
big data and
cognitive computing

Article

Comparative Study between Big Data Analysis
Techniques in Intrusion Detection

Mounir Hafsa 1,* and Farah Jemili 2,*
1 Higher Institute of Computer Science and Telecom (ISITCOM), University of Sousse,

Hammam Sousse 4011, Tunisia
2 MARS Research Lab LR17ES05, Higher Institute of Computer Science and Telecom (ISITCOM),

University of Sousse, Hammam Sousse 4011, Tunisia
* Correspondence: mounir_hafsa@outlook.fr (M.H.); jmili_farah@yahoo.fr (F.J.)

Received: 12 November 2018; Accepted: 15 December 2018; Published: 20 December 2018 ����������
�������

Abstract: Cybersecurity ventures expect that cyber-attack damage costs will rise to $11.5 billion in
2019 and that a business will fall victim to a cyber-attack every 14 seconds. Notice here that the time
frame for such an event is seconds. With petabytes of data generated each day, this is a challenging
task for traditional intrusion detection systems (IDSs). Protecting sensitive information is a major
concern for both businesses and governments. Therefore, the need for a real-time, large-scale and
effective IDS is a must. In this work, we present a cloud-based, fault tolerant, scalable and distributed
IDS that uses Apache Spark Structured Streaming and its Machine Learning library (MLlib) to detect
intrusions in real-time. To demonstrate the efficacy and effectivity of this system, we implement the
proposed system within Microsoft Azure Cloud, as it provides both processing power and storage
capabilities. A decision tree algorithm is used to predict the nature of incoming data. For this task, the
use of the MAWILab dataset as a data source will give better insights about the system capabilities
against cyber-attacks. The experimental results showed a 99.95% accuracy and more than 55,175
events per second were processed by the proposed system on a small cluster.

Keywords: intrusion detection system; machine learning; Apache Spark; Structured Streaming; Big
Data; Decision Trees; Microsoft Azure Cloud

1. Introduction

In 2017, the world experienced some of the biggest cyber threats in the internet era.
From WannaCry ransomware to the Equifax attack and other data breaches of services such as Uber and
Yahoo [1], a phenomenon known as “burst attacks” grew in complexity and frequency. Burst attacks
are short and can happen in a small-time frame, like a few minutes. The Cisco Cybersecurity Reports
show that 42% of organizations experienced this type of Distributed Denial of Service (DDoS) attack in
2017 [2].

As of 2018, the amount of data generated each day is exceeding petabytes and this includes
the traces that internet users leave when they access a website, mobile application or a network.
These traces or “log data” are getting enormous each day as they are being produced by not only one,
but sometimes many sources. The wise use of log data can give an advantage in identifying malicious
connections, thus protecting the network from future attacks. However, the short time window that
hackers are using can cripple even good systems as they attack in a short period of time. The need
for a real-time detection system that can scale to the amount of data being ingested and act quickly in
terms of response time can give an edge over these types of attacks.

To detect and signal anomalous activities, an intrusion detection system (IDS) is used.
Sig Myers et al. [3] defined IDS as a system that delivers real-time, reliable analysis of network

Big Data Cogn. Comput. 2019, 3, 1; doi:10.3390/bdcc3010001 www.mdpi.com/journal/bdcc

http://www.mdpi.com/journal/bdcc
http://www.mdpi.com
https://orcid.org/0000-0001-7161-2897
http://www.mdpi.com/2504-2289/3/1/1?type=check_update&version=1
http://dx.doi.org/10.3390/bdcc3010001
http://www.mdpi.com/journal/bdcc

Big Data Cogn. Comput. 2019, 3, 1 2 of 13

traffic to determine whether the network is being (or has been) attacked. Cloud computing provides
processing power, storage, services and applications over the Internet [4]. The most known cloud
service providers are Amazon (AWS), Microsoft Azure and Google Cloud Platform. The use of
on-premises and public cloud infrastructure is growing. Cisco Reports [2] show that security is seen as
a key benefit of hosting networks in the cloud, as it gives an extra layer of security.

In order to ingest and process huge amounts of data, big data tools such as Apache Hadoop [5]
and Apache spark [6] are used. Hadoop is an open source project that has been the leader in the Big
Data world. It uses Map-Reduce to process huge amounts of data and store it in the HDFS (Hadoop
Distributed File System). Spark proved to be 10× to 100× faster than Hadoop as it uses in-memory
computation. Spark supports SQL queries, streaming data, machine learning and graph processing
and it can run on Hadoop or use HDFS to store data.

