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Abstract: Cognitive deterioration caused by illness or aging often occurs before symptoms arise, and
its timely diagnosis is crucial to reducing its medical, personal, and societal impacts. Brain–computer
interfaces (BCIs) stimulate and analyze key cerebral rhythms, enabling reliable cognitive assessment
that can accelerate diagnosis. The BCI system presented analyzes steady-state visually evoked
potentials (SSVEPs) elicited in subjects of varying age to detect cognitive aging, predict its magnitude,
and identify its relationship with SSVEP features (band power and frequency detection accuracy),
which were hypothesized to indicate cognitive decline due to aging. The BCI system was tested
with subjects of varying age to assess its ability to detect aging-induced cognitive deterioration.
Rectangular stimuli flickering at theta, alpha, and beta frequencies were presented to subjects, and
frontal and occipital Electroencephalographic (EEG) responses were recorded. These were processed
to calculate detection accuracy for each subject and calculate SSVEP band power. A neural network
was trained using the features to predict cognitive age. The results showed potential cognitive
deterioration through age-related variations in SSVEP features. Frequency detection accuracy declined
after age group 20–40, and band power declined throughout all age groups. SSVEPs generated at
theta and alpha frequencies, especially 7.5 Hz, were the best indicators of cognitive deterioration.
Here, frequency detection accuracy consistently declined after age group 20–40 from an average of
96.64% to 69.23%. The presented system can be used as an effective diagnosis tool for age-related
cognitive decline.

Keywords: brain–computer interface; cognitive aging; steady-state visually evoked potential; neural
network; detection accuracy; band power

1. Introduction

Cognitive decline via deterioration of key neural networks can be caused by normal aging and/or
illness (i.e., Alzheimer’s disease), and often occurs before symptoms can be noted. It is well known that
age significantly increases one’s risk of acquiring Alzheimer’s disease (AD), a severe neurodegenerative
illness affecting 46.8 million people worldwide [1].

Cognitive deterioration has been explored through Electroencephalographic signaling, which
enables monitoring of electrical activity in the brain with a high temporal resolution [2]. For example,
Tailard et al. indicates that aging is associated with characteristic changes in EEG waveforms collected
during non-REM sleep, a sleep stage with no random eye movement [2]. Furthermore, McBride et al.
uses regional spectral and complexity features in EEG signals to discriminate between amnestic mild
cognitive impairment (aMCI) and Alzheimer’s disease (AD) [3]. Ishii et al. [4] shows that aging is
characterized by significant changes in resting state oscillatory activity, event-related potentials (ERPs)
elicited by cognitive tasks, functional connectivity between cerebral regions, and signal complexity.
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Miraglia et al. [5] discusses the use of EEG functional network studies in order to build network topology
models that could help better understand changes in brain architecture throughout an individual’s
lifespan. Additionally, Horvath et al. [6] examines EEG and ERP bioindicators of Alzheimer’s disease,
and Pagano et al. [7] examines EEG subitizing in healthy elderly subjects during working-memory and
attention-related tasks.

Steady-state visually evoked potentials (SSVEPs) elicited by steadily oscillating visual stimuli
are commonly employed in studies of visual perception due to their high signal-to-noise ratio (SNR)
and analytical simplicity [8]. Most importantly, studies [9] have shown that SSVEP features have
strong correlation with the topology of the networks they elicit. SSVEP amplitude and SNR have
strong positive correlation with the efficiency and connectivity of their corresponding networks and
strong negative correlation with their length, making them accurate standards of neural efficacy [10].
Such parameters affect the size of the SSVEP response generated because more efficient topological
organizations of neural networks are associated with larger responses. However, few studies have
focused on the effects of aging on SSVEP features; one study employs LED lights to extract Fourier
amplitude and feature detection accuracy using an SSVEP-based brain–computer interface (BCI)
in Amyotrophic Lateral Sclerosis (ALS) patients and subjects of varying age [11]. SSVEPs, which
primarily entrain visual pathways throughout the brain, are a promising source of biomarkers of
cognitive aging because the pathways stimulated by them extend throughout the entire brain. Studies
examining a plethora of visual biomarkers have shown promising levels of correlation with age [12];
one prominent example is critical flicker fusion, examined by Mewborn et al., which is the frequency
(flicker speed) at which the flicker of light can no longer be perceived. Critical flicker fusion, which
provides insights into visual processing mechanisms, showed strong negative correlation with age [13].

