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Abstract: Word embeddings have been very successful in many natural language processing tasks,
but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a
representation can render results obtained using embeddings difficult to interpret. Neighboring word
vectors may have similar meanings, but in what way are they similar? That similarity may represent a
synonymy, metonymy, or even antonymy relation. In the cognitive psychology literature, in contrast,
concepts are frequently represented by their relations with properties. These properties are produced
by test subjects when asked to describe important features of concepts. As such, they form a natural,
intuitive feature space. In this work, we present a neural-network-based method for mapping a
distributional semantic space onto a human-built property space automatically. We evaluate our
method on word embeddings learned with different types of contexts, and report state-of-the-art
performances on the widely used McRae semantic feature production norms.
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1. Introduction

Semantic word representation plays important roles in a broad range of natural language
processing (NLP) tasks, including translation, query expansion, information extraction, and question
answering. There are two main branches of previous work: (1) distributional semantic models learned
with different types of contexts from large text corpora [1–3]; (2) property-based representation in
terms of constituent properties generated by participants in property norming studies [4,5], extracted
from manually-curated knowledge bases, such as FreeBase and Wikidata [6], or learned from a text [7].

Distributional semantic models characterize the meaning of a word through the contexts in
which it appears. These models rely on the distributional hypothesis—that words occurring in
similar contexts tend to have similar meanings [8,9]. Word2vec (W2V) is a popular word embedding
method that learns word vectors from unprocessed text using a fixed-size context window. However,
a context window with an unsuitable size may miss significant contexts and include irrelevant ones.
Levy and Goldberg [3] propose dependency-based word embeddings (DEPs), generalizing the
skip-gram model to include negative sampling, and moving from bag-of-words contexts to nonlinear
syntactic contexts that are derived from dependency parse-trees generated by an automated parser.
The empirical evidence shows that distributional models can do a good job in capturing word
similarities. However, the basis vectors of distributional models tend to be uninterpretable,
unlike property-based representations where each bit encodes the presence or absence of a particular
property for that concept. For example, distributional models can tell us that airplane is similar to
aircraft and pilot with different similarity scores, but it is difficult to differentiate how airplane is related
to aircraft from how it is related to pilot based on these models. This is one of the main drawbacks of
distributional models [10].
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There is a wide consensus in cognitive psychology that the meaning of a concept is a complex
assembly of properties that characterize how they are related to the concept. For example, the concept
bluebird can be represented by properties like is_a_bird, to_fly, has_feathers, and is_blue.
There are several ways to obtain a comprehensive set of concept properties. The widely used
property norm dataset is from [4], which consists of 541 concepts and 2526 properties. Devereux, Tyler,
Geertzen, and Randall [5] offer the largest property norm dataset to date that includes 638 concepts.
All individual properties are generated by participants in property norming studies. Baroni, Murphy,
Barbu, and Poesio [7] present a fully automatic method for extracting a set of concept descriptions
directly from an English part-of-speech-tagged corpus. Existing semantic knowledge bases, such as
ConceptNet and FreeBase, are good sources of properties/attributes and are used fairly extensively
in NLP tasks [6,11–13]. Producing property norms by human annotation can be expensive, however.
Moreover, it is still unrealistic to extract accurate properties from a large-scale text corpus [14].
This raises the question of how we predict property norms for new concepts.

The human brain organizes long-term, explicit, semantic memory in a way that is very different
from a knowledge base [15]. People seem to be able to call up a concept from memory

• by thinking of concepts whose meaning is similar;
• by completing an analogy;
• based on properties, including properties people did not previously realize characterized that

concept;
• by deductive reasoning based on related concepts.

Suppose I don’t actually know what properties a “jar” has. What I know instead is that a “jar”
must be something like a “plate” or a “pan” because they always appear in similar textual contexts.
Figure 1 shows a detailed description of the example. Now, two questions are raised: (1) How can I
infer properties of “jar” from known properties of “plate” and “pan” based on a distributional semantic
model? (2) What kind of distributional model is good at doing the above inference? These questions
lead us to develop the research topics of this work.