Based on the methods and shortcomings of existing works, we propose a new approach that
aims to provide an accurate classification of cyber-attacks in real-time. The design of the proposed
approach will take into consideration the current trends in cloud computing and Big Data tools.
To fulfill these requirements, there is a need for an Intrusion Detection System that can handle real-time
streaming data. The final product will be a real-time, Big Data framework implemented within a
cloud infrastructure and tested against real-world traffic data using a Machine Learning algorithm.
The rest of the paper is organized as follows. In Section 2, there is a review of the related research
which deals with IDS and Cloud Computing. Moreover, Section 3 presents the proposed system and
its components. Section 4 illustrates the evaluation metrics and results of the tested system. Finally,
Section 5 provides conclusions and offers new possibilities for the development of future work.

2. Literature Review

Intrusion detection has always been a major concern in scientific papers [7,8]. Since the evolution
of the modern Internet, with Big Data coming to the surface along with Cloud Computing, researchers
are more eager to find new solutions to this dilemma. Many methods were used to detect intrusions
over a network, ranging from data mining approaches to Machine Learning algorithms. Different tools
were also deployed. In this section, we discuss the state-of-the-art intrusion detection techniques in
Big Data.

Muhammad et al. [9] introduced a real-time network intrusion detection system based on Apache
Storm. This work consists of applying the Support Vector Machine (SVM) algorithm on streaming
data coming from the Knowledge Discovery Database (KDD) cup 99 dataset. The system can process
up to 13,600 packets in a second on a single machine with 92.60% accuracy on testing data. Although
this work gave performance metrics for one machine, it has not been tested on a multi-node cluster to
monitor its performance. The lack of a distributed environment is the missing key.

Mustapha et al. [10] used Apache Spark and MLlib to test the performance of intrusion detection
using four Machine Learning algorithms, namely Support Vector Machine (SVM), Naïve Bayes,
Decision Tree and Random Forest, against the UNSW-NB15 dataset. Their work shows that Random
Forest yields the best performance in terms of accuracy (97.49%), sensitivity (93.53%) and specificity
(97.75%). This is followed by Decision Trees, while Naïve Bayes gave the worst accuracy with 74.19%.
This work used Apache Spark, although only with batch processing and no stream processing to
classify data.

Pallaprolu et al. [11] applied Apache Spark Streaming to detect zero-day attacks. Here, the
proposed system is tested with the KNN algorithm that showed a precision of 99.57% with a True
Positive Rate (TPR) of 94% and a False Positive Rate (FPR) of 3%. In addition, the system has been
tested in a distributed environment to test its scalability. Although this work shows that they classify
incoming data in near real-time, they only used a relatively small test data set to evaluate their system,
which does not quite fit the real-world scenario.

Gupta et al. [12] introduced a Spark-based intrusion detection framework. Their system has
been implemented with two feature selection algorithms: correlation-based feature selection and

Big Data Cogn. Comput. 2019, 3, 1 3 of 13

Chi-squared feature selection. To evaluate their performances, they used five Machine Learning
algorithms (Logistic Regression, SVM, Naïve Bayes, Random Forest and GB Tree) on NSL-KDD and
DARPA 1999 dataset. Despite using Spark’s batch processing mode for their work, their results show
that the Random Forest classifier yields the best accuracy but the worst prediction time, while Naïve
Bayes holds the worst accuracy but has a faster training/prediction time. The use of the DARPA
dataset, which is relatively old and contains duplicate and unreal network traffic data, unfortunately
leads to false predictions. To the best of our knowledge, the distributed test environment is missing.

Terzi et al. [13] created a new unsupervised anomaly detection approach and used it with Apache
Spark on Microsoft Azure (HDInsight) to harvest Spark’s scalable processing power. The new approach
was tested on CTU-13 (a botnet traffic dataset) and achieved a 96% accuracy rate. The drawback of this
work is that it cannot detect anomalies that were similar to normal traffic. NetFlow data that have been
used in their approach are often captured by ISPs for auditing and performance monitoring purposes.
Sadly, this kind of sample is lacking the raw content of network packets [14].

Casas et al. [15] have used Apache Spark Streaming (RDD version) to detect anomalies and have
compared its performance with other frameworks. Frameworks that are specifically built for anomaly
detection have shown good performance; better than that of Spark Streaming. Unfortunately, they
used the RDD deprecated version of Spark Streaming and not the new and faster Data Frame version
of Spark Structured Streaming that we will be using in this work.