SSVEP signals have a frequency range of 3.5–75 Hz; they can be categorized into particular bands,
depending on their frequency. The theta, alpha, and beta bands, which are easiest to detect, are
comprised of frequencies 4–8 Hz, 8–13 Hz, and 14–30 Hz, respectively. The theta band is generated
in the frontal midline during deep relaxation and can be activated by rational thinking. It is also
correlated with visualization or dreaming, memory, and cognitive control. The alpha band is generated
in a state of relaxed alertness; its power is diminished by open eyes or increased attention levels.
This rhythm, which often dominates EEG recordings, increases in prevalence and amplitude at age
7–20 and undergoes an overall decrease with age. The beta band, prevalent in the frontal lobe,
is generated during a state of active concentration and is associated with problem solving, judgement,
and decision-making. This band is not usually clear in EEG recordings of healthy subjects [14].

SSVEPs are commonly employed in brain–computer interfaces (BCIs), which allow direct
interaction between an enhanced human brain and a computerized device without the necessity
of conventional output pathways [15]. BCIs typically translate signals into meaningful commands for
external devices, by restoring, at least partially, motor and communicative capabilities to individuals
with compromised neural tracts. It can also facilitate interactions between humans and speech
synthesizers, neural prostheses, and other assistive appliances [15]. They are also used to study
different types of brain activity while the user induces a particular mental state or performs a particular
task. BCIs analyze different types of EEG signals, such as P300, event-related synchronization or
desynchronization (ERS/ERD), slow cortical potentials (SCPs), sensorimotor rhythms (SMR), and
steady-state evoked potentials (SSEPs) [8].

The objective of this study is to develop an SSVEP-based brain–computer interface system that
employs flickering light of 10 different frequencies (4, 6.6, 7.5, 8.57, 10, 12, 15, 20, 25, and 30 Hz) to
collect SSVEP responses from 16 subjects spanning from age group 10–20 to >60. These responses were
then epoched and analyzed to identify trends between SSVEP features and age. A predictive neural
network was trained to identify level of cognitive age using these features. Section 2 presents materials
and methods, Section 3 presents the results, and Section 4 presents the discussion and conclusions.
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2. Materials and Methods

The setup consisted of five electrodes (four frontal and one occipital), positioned on a headband
that the subject wore. The stimuli were presented on a laptop. Data was collected from the Cyton
Biosensing Board, which received the signals from the electrodes placed on the subject’s scalp in the
EEG headband and wirelessly transmitted them to a USB dongle placed in a laptop computer.

2.1. Visual Stimulus Presentation

In this study, a single rectangular flickering stimulus (12.7 × 17.78 cm) was implemented to evoke
SSVEPs in the frontal and occipital regions. This stimulus, which flickered at 4, 6.6, 7.5, 8.57, 10, 12, 15,
20, 25, and 30 Hz was programmed using MATLAB’s Psychophysics Toolbox and presented on a laptop.
The flickering was produced by flipping between a black screen display and the texture drawing
routine of Psychtoolbox, which produced a white rectangle. The amount of flips was determined by
the stimulus frequency; for example, a stimulus frequency of 4 Hz would result in four flips between
the background screen and the rectangle. Each frequency was encoded with a distinct binary matrix,
in which ‘0’ encoded the black screen display and ‘1’ encoded the white rectangle. Each stimulus
frequency was presented once per subject, for 26 seconds. An intermission of 2 minutes was provided
between each presentation, to minimize visual fatigue. EEG data collection was stopped 1 second after
stimulus presentation.