Figure 1. Inferring properties of “jar” from known properties of “plate” and “pan” based on distributional
semantic models.

Our main contributions include the following:

• We predict properties for new concepts by learning a nonlinear mapping from a distributional
semantic space to human-annotated property space based on multilayer perceptrons.

• We explore the performances of distribution models with different types of contexts on this task
by qualitative and quantitative analyses.
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• Using a publicly available dataset of property norms, we show that high-quality property norms
can indeed be induced from standard distributional data.

Related work is surveyed in Section 2. We then describe the existing distributional models with
different context types and the human-built property norms and analyze the capability of producing
property-based representations of concepts from distributional models in Section 3. Section 4 presents
our multilayer perceptrons-based method to learn properties of concepts from distributional models.
In Section 5, experimental results and the evaluation are reported. Finally, Section 6 draws conclusions
and discusses future work.

2. Related Work

Several previous works addressed property inference from distributional data. Herbelot and
Vecchi [16] present an approach to automatically map a standard distributional semantic space onto
a set-theoretic model. In their work, the properties of a concept for the McRae norms have five
quantifiers: NO, FEW, SOME, MOST, ALL. They assume there is a linear relationship between
the above two spaces and then estimate the coefficients of the function using partial least square
regression (PLSR). Dernoncourt [17] introduces a mode predictor, which considers the distribution of
quantifiers among properties. Făgărăşan, Vecchi, and Clark [18] explore the possibility of generalizing
property-based representation to a large scale dataset. Baroni and Lenci [19] explore the capability
of producing property-based descriptions of concepts from computational models that are derived
from word co-occurrence statistics. Rubinstein, Levi, Schwartz, and Rappoport [20] show that the
extent to which distributional models represent semantic knowledge varies greatly depending on
what type of knowledge is represented. Gupta, Boleda, Baroni, and Padó [6] pursue the hypothesis
that distributional vectors also implicitly encode referential attributes that are extracted from FreeBase
or Wikidata. Strudel [7] is an unsupervised algorithm to extract a structural and comprehensive set
of concept descriptions directly from an English corpus and then represent concepts by weighted
properties. Erk [21] proposes a probabilistic mechanism for distributional property inference.
Boleda and Herbelot [22] present an overarching semantic framework called “formal distributional
semantics”, which combines formal and distributional semantics together.

There are also several recent papers that focus on learning a mapping between different
semantic modalities and creating visual attributes for unseen concepts. Bulat, Kiela, and Clark [23]
explore the automatic prediction of property norms for new concepts by learning a mapping
from images. A linear regression is learned to transform image vector representations into
the representations of the concepts in a distributional semantic space learned from text [24].
Silberer, Ferrari, and Lapata [25] create a large-scale taxonomy of 600 visual attributes representing
more than 500 concepts in the McRae dataset and 700 K images in ImageNet. Zellers and Choi [26]
model attributes of action verbs (both visual and linguistic) to perform zero-shot activity recognition.
In this work, we explore how to build a nonlinear mapping from a distributional semantic space to a
human-built property space based on multilayer perceptrons (MLPs).

3. Distributional Models and Property Norms

Word2vec (W2V), a popular method, generates dense embeddings by either a skip-gram model
or using a continuous bag-of-words (CBOW). The skip-gram model’s training objective is predicting
the words in a context window of 2k words surrounding the target word. For example, when we set
k = 1 (denoted by W2V1), the contexts of the target word wt are wt−1 and wt+1 and predict these from
the word wt. However, a context window with a larger size k may capture “coincidental” contexts that
are not directly related to the target word. Dependency-based word embeddings (DEPs) proposed by
Levy and Goldberg [3] use negative sampling to generalize the skip-gram model, thereby moving from
bag-of-words contexts to disconnected syntactic contexts. We use the sentence “A careful astronomer
discovered something funky in Uranus’ orbit” to demonstrate the differences of the above distributional
models. Table 1 lists the contexts of W2V1, W2V3, and DEP for the target word “ astronomer”.
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Table 1. Contexts extracted by different models: W2V1, W2V3, dependency-based word
embedding (DEP).