Our Spark-based network Intrusion Detection System will focus mainly on detecting anomalies
in streaming data coming from a daily updated dataset (MAWILab) and applying a Decision Tree
classifier using a multi-node distributed cluster within Microsoft Azure (HDInsight). Thus, we provide
a fault tolerant, real-time and scalable system that adapts to the velocity of data by adding and
shrinking the number of machines.

3. Research Methodology

Our work involves several steps that start with ingesting data all way to predicting anomalies
in real-time. For each step, different tools are used to get the best of Microsoft Azure Cloud services.
The proposed system is supposed to handle a continuous stream of data coming from the Fukuda
Lab website. Two major sections are discussed here. The first part tackles the extraction of dataset
files, followed by the transformation of these files and finally the preparing/cleaning. The second
section will handle classifying data with the help of a Machine Learning pipeline. Figure 3 shows the
overall process.

3.1. Data and Methods

3.1.1. Dataset Description

Both Casas et al. [15] and Callegari et al. [16] used the MAWILab dataset. Since 2001, 15 min
network traffic traces are captured on a backbone link between Japan and the US. These network traffic
traces are published in both CSV and XML format.

These network traffic data are collected by the Fukuda Lab and available for research purposes.
This dataset uses a combination of four anomaly detectors (Hough transform, Gamma distribution,
Kullback-Leibler divergence and Principal Component Analysis (PCA)) [17]. In addition, it contains
four principal categories [18]: anomalous, suspicious, notice and benign. In addition, ten fields are
ordered as follows: anomalyID, srcIP, srcPort, dstIP, dstPort, taxonomy, heuristic, distance, nbDetectors
and a label column. The heuristic field inspects the port number, TCP flags and ICMP codes of
anomalous traffic and assigns a code to each anomaly. If the code value is lower than 500, it means
the anomalous traffic is using well-known suspicious ports or it contains an abnormally high number
of packets with a SYN, RST or FIN flag. Table 1 below shows twelve anomalies with a code value
below 500.

Big Data Cogn. Comput. 2019, 3, 1 4 of 13

Table 1. Anomalies with a code value below 500.

Code Anomaly

1 Sasser worm
2 NetBIOS attack
3 Remote Procedure Call (RPC) attack
4 Server Message Block (SMB) attack
10 SYN attack
11 Reset (RST) attack
12 FIN attack
20 Ping flood
51 File Transfer Protocol (FTP) attack
52 Secure Shell (SSH) attack
53 HyperText Transfer Protocol (HTTP) attack
54 Hypertext Transfer Protocol Secure (HTTPS) attack

else Other

If the code value is between 500 and 900, it means that the anomaly is seen on well-known ports.
Table 2 below presents five different anomalies with a code value between 500 and 900.

Table 2. Anomalies with a code value between 500 and 900.

Code Anomaly

501 File Transfer Protocol (FTP) traffic
502 Secure Shell (SSH) traffic
503 HyperText Transfer Protocol (HTTP) traffic
504 Hypertext Transfer Protocol Secure (HTTPS) traffic
else Other

If the code value is higher than 900, it means the anomaly is seen on unknown ports. The code
901 represents unknown ports.

3.1.2. Apache Spark

Apache Spark is a fast-distributed engine for large-scale data processing and Machine Learning
tasks. It was developed at UC Berkeley in 2009 [19]. The famous project has been adopted by many
internet pioneers like Netflix, Yahoo and eBay. It is Scala based, but offers APIs for Java, Python and
R. Spark has a diversified ecosystem which is shown in Figure 1. Spark Core provides the concept of
resilient distributed datasets (RDDs) that enables caching data in-memory and not reading it from the
disk every time. Spark Streaming enables Spark to be a real-time stream processing engine by turning
incoming data into a Discretized Stream (DStream) to deliver insights in a fast and fault tolerant way.
Spark uses micro-batches to process live data [20].

Big Data Cogn. Comput. 2019, 3, 1 5 of 13

Big Data Cogn. Comput. 2018, 2, x FOR PEER REVIEW 5 of 13

Figure 1. Apache Spark Ecosystem [19].

Spark Structured Streaming was introduced by Armbrust et al. [21] to tackle issues with

streaming systems and provide an easy to use, real‐time and high‐performance stream processing

engine built on top of the Spark SQL engine. The idea behind Structured Streaming is to treat any

data feed as an unbounded table. New records added to the stream are like rows being inserted into

a table [22]. Figure 2 explains the concept in a clear way. Structured Streaming outperformed other

stream processing engines like Apache Flink by up to 2.9× and Apache Kafka Streams by 90× using

the Yahoo! Streaming Benchmark [23,24].