2.2. Data Acquisition

EEG responses to the flickering visual stimuli were collected using OpenBCI software, via four
frontal electrodes (Fp1, FpZ, Fp2, and F4), situated on a wearable headband, and one occipital
electrode (Oz), arranged according to the International 10/20 system, which is one of the electrode
placement systems. After the headband was fastened around the head of the subject, the occipital
electrode (dry comb type) was taped (masking tape) to the back of the head and fastened under the
headband. A measuring tape and marker were used to locate the electrode positions on the scalp.
Then two auricular electrodes, which served as ground and reference locations, were fastened onto
the subjects’ ears. Conductive gel was applied to the electrodes when necessary, in order to reduce
signal impedance (<100 µV). The electrode pins from the seven electrodes were connected to a Cyton
Biosensing Board, which relayed the EEG signals to a USB dongle connected to a laptop computer. The
USB dongle enabled the signals to be viewed and adjusted in the OpenBCI graphical user interface.
The experimental setup is shown in Figure 1. Bandpass filters were applied to EEG data to filter out
artifacts and noise caused by eye blinks, the presence of skin and hair, and equipment errors, among
others. These filters only allowed EEG data in the range 1–50 Hz to be transmitted. The sampling rate
for EEG signals collected was 250 Hz.

EEG data was collected from human subjects pertaining to age groups 10–20, 20–40, 40–60, and
>60, each age group comprising four subjects, totaling 16 subjects. All subjects possessed normal or
corrected-to-normal vision and if subjects had major treatments or medical issues regarding their eye
health, they did not participate in this study. These subjects were covered by the Institutional Review
Boards (IRB) of the University of Puerto Rico, and adequate consent and approval was obtained from
all subjects. In order to control sources of variation in the data, the experiments were conducted at
roughly the same time of day in a darkened room where the subjects were comfortably seated about
30.48 cm away from the computer monitor.
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Figure 1. Brain–computer interface (BCI) equipment setup and experimentation. 
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the occipital (Oz) region and the frontal region, which comprised the average signal from the four 
frontal electrodes. This algorithm was written as a MATLAB function; each stimulus frequency is 
denoted by its position in a vector, and the function outputs the maximum frequency index, which is 
a vector displaying the frequency detected in each epoch. This information was then used to calculate 
the detection accuracy of theta, alpha, and beta stimulus frequencies, as the percentage of epochs 
where the stimulus frequency was detected correctly, in the SSVEPs.  
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Figure 1. Brain–computer interface (BCI) equipment setup and experimentation.

2.3. Signal Processing and Feature Extraction

The EEG data, which were contained in ASCII (American Standard Code for Information
Interchange) files, were converted to a MATLAB-readable format, where they were represented by
a five-column matrix (five data channels) with 6540 samples or rows of points (signal amplitudes) on
the EEG time-series plot (amplitude vs. time). The ‘.mat’ file was then saved under a MATLAB variable.

Canonical correlation analysis (CCA) was used to compute a correlation coefficient between
the SSVEP signals recorded at stimulus frequencies and the reference signals generated at the same
frequencies [15]. Reference sinusoidal signals were generated for each stimulus frequency; each signal
comprised two harmonics and was generated using the same sampling rate (250 points/sec) and
number of points as the EEG signal. CCA was used to determine the reference signal that had the
greatest correlation with the EEG signal; this, in turn, was used to determine which frequencies were
elicited in the SSVEP. The EEG signal was processed using differing averaging intervals (2, 3, 4, and
5 s), in order to divide it into differing amounts of epochs (10, 7, 5, and 4 epochs, respectively), or trials
(4160 in total). CCA was performed to determine which stimulus frequency had the greatest level
of correspondence with the SSVEP in each epoch. This was used to determine intra-group detection
accuracies of all 10 stimulus frequencies for each subject. This process was repeated for both the
occipital (Oz) region and the frontal region, which comprised the average signal from the four frontal
electrodes. This algorithm was written as a MATLAB function; each stimulus frequency is denoted
by its position in a vector, and the function outputs the maximum frequency index, which is a vector
displaying the frequency detected in each epoch. This information was then used to calculate the
detection accuracy of theta, alpha, and beta stimulus frequencies, as the percentage of epochs where
the stimulus frequency was detected correctly, in the SSVEPs.

The EEG signals were analyzed using the Fourier transform (Equation (1)), which was used to
generate power spectral density (Equation (2)) plots.