Distributional Models Contexts

W2V1 careful, discovered
W2V3 a, careful, discovered, something, funky
DEP careful/amod, discovered/nsubj−1

We see that W2V with a smaller context window and DEP with syntactic context can capture more
focused information about the target word and also filter out “coincidental” contexts such as a and funky.
Empirical analyses [27,28] show that narrow context window and syntactic context window models
tend to give high ratings to semantic-similar word pairs like airplane/aircraft, while wide-context models
give high ratings to topically related pairs like airplane/pilot. Word pairs semantic-similarity is also
called “AP-similarity” [21], which encompasses synonymy, hypernymy, and co-hyponymy. Erk [21]
proposes that AP-similarity can be characterized as property overlap, and interpreting AP-similarity
as property overlap allows us to draw property inferences from observed distributional similarity
based on narrow context or syntactic context models. In our example, the contexts of W2V1 and
DEP found for the noun target astronomer are the adjectival modifier careful and the verb discovered.
The selectional constraints for noun modifiers and verbs often indicate semantic properties of the noun
target. For example, the selectional constraints of the adjective careful can be human, animal, or some
abstract entities, but can’t be location or currency. Similarly, the selectional constraints for the subject of
discovered are animate or organization, based on VerbNet. Erk [21] concludes that if two noun targets
agree in many of their modifiers and always occur in the same argument positions of the same verbs,
they will have high distributional similarity and share many semantic properties. In the experiment
part, we will undertake a further empirical analysis about the effect of context types on the property
inference from distributional models.

Semantic property norms have been used to explore and enhance many aspects of the semantic
representation and the processing of concepts in cognitive science. The semantic property norms
described in [4] are widely used. The dataset is collected from approximately 725 participants for 541
living (alligator) and nonliving (airplane) basic-level concepts. Each named concept corresponds to
an English noun, which is normed by 30 participants through a questionnaire. The 541 concepts are
annotated by a total of 2526 properties. It is a very sparse dataset in which each concept has an average
of 13 properties. The concepts with multiple meanings are disambiguated by providing some cues;
for example, bat is represented by two forms bat_(animal) and bat_(baseball). Table 2 lists the top five
properties of the concept for basket in the McRae dataset and the number of subjects out of 30 participants
that listed a property (known as production frequencies).

Table 2. Top 5 properties for the concept basket in McRae and their production frequencies.

Concept Top 5 Properties Production Frequency

basket is_weaved 18
used_for_holding_things 18

has_a_handle 17
made_of_wicker 10
made_of_wood 9

4. Learning Properties of Concepts from Distributional Models with Multilayer Perceptrons

We model the problem of learning the property-based representation of a concept as a multinomial
classification problem. Let X denote the distributional semantic space and Y denote the property
semantic space. Then we learn a function

Φ : X → Y , (1)
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where X ⊆ Rn and Y ⊆ Rm. Given a test concept x ∈ Rn, we want to estimate an m-dimensional
vector (whose elements sum to 1), which represents the probabilities for m property classes. Existing
works [16,18] estimate the function using the PLSR method, which models the relationship between
two spaces as a linear function. But linearity is a strong assumption. Multilayer perceptrons
(MLPs) can learn very complicated relationships between their inputs and outputs because nonlinear
transformations are introduced to the hidden layers of the architecture.

It is well known that MLPs are universal approximators. The universal approximation theorem
states that the standard multilayer feed-forward networks with a single hidden layer that contains
sufficient hidden neurons and with an arbitrary activation function can approximate any function in
C(Rn) [29,30]. However, it is difficult to learn that function because a super wide and shallow network
is very good at memorization but not good at generalization. Multiple hidden layers are much better
at generalizing because they can learn features at various levels of abstraction. Given a collection of
input data x and corresponding target values y, our MLP model expresses the prediction ŷ through
three hidden layers on top of each other.

h1 = φ(W1x + b1),

h2 = φ(W2h1 + b2),

h3 = φ(W3h2 + b3),

(2)

where φ is any activation function and W l , and bl are the weights and biases at layer l (for l ∈ {1, 2, 3}).
In our experiment, we use the rectified linear unit (ReLU), φ(z) = max(0, z). Since our problem is
modeled as multinomial classification, the probabilities for class labels are available through the use of
the softmax activation function in the output layer.