Spark MLlib is a collection of popular Machine Learning and data mining algorithms. It enables

predictions, recommendations and feature extraction at scale. Like Structured Streaming, Spark

Machine Learning is a new data frame library. Spark Machine Learning is replacing the RDD‐based

MLlib due to its fast processing capabilities [22].

Figure 2. Structured Streaming Model [25].

3.1.3. Microsoft Azure

Microsoft Azure, formally known as Windows Azure, is a cloud computing platform for

building, deploying and managing services and applications anywhere with the help of a global

network of managed data centers located in 54 regions around the world [26]. It offers software as a

service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS). Customers can use

any programming language, tool and framework with a growing marketplace of services [27].

Microsoft’s HDInsight is a managed Hadoop service in Azure Cloud that uses the Hortonworks

Data Platform (HDP). HDInsight clusters can be customized easily by adding additional packages

and can scale up in case of high demand by allocating more processing power. The cluster consists

of different types of virtual machines with the possibility of storing data separately in Azure Blob

Storage or Azure Data Lake instead of HDFS. The data managed by Azure is protected by the Azure

Active Directory and persists even after the cluster is deleted.

3.1.4. Decision Tree Classifier

Figure 1. Apache Spark Ecosystem [19].

Spark Structured Streaming was introduced by Armbrust et al. [21] to tackle issues with streaming
systems and provide an easy to use, real-time and high-performance stream processing engine built
on top of the Spark SQL engine. The idea behind Structured Streaming is to treat any data feed as
an unbounded table. New records added to the stream are like rows being inserted into a table [22].
Figure 2 explains the concept in a clear way. Structured Streaming outperformed other stream
processing engines like Apache Flink by up to 2.9× and Apache Kafka Streams by 90× using the
Yahoo! Streaming Benchmark [23,24].

Spark MLlib is a collection of popular Machine Learning and data mining algorithms. It enables
predictions, recommendations and feature extraction at scale. Like Structured Streaming, Spark
Machine Learning is a new data frame library. Spark Machine Learning is replacing the RDD-based
MLlib due to its fast processing capabilities [22].

Big Data Cogn. Comput. 2018, 2, x FOR PEER REVIEW 5 of 13

Figure 1. Apache Spark Ecosystem [19].

Spark Structured Streaming was introduced by Armbrust et al. [21] to tackle issues with

streaming systems and provide an easy to use, real‐time and high‐performance stream processing

engine built on top of the Spark SQL engine. The idea behind Structured Streaming is to treat any

data feed as an unbounded table. New records added to the stream are like rows being inserted into

a table [22]. Figure 2 explains the concept in a clear way. Structured Streaming outperformed other

stream processing engines like Apache Flink by up to 2.9× and Apache Kafka Streams by 90× using

the Yahoo! Streaming Benchmark [23,24].

Spark MLlib is a collection of popular Machine Learning and data mining algorithms. It enables

predictions, recommendations and feature extraction at scale. Like Structured Streaming, Spark

Machine Learning is a new data frame library. Spark Machine Learning is replacing the RDD‐based

MLlib due to its fast processing capabilities [22].

Figure 2. Structured Streaming Model [25].

3.1.3. Microsoft Azure

Microsoft Azure, formally known as Windows Azure, is a cloud computing platform for

building, deploying and managing services and applications anywhere with the help of a global

network of managed data centers located in 54 regions around the world [26]. It offers software as a

service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS). Customers can use

any programming language, tool and framework with a growing marketplace of services [27].

Microsoft’s HDInsight is a managed Hadoop service in Azure Cloud that uses the Hortonworks

Data Platform (HDP). HDInsight clusters can be customized easily by adding additional packages

and can scale up in case of high demand by allocating more processing power. The cluster consists

of different types of virtual machines with the possibility of storing data separately in Azure Blob

Storage or Azure Data Lake instead of HDFS. The data managed by Azure is protected by the Azure

Active Directory and persists even after the cluster is deleted.

3.1.4. Decision Tree Classifier

Figure 2. Structured Streaming Model [25].