X(ω) =
1
√

T

∫ T

0
x(t)e−iωtdt (1)
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Sxx(ω) =
∣∣∣ X(ω)

∣∣∣2 (2)

2.4. Statistical Analysis

After the procedures described above were completed, statistical procedures were applied to
analyze and synthesize the study data. Polynomial and linear regressions were used to delineate
the relationship between cognitive aging and detection accuracy of stimulus frequencies in SSVEPs,
as well as SSVEP band power. The accuracy of general trends identified in this study was evaluated
using analyses of variance (ANOVAs) and measures of spread, such as coefficients of variation and
standard deviations.

A neural network was constructed using MATLAB’s neural fitting app, in order to predict
cognitive age based on frequency detection accuracy and SSVEP band power. This network consisted
of 10 neurons and the input layer (training data for the model) consisted of two variables (Fourier
amplitude and frequency detection accuracy), and was trained using the features extracted after
epoching the data into intervals of 2, 3, 4, and 5 seconds. In this manner, there were 78 samples per
subject, for 16 subjects in total. Subsequently, 70% of the data (12 samples) was used for training, 15%
(two samples) for validation, and 15% for testing. The network was then trained using the Bayesian
regularization algorithm, which adjusts an initial weight vector, which is used to generate predictions
based on existing data, according to the input data used during training, in order to generate predictions
of optimal accuracy. In this method, back-propagation occurs often to reduce prediction error. This
experiment was repeated 10 times for 10-fold cross-validation, and the data were randomly divided
for training, validation, and testing.

3. Results

Stimulus frequency detection accuracy and SSVEP Fourier amplitude as a function of age are
presented below. The best cerebral regions and stimulus frequencies that were optimal in delineating
cognitive aging are presented.

3.1. Detection Accuracy of Stimulus Frequencies

Detection accuracy of theta, alpha, and beta stimulus frequencies increased between age groups
10–20 and 20–40 and decreased continuously from age groups 20–40 to >60. This trend is shown in
Figure 2 in further detail. Frequency detection accuracy is thus representative of cognitive decline only
in age range 20–40 and above, because of higher levels of cognitive development. These results are
shown in Table 1.

Table 1. Theta, alpha, and beta frequency detection accuracy in varying age groups and corresponding
statistics.

SSVEP Band (Hz) Mean Standard Error Standard Deviation Coefficient of Variation

Age Group F O F O F O F O

Theta (4–8)

10–20 90.25 77.75 2.21 3.57 5.07 6.24 6.70 8.60
20–40 93 92.75 1.22 3.59 2.22 5.45 2.40 6.00
40–60 88 78.5 3.37 1.50 3.95 8.42 4.50 10.6
>60 73.75 76.5 1.89 3.28 9.75 7.85 12.7 10.7

Alpha (8–13)

10–20 18.5 56 3.20 1.55 10.25 7.26 55.4 13.0
20–40 54.25 94.5 1.50 0.71 18.46 5.26 34.0 5.60
40–60 44.5 83 1.93 1.25 9.292 16.0 20.9 19.3
>60 16.5 49.75 8.75 9.08 3.873 5.74 23.5 11.5

Beta (14–30)

10–20 16.49 38.45 0.75 1.58 10.65 24.0 64.6 62.4
20–40 27.25 52 1.32 7.94 6.292 13.8 25.4 26.5
40–60 32 50.75 1.08 2.61 6.976 29.1 21.8 57.3
>60 13.22 32.5 4.82 7.40 14.78 16.4 112 50.3

Note: SSVEP—Steady-State Visually Evoked Potential. F-Frontal. O-Occipital.
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Figure 2. Graphical and mathematical relationship between age and detection accuracy of stimulus
frequency bands in SSVEP signals: (a.1) Detection accuracy of theta frequency band in occipital region.
(a.2) Detection accuracy of theta frequency band in frontal region. (b.1) Detection accuracy of alpha
frequency band in occipital region. (b.2) Detection accuracy of alpha frequency band in frontal region.
(c.1) Detection accuracy of beta frequency band in occipital region. (c.2) Detection accuracy of beta
frequency band in frontal region.
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3.2. SSVEP Fourier Amplitude

As demonstrated by the results, the relationship between age and SSVEP Fourier amplitude is
inversely proportional, and, like frequency detection accuracy, it has a tendency to peak at age group
20–40. SSVEP Fourier amplitude as a function of age is illustrated in Table 2. Moreover, according
to the data spread presented in Table 3, Fourier amplitude is the most reliable indicator of cognitive
deterioration in theta and alpha SSVEPs; band power at these frequency bands as a function of age is
shown in Figure 3. Fourier Amplitudes for all subjects can be found in Tables S1–S3.