ŷ = so f tmax(W4h3 + b4), (3)

where the softmax function squashes the outputs of each unit to be in [0, 1], and the total sum of the
outputs is equal to 1.

When a large feed-forward neural network is trained on a small training set, it typically performs
well on the training set but poorly on real test data, which leads to overfitting. Dropout is a form of
regularization for addressing this problem that is developed by [31,32]. Dropout combats overfitting
by randomly deactivating hidden nodes with probability p (commonly be set at 0.5) during training
time. Training a neural network with dropout can be seen as training a collection of thinned networks
with extensive weight sharing, while at test time these thinned networks with shared weights can be
combined into a single neural network to be used. In our MLP model, dropout is applied to hidden units
in the hidden layers with a probability of 0.5. With dropout, our MLP model becomes (for l ∈ {1, 2})

rl ∼ Bernoulli(p),

h̃l = rl ∗ hl ,

hl+1 = φ(W l+1h̃l + bl+1),

ŷ = so f tmax(W4h̃3 + b4),

(4)

where * denotes an element-wise product, and rl is a vector of independent Bernoulli random variables,
each of which takes the value 1 with probability p and the value 0 with probability 1− p. A more
detailed description of dropout can be found in [32].

To measure how close our predicted value ŷ is to the true value y, categorical crossentropy is
used as a loss function of our model. We learn values for W l and bl that minimize the loss function by
the Adam optimization algorithm, which is computationally efficient and works well in practice [33].
Table 3 displays a summary of several parameters chosen for our MLP model.
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Table 3. A summary of several parameters chosen for our multilayer perceptron (MLP) model.

Description Value

Model Type Multilayer Perceptron (MLP)
Number of Layers 5 (3 hidden layers)

Number of Units in Each Layer 300:800:1500:2000:2526
Hidden Layer Activation Function ReLU
Output Layer Activation Function Softmax

Regularization Dropout
Loss Function Categorical Cross Entropy

Optimizer Adam

5. Experiments and Evaluation

5.1. Data Preparation

The experiments use 300-dimensional W2V and DEP vectors that have been pretrained on diverse
English corpora: (1) English Wikipedia 2015, (2) UMBC web corpus [34], and (3) English Gigaword
newswire corpus [35]. The concatenated corpus comprises about 10B words and yields a vocabulary of
about 500K words after filtering words with a frequency lower than 100. The word embeddings W2V1,
W2V5, and W2V10 are learned with context window sizes of 1, 5, and 10 respectively. For learning
DEP, the corpus is tagged with parts-of-speech and parsed into Stanford dependencies by CoreNLP [36].
Those vectors are described in [28] and available for downloading (http://u.cs.biu.ac.il/~nlp/resources/
downloads/embeddings-contexts/).

The McRae-based property norm space contains 541 concepts as described in Section 3. We delete
3 concepts (axe, armour, and dunebuggy) from the McRae dataset because they are not available in the
word2vec vocabulary. The dataset is very sparse, with a total of 2526 properties for 538 concepts and
an average of 13 properties per concept. For the concepts with multiple meanings in McRae, these are
disambiguated by providing some cue, for example, bat_(animal) and bat_(baseball). In distributional
semantic space, their vector representations are also different by computing the average vectors of
the concept and its cues, respectively. The 538 concepts are split randomly into 400 training data and
138 test data. There are 437 out of 2526 properties that are not seen in the training set. We normalize
each property vector by the sum of its production frequencies at training time. Our goal is to learn a
mapping from distributional semantic space (400 × 300) to property norm space (400 × 2526) and then
predict property norms for 138 new concepts from their distributional semantic representation.