3.1.3. Microsoft Azure

Microsoft Azure, formally known as Windows Azure, is a cloud computing platform for building,
deploying and managing services and applications anywhere with the help of a global network of
managed data centers located in 54 regions around the world [26]. It offers software as a service (SaaS),
platform as a service (PaaS) and infrastructure as a service (IaaS). Customers can use any programming
language, tool and framework with a growing marketplace of services [27].

Microsoft’s HDInsight is a managed Hadoop service in Azure Cloud that uses the Hortonworks
Data Platform (HDP). HDInsight clusters can be customized easily by adding additional packages
and can scale up in case of high demand by allocating more processing power. The cluster consists of
different types of virtual machines with the possibility of storing data separately in Azure Blob Storage
or Azure Data Lake instead of HDFS. The data managed by Azure is protected by the Azure Active
Directory and persists even after the cluster is deleted.

Big Data Cogn. Comput. 2019, 3, 1 6 of 13

3.1.4. Decision Tree Classifier

Decision Trees are a supervised Machine Learning algorithm that is known to perform well if
it is well configured. It supports both numerical and categorical data and it can handle large data
sets. A Decision Tree can be represented with nodes and edges, and it is composed of a root node that
performs the first split and leaf nodes in which we can find the predicted results. Generally, splitting is
based on entropy and information gain.

In this work we used decision trees due to its simplicity and effectiveness. After testing
off-the-shelf classification algorithms, we found the following results: Naïve Bayes gave around
70% accuracy, Random Forest gave 98.81% accuracy and Decision Trees gave 99.23% accuracy.

3.2. Extract, Transform and Prepare

Extracting data: This process will involve collecting dataset files from the Fukuda Lab website
and loading it into Microsoft Azure Blob Storage [28]. This service is built to meet HDFS standards and
use global and local replication with exabytes of capacity and massive scalability along with enterprise
grade security. Two tools are used here: Microsoft Azure SDK for Python [29], a set of Python packages
that make it easy to access components of Microsoft Azure, and Beautiful Soup, a Python library for
pulling data out of HTML and XML files.

Beautiful Soup makes it easier to pull new data directly from the Fukuda Lab and upload it into
Azure Blob Storage. Using a publish-subscribe messaging system like Apache Kafka or Azure Service
Bus would be more practical, but unfortunately the website does not provide a single directory for
published files, but instead each file is within a separate HTML page containing both CSV and XML
files. The use of a web scraper to collect published files seemed more practical in the absence of a
unified directory.

The remaining operations will be conducted using a Microsoft HDInsight cluster running Spark
Structured Streaming. As mentioned before, Structured Streaming is built on top of the Spark SQL
engine, which gives us many advantages including:

1. Exactly once delivery—this means that the message is only delivered once. It is neither getting
lost or duplicated.

2. Providing end-to-end reliability with Structured Streaming and achieving fault tolerance is done
by specifying a checkpoint directory where all metadata is saved. Besides, even if the entire
cluster fails, work can be restarted on a new cluster. Spark supports many data sources such as
file source, Apache Kafka, socket and rate source [25].

Transforming data: We proceed with the creation of an HDInsight Spark Cluster in which we
can perform data manipulation in a distributed manner. We will be using the Python API (PySpark)
and Jupyter Notebook with Apache Spark. In this step, we will be reading CSV files as a stream and
converting them to Apache Parquet format. Listing 1 shows the code used to read CSV files as a stream.
Since Apache Spark supports multiple operations on data, it offers the ability to convert data to another
format in just one line of code. Developed by Twitter and Cloudera, Apache Parquet is an open-source
columnar file format that is optimized for query performance and minimizing I/O, offering very
efficient compression and encoding schemes [30]. Table 3 shows the efficiency and effectiveness of
using Parquet format. We notice that by converting CSV to Parquet, both cost and performance are
improved. This format minimizes not only the time wasted on waiting for data to be scanned and
processed, but also storage costs. The MAWILab dataset is updated daily. Any new file added to their
website will be immediately ingested by our web scraper. As different file sizes can be published, we
used an average file size to determine an approximate size gain for each new file. Table 4 shows the
old and new size after converting to Apache Parquet. Listing 2 shows the code used to export CSV to a
specified sink with the new format ‘Parquet’.

Big Data Cogn. Comput. 2019, 3, 1 7 of 13

Table 3. Savings and speedup with Apache Parquet [30].

Dataset Size on Amazon S3 Query Run Time Data Scanned Cost

Data stored as CSV files 1 TB 236 s 1.15 TB $5.75
Data stored in Apache

Parquet format 130 GB 6.78 s 2.51 GB $0.01

Savings/Speedup 87% less using parquet 34× faster 99% less data scanned 99.7% savings

Table 4. Average file size before and after converting.