Table 2. Band power (dB/Hz) of SSVEPs evoked by theta, alpha, and beta frequencies.

SSVEP Band Harmonic
Age Group (years)

10–20 20–40 40–60 >60

Theta (4–8 Hz)

1 20.55 25.42 18.01 12.333
2 19.3 28.717 17.47 14.174
3 12.39 13.55 9.137 13.04
4 12.18 16.313 8.369 9.6

Mean 16.105 21 13.2465 12.28675

Alpha (8–13 Hz)

1 22.5 27.72 15.773 12.583
2 14.225 26.71 18.367 10.816
3 13.075 15.538 10.725 6.1018
4 10.347 13.818 10.786 5.2189

Mean 15.03675 20.9465 13.91275 8.679925

Beta (14–30 Hz)

1 20.953 23.1 16.835 13.473
2 18.08 19.4 17.868 14.53
3 10.505 12.123 9.2393 8.168
4 9.842 8.386 6.7793 6.2207

Mean 14.845 15.75225 12.6804 10.597925

Table 3. Statistics of spread (standard deviation and coefficient of variation) for band power of first
four SSVEP harmonics evoked by theta, alpha, and beta frequencies.

Harmonic

1st Harmonic 2nd Harmonic 3rd Harmonic 4th Harmonic

SSVEP Band Age Group Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

Theta (4–8 Hz)

10–20 1.56978 7.64 0.91099 0.392 1.41 16.12 1.6217 7.38
20–40 0.6149 2.42 2.215 7.71 4.59 33.86 3.17 19.44
40–60 3.66 20.33 3.99 22.82 2.57 28.11 3.054 36.49
>60 2.57 20.81 5.33 37.58 3.7 28.37 N/A N/A

Alpha (8–13 Hz)

10–20 N/A N/A 2.14 15.06 1.62 12.39 4.47 43.23
20–40 1.76 6.37 1.82 6.82 1.92 12.37 3.32 24.02
40–60 3.24 20.56 5.43 29.54 6.66 62.09 2.08 19.27
>60 1.54 12.28 4.81 44.5 2.73 44.7 2.52 48.2

Beta (14–30 Hz)

10–20 4.03 19.25 6.58 36.41 3.25 30.95 4.07 41.37
20–40 8.68 37.57 6.47 33.34 5.62 46.37 6.01 71.66
40–60 3.96 23.51 3.37 18.85 4.72 51.07 2.54 37.51
>60 0.6025 4.47 6.12 42.09 1.38 16.83 3.07 49.43
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3.3. Cognitive Function, Development, and Deterioration

As mentioned before, SSVEP frequency detection accuracy and band power/Fourier amplitude
peak between ages 20–40 (approximately 30) and decrease thereafter. Furthermore, Table 4 shows that
the Pearson correlation coefficients between age, frequency detection accuracy, and SSVEP band power,
which exhibit inverse variation between the two factors, are significantly stronger when excluding
age group 10–20 than when including it, suggesting that the method is feasible only for age groups
above 20.
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Table 4. Coefficients of correlation with age for SSVEP band power and stimulus frequency detection
accuracy including (light beige) and excluding (light blue) age group 10–20.

Stimulus Frequency Band (Hz)

Theta (4–8) Alpha (9–13) Beta (14–30)

SSVEP Feature F O F O F O

Frequency Detection Accuracy −0.62 −0.29 −0.27 −0.34 −0.09 −0.21
−0.73 −0.804 −0.81 −0.87 −0.37 −0.45

Band Power
−0.80 −0.82 −0.54
−0.87 −0.91 −0.55

Note: SSVEP—Steady-State Visually Evoked Potential. F-Frontal. O-Occipital.