5.2. Baselines

We compare our MLP model with two baselines: partial least squares regression (PLSR) and
k-nearest neighbor (KNN).

• PLSR: refs. [16,18] estimate the function (1) in Section 4 using PLSR. PLSR, a bilinear factor model,
is used to find the fundamental relations between the distributional semantic space X and the
property semantic space Y by modeling the covariance structures in these two spaces. In our
experiments, we set the number of components to 50 and 100, respectively.

• KNN: For each concept in the test dataset, we choose the k most similar concepts from the training
dataset based on their cosine similarities in the distributional semantic space. Then the property
vector of the concept in the test dataset is represented by the average of property vectors of these
k most similar concepts. We set k to 5 and 10 in our experiments.

5.3. Quantitative Evaluation

In the following experiments, we use the properties in McRae as the gold standard that models are
compared against. We study the properties of 138 test concepts from McRae, in which each test concept
has 13.39 properties ion average. For each test concept, we rank the properties from the predicted

http://u.cs.biu.ac.il/~nlp/resources/downloads/embeddings-contexts/
http://u.cs.biu.ac.il/~nlp/resources/downloads/embeddings-contexts/
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property vector in terms of their values and pick the top 10 properties from the list. Given the top 10
ranked properties generated by different methods from different distributional models, precision and
recall are used for evaluation. The definitions of two standard performance measurements at the 10th
property in the ranked list are specified as follows.

Precision is the fraction of the predicted properties that are correct, i.e.,

P =
number of correct properties

total number of properties returned
.

Recall is the fraction of the properties that have been predicted correctly, i.e.,

R =
number of correct properties

total number of gold standard properties
.

Tables 4 and 5 report percentage average precisions and recalls across 138 test concepts by each
method matched against the McRae gold standard. Four kinds of word embeddings, W2V1, W2V5,
W2V10, and DEP are used in the experiments. From the average precision and recall, we see that
MLP with dropout beats all other methods. We can obtain the following order of the methods:
MLP >> PLSR >> KNN, where >> indicates that the method on the left-hand side is significantly
better than the one on the right-hand side. The better experimental results of our method further
illuminate the advantage of using MLP; namely, the method has the ability to learn and model complex
nonlinear relationships between its inputs and outputs. Looking further, we observe that there are
significant differences in the results when using MLP with and without dropout. The same architecture
(300:800:1500:2000:2526) trained with dropout gives evident improvements across all distributional
models on the McRae dataset over that without dropout. For the PLSR method, the performances of
PLSR (c = 50) are comparable to those of PLSR (c = 100). KNN with k = 10 achieves better performances
than that with k = 5 for all distributional models.

Table 4. The percentage average precisions for all methods.

Methods Parameters
Distributional Models (Precision)

W2V1 W2V5 W2V10 DEP

MLP Dropout 42.46 42.10 41.15 41.59
No Dropout 40.72 40.65 40.86 40.79

PLSR c = 50 38.26 37.75 37.75 37.53
c = 100 37.31 38.26 38.18 37.68

KNN k = 5 36.01 34.63 34.85 35.79
k = 10 36.01 35.86 36.37 36.66

Table 5. The percentage average recalls for all methods.

Methods Parameters
Distributional Models (Recall)

W2V1 W2V5 W2V10 DEP

MLP Dropout 32.40 32.06 31.28 31.95
No Dropout 30.90 30.86 31.27 31.11

PLSR c = 50 29.04 28.43 28.72 29.01
c = 100 28.60 29.06 29.12 28.98

KNN k = 5 27.76 26.47 26.74 27.26
k = 10 27.89 27.73 27.95 28.08

Comparing the results of different types of contexts, we see that MLP with dropout, PLSR (c = 50),
and KNN (k = 5) all perform much better on W2V1 than on other distributional models. For KNN
with k = 10, DEP does the best job on the precision and recall performances. These results are as
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we expected, as narrow context window or syntactic context window models tend to make better
property inferences than wide context models. However, it is difficult to say that narrow context or
syntactic context models always works best for all methods. We found that for MLP without dropout,
W2V10 outperforms W2V1, W2V5, and DEP on both recall and precision.