Average Size (CSV) Average Size (Parquet) Speedup

9.5 Kb 6.5 Kb ×1.46

Preparing data: This is a time-consuming task due to its importance to the overall performance.
Choosing the right features for our machine learning model and dealing with missing fields can give a
boost to the accuracy of our system. This task involves three different approaches consisting of feature
selection, filling missing values and finally removing duplicates. We proceed by reading Parquet files
as a stream like we did with CSV files. We can specify the option “maxFilesPerTrigger” at the start to
limit how many files are collected with each trigger. It is set to maximum by default.

The first approach is feature selection, which limits the size of the dataset as well the computational
power. According to Ullah et al. [31], using all features is inefficient. Therefore, specific features that
contribute to the detection process are selected.

Unnecessary features like anomaly_id and label (empty column) are deleted to minimize the
computational process. We did not use the feature selection algorithm for this task, but instead selected
columns that were relevant. After removing anomaly_id and label, we end up with a total of eight
columns. Since we have a low number of features and a high number of historical samples to train
our Machine Learning algorithm, we will not be applying a feature selection algorithm to avoid
unnecessary computations.

Listing 1. Spark read stream.

streamingInputDF = (spark.readStream.schema(FSchema).
option(“header”,True).csv(Source_path_CSV))

The second approach involves filling missing values. Data is naturally messy and sometimes
missing fields are found in big datasets. To overcome this issue, we suggest a simple yet effective
approach. Instead of deleting records containing missing fields, we proposed filling them with default
values if known as an effort to make the dataset complete.

Listing 2. Spark write stream.

query = (streamingInputDF.writeStream.format(“parquet”)
.option(“checkpointLocation”,“/checkpoint_location”)

.option(“Path”,“/Parquet_Files_Path/”).start())

Getting rid of duplicates was our third approach. The removal of redundant records helps with
attack detection as it makes the system less biased by the presence of more frequent records. This tactic
makes computation faster as it must deal with less data [32]. Spark’s Structured Streaming API
provides a solution to remove duplicate rows from a continuous stream of data by using a unique
identifier column. Spark will store the necessary amount of data from previous records, so it can filter
duplicate records.

3.3. Real-Time Classification

After preparing the data, we proceed by loading our Machine Learning pipeline model that
contains a Decision Tree classifier and we transform incoming data to obtain predictions for each
record. Listing 3 below demonstrates the operation of loading the model.

Big Data Cogn. Comput. 2019, 3, 1 8 of 13

Listing 3. Loading Machine Learning (ML) model.

model = PipelineModel.read().load(“Path_to_ML_Model”)
dflive = model.transform(LiveData)

The final step is writing predictions to a sink/output location, which is done by specifying the
format of the output data (ex: Parquet, JSON, etc.), a checkpoint location to assure fault tolerance and
finally an output sink. Other options can be added. Listing 4 below demonstrates the operation of
writing predictions to Parquet format. The start() command must be specified to begin the streaming
job. During the streaming job, Spark will ingest, classify and write each file to the chosen sink. The sink
can be a file directory, a database or even another Spark job. To stop reading streaming data, we use
the query.stop() command. In order to understand the concept of a Machine Learning pipeline, we
demonstrate in the next part the steps used to create, train and save our pipeline using Apache Spark
Machine Learning.

Listing 4. Loading ML model.

query = (dflive.select(‘srcIP’, ‘srcPort’, ‘dstIP’, ‘dstPort’,‘label’, ‘label_ix’,‘prediction’) .writeStream.format
(“parquet”).option(“checkpointLocation”,“Checkpoint_location_Path”). option(“Path”,“Predictions_
Path”).start())

3.4. Machine Learning Pipeline

In this section, we show the creation of a Machine Learning pipeline using the Apache Spark
Machine Learning library. We first introduce the key components of the pipeline. Next, we introduce
the workflow and steps taken to create the pipeline. Finally, we describe the detection schemes that
we implemented and integrated in the system. A pipeline is a sequence of stages where each stage is
either a Transformer or an Estimator. These stages are run in order. The input will be a data frame that
is transformed as it passes through each stage. In our work, we used two transformers: a StringIndexer
and a VectorAssembler.

1. The StringIndexer encodes a string column of labels to a column of label indices. The indices are
ordered by label frequencies, so the most frequent label gets index 0.