3.4. Optimal Frequency Range and Cerebral Region for Cognitive Assessment

Results showed that the alpha frequency band was the best indicator of cognitive decline. Figure 4
shows a clear correlation between frequency detection accuracy and age; as shown, the alpha stimulus
frequencies elicited the greatest change in detection accuracy as a function of age. Moreover, as shown
in Table 1, the variations obtained for theta and alpha frequency stay within an acceptable range
(<30%), whereas spread in beta frequency detection accuracy often exceeds standards of reliability.
Furthermore, although frontal responses demonstrated feasibility as indicators of cognitive aging,
trends pertinent to occipital responses were significantly stronger, as demonstrated by Figure 5. Thus,
as demonstrated by R2 values in Figures 2 and 3, occipital responses to alpha frequencies are the best
indicators of cognitive deterioration.

Analysis of variance (ANOVA) with p < 0.05 showed that age group, frequency band, and electrode
region have substantial effect on frequency detection accuracy and SSVEP band power. Furthermore,
EEG signals elicited by 7.5 Hz (p = 0.00037) and 12 Hz (p = 0.0008) were most impacted by age. The
alpha stimulus frequencies were, on average, the strongest indicators of cognitive aging. This finding,
however, was not present in the effect of age group on detection accuracy of beta stimulus frequencies,
suggesting that the variation in beta frequency detection accuracies is too high for the data to be
considered reliable.
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Figure 5. Mean detection accuracy of theta, alpha, and beta stimulus frequencies in frontal and occipital
SSVEP signals.

3.5. Prediction using Neural Network

A neural network was trained (Bayesian regularization) using stimulus frequency detection
accuracy and band power (dB/Hz) of SSVEPs evoked by alpha stimulus frequencies in age groups
20–40 and above. This neural network displayed high predictive power, as the correlation coefficient
between the target values and the output values was high, ~0.988. Table 5 shows the neural network
outputs when tested with random inputs. The training, testing, and validation results of the neural
network are shown in Figure 6, and the training performance of the neural network at varying data
segments is shown in Figure 7.

Table 5. Neural network predictions of cognitive age when given random frequency detection accuracies
(alpha band, occipital region) and band power values as inputs.

Inputs
Output (Predicted Cognitive Age)

Alpha Frequency Detection Accuracy (%) Alpha Band Power (dB/Hz)

94.0 28.1 22.7
86.5 25.9 20.2
59.0 15.8 49.0
45.0 16.1 53.7
57.0 12.8 68.6
46.0 10.3 81.3
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4. Discussion and Conclusions

The SSVEP-based diagnosis BCI system was used with subjects of varying age to determine its
ability to detect cognitive aging, and if possible, identify the manner in which it is manifested by
features of steady-state visually evoked potentials (SSVEPs). The results of this study suggest that
SSVEPs elicited by flickering stimuli may be valuable biomarkers of cognitive deterioration because
SSVEP features such as band power and presence of stimulus frequencies in the signal, exhibited
a sharp decline as a function of age, particularly in EEG signals elicited by alpha (8–13 Hz) flicker
frequencies. These results were used to train an artificial neural network that effectively predicts
cognitive age based on SSVEP band power and detection accuracy of stimulus frequencies in the signal.

The results of this study suggest that detection accuracy of stimulus frequencies in SSVEP
signals indicate cognitive decline in age groups 20–40 and above. As demonstrated by Figure 4,
frequency detection accuracy within the SSVEP signal reaches a peak for age group 20–40 and declines
continuously afterwards. Similarly, other studies report a recession in accuracy in elderly subjects [11].
The increase in detection accuracy between age groups 10–20 and 20–40 can be attributed to ongoing
cognitive development, which, according to recent studies may continue up to the mid-twenties;
cognitive deterioration typically begins in the 30s or 40s [3]. For this reason, it is more practical to use
this application to gauge cognitive function for this age range. This is further corroborated by Table 4,
which shows that the Pearson correlation coefficients between age and frequency detection accuracy
and SSVEP band power, which exhibit inverse variation between the two factors, are significantly
stronger when excluding age group 10–20 than when including it.