5.4. Qualitative Evaluation

Table 6 reports the top five predicted properties returned by MLP (dropout), PLSR (c = 50),
and KNN (k = 10) based on W2V1 for eight test concepts. We also list their top five gold-standard
properties annotated by participants in McRae. From Table 6, we see that MLP can provide mostly
reasonable properties for these eight concepts. Properties annotated with ∗ in the table are not listed in
McRae. Although we refer to the property norms in McRae as the “gold standard”, these annotated
properties are sometimes not completely true representations of concepts because the annotation
depends on the knowledge background or linguistic habits of participants. A property with zero
production frequency for a concept in McRae shouldn’t be read as a sign that it is not a reasonable
property of the concept. It simply means that the property is not elicited from the conceptual knowledge
of participants during the questionnaire. For example, the property has_a_tail is not listed in the
gold-standard vector of walrus in McRae, but it is a plausible property of walrus.

Table 6. Top 5 properties returned by MLP, PLSR, and KNN. Properties annotated with ∗ are not listed
in McRae.

Concept Method Top 5 Predicted Properties

jar

McRae has_a_lid, made_of_glass, used_for_holding_things, a_container, is_breakable,
MLP used_for_holding_things, made_of_plastic, made_of_glass, has_a_lid, is_breakable
PLSR made_of_plastic, ∗found_in_kitchens, ∗made_of_metal, ∗is_round, used_for_holding_things
KNN ∗made_of_metal, made_of_plastic, ∗found_in_kitchens, used_for_holding_things, ∗a_utensil

sparrow

McRae a_baby_bird, beh_flies, has_feathers, beh_lays_eggs, has_wings
MLP a_baby_bird, beh_flies, has_wings, has_feathers, beh_lays_eggs
PLSR a_baby_bird, beh_flies, has_feathers, has_wings, has_a_beak
KNN a_baby_bird, beh_flies, has_feathers, has_wings, has_a_beak

spatula

McRae a_utensil, has_a_handle, made_of_plastic, used_for_cooking, is_flat,
MLP a_utensil, made_of_plastic, made_of_metal, found_in_kitchens, ∗used_for_eating
PLSR made_of_metal, found_in_kitchens, made_of_plastic, ∗a_tool, a_utensil
KNN made_of_metal, found_in_kitchens, ∗a_tool, made_of_plastic, has_a_handle

sofa

McRae found_in_living_rooms, furniture, is_comfortable, used_by_sitting_on, has_cushions
MLP is_comfortable, furniture, is_soft, used_by_sitting_on, has_cushions
PLSR is_comfortable, ∗made_of_wood, is_soft, used_by_sitting_on, used_for_sleeping
KNN is_comfortable, is_soft, ∗made_of_wood, ∗worn_for_warmth, used_for_sleeping

bracelet

McRae worn_on_wrists, made_of_gold, made_of_silver, a_fashion_accessory, a_jewelry
MLP ∗worn_around_neck, made_of_silver, a_fashion_accessory, a_jewelry, made_of_gold
PLSR made_of_metal, made_of_gold, made_of_silver, ∗worn_around_neck, is_round,
KNN ∗worn_for_warmth, ∗clothing, ∗is_long, ∗worn_by_women, ∗different_colours

doll

McRae has_own_clothes, used_for_playing, a_toy, used_by_girls, has_hair
MLP ∗is_small, ∗is_soft, ∗is_white, ∗is_comfortable, ∗is_large
PLSR ∗is_small, ∗is_white, ∗worn_by_women, ∗different_colours, ∗clothing
KNN ∗is_comfortable, ∗worn_for_warmth, ∗worn_at_night, ∗is_warm, ∗clothing