2. The VectorAssembler is a transformer that combines a given list of columns in a single vector
column. It is useful for combining raw features and features generated by different feature
transformers into a single feature vector in order to train Machine Learning models like Logistic
Regression and Decision Trees.

The final stage in our pipeline was adding a Decision Tree classifier. Following this, we used a
portion of historic data collected from the datasets to train our pipeline model. The data used will pass
through each mentioned stage above. Often, it is worth it to save a model or a pipeline to a disk for
later use.

In Spark, pipeline import/export functionality is supported and this enables us to save a trained
pipeline or Machine Learning model for future use. As shown in Figure 3, we have a pipeline model
saved in Azure Blob Storage. The process of creating a pipeline model is done offline. Our model can
be updated manually to train on new data and can be exported again to replace the old model. In the
next chapter, we discuss the implementation of the proposed system in Microsoft Azure and evaluate
its performance.

Big Data Cogn. Comput. 2019, 3, 1 9 of 13

Big Data Cogn. Comput. 2018, 2, x FOR PEER REVIEW 9 of 13

Figure 3. Diagram of proposed approach.

4. Experimentation Results

4.1. Experiment Setup

The environment chosen to perform the tests is Microsoft Azure as it provides HDInsight, a

managed Hadoop distribution, so that we can test the system in a realistic, real‐world environment

and use multiple nodes in our Spark cluster to ensure distributed computing.

To conduct our experiments, we used Microsoft Azure HDInsight running on Linux virtual

machines and Spark version 2.2.0 running on top of YARN, using Jupyter Notebook and Python API

(Pyspark). This cluster is equipped with two 2 head nodes and two 2 worker nodes. Characteristics

are listed in Table 5.

Table 5. Setup used to test our approach.

 Head Node Worker Node

Name D3 V2 optimized D4 V2 optimized

Number 2 2

CPU 4 vCPUs 8 vCPUs

Memory (RAM) 14 GB 28 GB

Storage 200 GB SSD 400 GB SSD

Operating System (OS) Linux (CentOS) ×64 bit. Linux (CentOS) ×64 bit.

Cost $0.229/h $0.458/h

4.2. Performance Metrics

Apache Spark Machine Learning provides a suite of metrics to evaluate the performance of

Machine Learning models [33]. The metrics used in our work to measure the performance of the

pipeline are as shown in Table 6.

Table 6. Evaluation metrics.

Measure Description Formula

Accuracy Accuracy measures precision across all labels

Precision
Proportion of correct labels that were classified over all

labels

Recall
Proportion of correct labels that were classified

correctly over all positive labels

F‐measure Harmonic average of Precision and Recall 2	
∗

Figure 3. Diagram of proposed approach.

4. Experimentation Results

4.1. Experiment Setup

The environment chosen to perform the tests is Microsoft Azure as it provides HDInsight, a
managed Hadoop distribution, so that we can test the system in a realistic, real-world environment
and use multiple nodes in our Spark cluster to ensure distributed computing.

To conduct our experiments, we used Microsoft Azure HDInsight running on Linux virtual
machines and Spark version 2.2.0 running on top of YARN, using Jupyter Notebook and Python API
(Pyspark). This cluster is equipped with two 2 head nodes and two 2 worker nodes. Characteristics
are listed in Table 5.

Table 5. Setup used to test our approach.

Head Node Worker Node

Name D3 V2 optimized D4 V2 optimized
Number 2 2

CPU 4 vCPUs 8 vCPUs
Memory (RAM) 14 GB 28 GB

Storage 200 GB SSD 400 GB SSD
Operating System (OS) Linux (CentOS) ×64 bit. Linux (CentOS) ×64 bit.

Cost $0.229/h $0.458/h

4.2. Performance Metrics

Apache Spark Machine Learning provides a suite of metrics to evaluate the performance of
Machine Learning models [33]. The metrics used in our work to measure the performance of the
pipeline are as shown in Table 6.

Table 6. Evaluation metrics.

Measure Description Formula

Accuracy Accuracy measures precision across all labels AC = (TP+TN)
TP+FP+TN+FN

Precision Proportion of correct labels that were classified over all labels P = TP
TP+FP

Recall Proportion of correct labels that were classified correctly over
all positive labels R = TP

TP+FN

F-measure Harmonic average of Precision and Recall FM = 2 P∗R
P+R

Where TP = True Positives, TN = True Negatives, FP = False Positives and FN = False Negatives.
The results generated by the pipeline can be seen in Table 7 below:

Big Data Cogn. Comput. 2019, 3, 1 10 of 13

Table 7. Proposed system results.