Figure 2 demonstrates an inversely proportional relationship between age (20 and above) and
detection accuracy of theta, alpha, and beta stimulus frequencies in the SSVEP signal. However, while
the relationship between theta frequency detection accuracy and age seems to be linear, as shown in
Figure 2a, detection accuracy of alpha and beta frequencies, shown in Figures 2b and 3c, reaches a plateau
between ages 20 and 40, and exhibits a precipitous decline afterward. Likewise, studies indicate that
larger SSVEP responses are associated with more efficient functional network topology in the human
brain, suggesting that this trend could be caused by the aging of these systems [9]. Additionally, while
detection accuracy of theta stimulus frequencies in SSVEPs can be effectively modeled using linear
regression, detection accuracies of alpha and beta frequencies are better represented by quadratic
regression models.

Similar trends are manifested by SSVEP band power (or Fourier amplitude) at theta, alpha, and
beta frequencies, as can be seen in Figure 3 and Table 2. SSVEP band power displays an overall
decrease as a function of age, in EEG responses to all three frequency bands. As in the case of frequency
detection accuracy, its relationship with age can be delineated using quadratic regression, and it peaks
at age group 20–40. Table 2 also demonstrates that SSVEP Fourier amplitude is typically highest at the
first and second harmonics. Furthermore, Table 3 shows that the first harmonic of theta-evoked and
alpha-evoked SSVEPs are the most reliable indicators of cognitive deterioration.

The results demonstrate that although these trends can be discerned in EEG responses to all
frequency bands, the alpha band was shown to be the best indicator of cognitive decline. As shown
in Figure 4, the alpha band displays the most change as a function of age. In addition, as shown in
Figures 2 and 3, detection accuracy of and SSVEP band power at alpha stimulus frequencies display the
highest R2 values (0.80 occipital and 0.81, respectively), and thus demonstrate the greatest conformity
with the previously described trends. The lowest R2 values (0.3046 for frequency detection accuracy
and 0.2923 for SSVEP band power) occurred for EEG responses to beta stimulus frequencies, shown
in Figure 2c, suggesting that these frequencies are the least reliable indicators of cognitive decline.
Furthermore, in Figure 2 (c.2), various outliers can be noted. These outliers may arise as a result of
high levels of variation, which are typical of human systems, within EEG responses to beta stimuli.
It is interesting to note that the highest outlier, occurring between ages 40 and 60, belongs to a subject
who is a regular yoga practitioner.
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Another significant trend, presented in Figure 5, was established by the results, in which the mean
detection accuracy of theta stimulus frequencies was detected with higher accuracy in frontal SSVEPs
than in occipital SSVEPs, while alpha and beta frequencies were detected with higher accuracy in
occipital SSVEPs. Furthermore, detection accuracies in occipital SSVEPs have lower variation levels, as
demonstrated by fairly shorter error bars. This suggests that detection accuracy of stimulus frequencies
in SSVEPs elicited in the occipital region have greater reliability. These trends can be attributed to the
origin of theta and alpha SSVEP signals: While the primary source of theta waves is the frontal midline,
alpha waves predominate in the occipital cortex. Thus, one can infer that the detection accuracy of
frequencies pertaining to particular bands, found in specific regions in the human brain, depends on
the location of the SSVEP being analyzed.

An artificial neural network for predicting cognitive age was trained using detection accuracy of
alpha stimulus frequencies in occipital SSVEPs and band power of alpha frequencies in the SSVEP
signal, as these were the best indicators of cognitive decline in this study. As shown in Figure 6c, the
correlation coefficient between the network outputs and the target outputs is relatively high, showing
that the model fits the data well.

The OpenBCI system which was used to collect the EEG data, had high levels of impedance
when placing electrodes on the subject’s scalp; thus, conducting gel was used to lower the impedance.
Furthermore, the data collected from the frontal region had many artifacts compared to data collected
from the occipital region, including eye blinks. These were removed by bandpass filtering, but frontal
EEG data displayed significantly more error than occipital EEG data. This study can be improved
with a broader subject population and sample size; furthermore, in order to achieve a larger level of
specificity with this method, it is aimed to test the method on patients with mild cognitive impairment
and explore other SSVEP features that can be used as indicators of cognitive deterioration. This study
shows that SSVEP-based diagnosis BCI system can be used to verify cognitive deterioration due
to aging.
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