: A multidisciplinary

review. J. Netw. Comput. Appl. 2018, 108, 87–111. [CrossRef]
11. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Joo, E.M.; Weiping, D.; Chin-Teng, L.

A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]
12. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004,

69, 026113. [CrossRef] [PubMed]
13. Fortunato, S.; Barthelemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 2007, 104,

36–41. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.jksuci.2017.06.001
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1016/j.jpdc.2014.02.005
http://dx.doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://www.ncbi.nlm.nih.gov/pubmed/20365053
http://dx.doi.org/10.1038/srep02216
http://dx.doi.org/10.1016/j.physrep.2016.09.002
http://dx.doi.org/10.1016/j.jnca.2018.02.011
http://dx.doi.org/10.1016/j.neucom.2017.06.053
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://dx.doi.org/10.1073/pnas.0605965104
http://www.ncbi.nlm.nih.gov/pubmed/17190818


Big Data Cogn. Comput. 2019, 3, 42 11 of 11

14. Rosvall, M.; Axelsson, D.; Bergstrom, C.T. The map equation. Eur. Phys. J. Spec. Top. 2009, 178, 13–23.
[CrossRef]

15. Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure.
Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [CrossRef] [PubMed]

16. Kawamoto, T.; Rosvall, M. Estimating the resolution limit of the map equation in community detection.
Phys. Rev. E 2015, 91, 012809. [CrossRef] [PubMed]

17. Rosvall, M.; Bergstrom, C.T. Mapping change in large networks. PLoS ONE 2010, 5, e8694. [CrossRef]
18. Esquivel, A.V.; Rosvall, M. Compression of flow can reveal overlapping modular organization in networks.

Phys. Rev. X 2011, 1, 021025.
19. Rosvall, M.; Bergstrom, C.T. Multilevel compression of random walks on networks reveals hierarchical

organization in large integrated systems. PLoS ONE 2011, 6, e18209. [CrossRef]
20. Hamann, M.; Strasser, B.; Wagner, D.; Zetiz, T. Distributed Graph Clustering Using Modularity and Map

Equation. In Euro-Par 2018: Parallel Processing Page; Springer: Cham, Switzerland, 2018; pp. 688–702.
21. Bae, S.H.; Halperin, D.; West, J.D.; Rosvall, M.; Howe, B. Scalable Flow-Based Community Detection for

Large-Scale Network Analysis. In Proceedings of the 2013 IEEE 13th International Conference on Data
Mining Workshops, Dallas, TX, USA, 7–10 December 2013.

22. Bae, S.H.; Halperin, D.; West, J.D.; Rosvall, M.; Howe, B. Scalable and Efficient Flow-Based Community
Detection for Large-Scale Graph Analysis. ACM Trans. Knowl. Discov. Data 2017, 11, 32. [CrossRef]

23. Bae, S.H.; Howe, B. GossipMap: A Distributed Community Detection Algorithm for Billion-Edge Directed
Graphs. In Proceedings of the SC’15: International Conference for High Performance Computing, Networking,
Storage and Analysis, Austin, TX, USA, 15–20 November 2015.

24. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster Computing with Working
Sets. HotCloud 2010, 10, 95.

25. Fung, P.K. InfoFlow: An Apache Spark Implementation of the InfoMap Community Detection Algorithm.
Available online: https://github.com/felixfung/InfoFlow (accessed on 21 July 2019).

26. Batagelj, V.; Mrvar, A. Pajek Datasets. Available online: http://vlado.fmf.uni-lj.si/pub/networks/data/

(accessed on 21 July 2019).
27. Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. Available online:

http://snap.stanford.edu/data (accessed on 21 July 2019).
28. Davis, T.A.; Hu, Y. The university of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 2011,

38, 1. [CrossRef]
29. Apache Software Foundation. Apache Spark Committers. Available online: https://spark.apache.org/

committers.html (accessed on 21 July 2019).
30. Gonzalez, J.E. GraphLab PowerGraph. Available online: https://github.com/jegonzal/PowerGraph (accessed

on 21 July 2019).
31. Bingmann, T.; Axtmann, M.; Jobstl, E.; Lamm, S.; Nguyen, H.C.; Noe, A.; Schlag, S.; Stumpp, M.; Sturm, T.;

Sanders, P. Thrill: High-performance algorithmic distributed batch data processing with C++. In Proceedings
of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://dx.doi.org/10.1073/pnas.0706851105
http://www.ncbi.nlm.nih.gov/pubmed/18216267
http://dx.doi.org/10.1103/PhysRevE.91.012809
http://www.ncbi.nlm.nih.gov/pubmed/25679659
http://dx.doi.org/10.1371/journal.pone.0008694
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1145/2992785
https://github.com/felixfung/InfoFlow
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://snap.stanford.edu/data
http://dx.doi.org/10.1145/2049662.2049663
https://spark.apache.org/committers.html
https://spark.apache.org/committers.html
https://github.com/jegonzal/PowerGraph
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	The Map Equation 
	InfoMap 
	InfoFlow 

	Simulation and Results 
	Conclusions 
	References