walrus

McRae an_animal, is_large, beh_swims, lives_in_water, is_fat
MLP an_animal, a_mammal, hunted_by_people, ∗has_a_tail, beh_swims
PLSR an_animal, is_large, lives_in_water, beh_swims, ∗a_baby_bird
KNN an_animal, ∗has_a_tail, has_teeth, ∗is_green, ∗is_furry

platypus

McRae an_animal, lives_in_water, a_mammal, beh_swims, has_a_bill
MLP an_animal, beh_swims, ∗has_a_tail, ∗has_4_legs, ∗is_brown
PLSR an_animal, ∗is_small, ∗has_a_tail, ∗has_4_legs, ∗is_large
KNN an_animal, ∗is_green, ∗has_4_legs, ∗beh_eats, ∗has_a_tail

For some concepts, like sparrow, all three methods can detect gold-standard properties in their
top five lists. However, looking further, we observe that the top five properties returned by MLP
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are consistent with the top five gold standard properties annotated by McRae, whereas the property
has_a_ beak described by PLSR and KNN is not in the top five properties of McRae. Moreover,
the properties that are not seen in the training set will have no opportunity to be ranked as the top
properties of a concept. For example, all three methods cannot detect has_own_clothes and used_by_girls
for the doll concept in their top property lists because these two properties don’t appear in the
training set.

To further evaluate the quality of property inference, we perform a nearest neighbor search
for the predicted vector of a concept. The predicted vectors are produced by MLP (dropout),
PLSR (c = 50), and KNN (k = 10) based on W2V1. The ideal performance is that the predicted
vector of a concept should be close to its gold standard vector in McRae [16]. Table 7 shows the top
five neighbors of the predicted vectors among the 138 gold standard property vectors for the eight
concepts above. The results look promising, where five out of eight gold standard vectors are the
1-nearest neighbor to their predicted vectors based on the MLP method.

Table 7. Top 5 neighbors returned by MLP, PLSR, and KNN.

Concept Method Top 5 Neighbors

jar
MLP jar, bucket, plate, spatula, whistle
PLSR bucket, spatula, plate, pan, skillet
KNN spatula, tongs, bucket, grater, pan

sparrow
MLP sparrow, raven, finch, buzzard, parakeet
PLSR raven, sparrow, finch, buzzard, parakeet
KNN sparrow, raven, finch, buzzard, parakeet

spatula
MLP spatula, fork, tongs, grater, bucket
PLSR spatula, tongs, grater, pan, hatchet
KNN spatula, tongs, hatchet, grater, bucket

sofa
MLP sofa, cushion, bench, jeans, cabinet
PLSR sofa, cushion, cabinet, bench, jeans
KNN sofa, cushion, socks, bench, cabinet

bracelet
MLP bracelet, tie, crown, fork, plate
PLSR bracelet, tongs, bucket, crown, thimble
KNN skirt, socks, cape, tie, jacket

doll
MLP rice, cottage, cushion, shrimp, bear
PLSR sparrow, finch, butterfly, sheep, raven
KNN socks, bracelet, cape, skirt, bench

walrus
MLP platypus, buffalo, elk, walrus, caribou
PLSR walrus, ox, buffalo, platypus, otter
KNN walrus, ox, platypus, otter, cougar

platypus
MLP otter, platypus, walrus, ox, buffalo
PLSR ox, walrus, platypus, buffalo, elk
KNN cougar, ox, buffalo, elk, walrus

6. Conclusions

This work presents a multilayer perceptrons-based method for mapping a distributional semantic
space onto a human-built property space automatically. The quantitative evaluation implied that
using MLP with dropout can give significantly better performance on property inference than models
using PLSR or k-nearest neighbors. The results of using vectors obtained from various kinds of
contexts were more mixed and depended on what parameters were used. This may indicate that
dependency-based windows are missing some important context from nearby words that don’t have
the particular dependencies such models focus on. Based on the qualitative analysis, we found that
compared with PLSR and KNN, MLP can not only detect gold standard properties but also give
a reasonable ranking for returned properties. In future work, we will conduct further analyses of
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prediction performance on different types of properties. We are also interested in exploring how to
generalize property-based representations to a large-scale dataset.
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