Accuracy Precision Recall F1 Score

99.95% 99.91% 99.95% 99.93%

Using a Decision Tree in this experiment showed great results as indicated in the previous table.
For each trace in the MAWILab dataset, there are two CSV files. One file is for traffic labeled as
anomalous or suspicious; the other file is for traffic labeled as notice.

In this evaluation we will analyze the MAWILab traffic traces to determine and find some insights.
The MAWILab dataset contains IP addresses for both source and destinations. For this, we will try to
find out the top IP addresses that generate attacks as well as the top IP addresses that were attacked.
In addition, the dataset provides information about the source and destination port. We will then try
to determine which port was used to produce attacks and which port was attacked the most.

As discussed in Section 3.1.1, the MAWILab dataset contains a taxonomy field that provides a
detailed classification of each captured event in the dataset. The taxonomy can be divided into two
major categories, anomalous and normal, where anomalous concerns any event that includes denial of
service (DoS), distributed denial of service (DDoS), port scan and network scan, whether it is ICMP,
UDP or TCP. Normal traffic contains heavy hitter, point-multipoint and others.

The number of events in the overall dataset collected from 2007 to September 2018 contains more
than 1,873,545 events. After running our stream job and Spark Structured Streaming and applying
a deduplication operation to remove duplicate records, we ended up with a total of 560,808 events.
Anomalous events present more than 41.68% of the dataset, while suspicious events present 58.31% of
the dataset. Table 8 shows the top taxonomies found in the anomalous traffic. These top six represent
93% of the overall found taxonomies. Other attack types such as DoS and DDoS represent only 1.74%
of anomalous traffic. We can see that DDoS and DoS attacks are not frequent, but HTTP attacks and
Network Scans occurred frequently. In Table 9 we notice that the most used ports in this dataset for
both anomalous and suspicious traffic are: (1) unknown ports, then followed by (2) port 80 (HTTP), (3)
53 (DNS) and (4) 443 (HTTPS).

Table 8. Number of attacks in anomalous traffic. DoS = denial of service; DDoS = distributed denial
of service.

Attack Multi-Points HTTP Network Scan (TCP) Alpha Flow DDoS DoS

Count 88,429 67,063 23,281 12,427 4162 1928

Table 9. Top 5 source ports with anomalous events.

Port Number 0 (Unknown) 80 443 53 6000

Count 100,656 65,368 18,569 9531 5906

Ivanov et al. [34] shows important metrics to evaluate Apache Spark streaming performance.
Since our work is continuously collecting data generated by the Fukuda Lab, two metrics are used:
processed records per second and input rows per second. Table 10 shows the description of each metric.

Table 10. Metrics used to evaluate our system.

Metric Description Result

Input Rate Describes how many rows were loaded per second. 555,470 rows per second
Processing Rate Describes how many rows were processed per second. 55,175 rows per second

When first launched, Spark processed all files published since 2007 to the time when the tests were
performed on 24 July 2018. More than 555,470 rows were collected, each file containing an average of

Big Data Cogn. Comput. 2019, 3, 1 11 of 13

163 rows. Our proposed system was able to process 55,175 records in a second and collected all files in
one batch. This was possible due to setting the maxFilesPerTrigger to max, which can be limited to one
file or many collected at a time. On 25 July 2018, our system automatically ingested a newly published
file and predictions were made with the same accuracy score. To test the scalability of our system, we
added another worker node with the same hardware. The performance of our cluster increased to
achieve a processing rate of 80,517 rows per second. The performance of our Spark Cluster depends
on two factors:

1. The first factor is the size of the cluster. Although it still varies with the workload, the more
processing power we allocate, the more data the system can process.

2. The second factor is the incoming rate of data. If it is more than what the system can process, it
creates a bottleneck and an intervention is needed to limit the size of the input rate.

In general, this system achieves good classification results along with a good processing speed
that not only meets real-world scenarios, but also can be increased by adding more machines to the
cluster. Apache Spark Structured Streaming provides important functionalities such as dealing with
streaming data. These features make it possible to modify the structure of data, fill missing fields or
drop duplicate records on the fly. Aside from being fault tolerant and distributed, Apache Spark was
able to read and write data from different sources in different formats.

The Decision Tree algorithm showed good classifications. This was possible due to the Spark
Machine Learning library that made the implementation of Machine Learning algorithms easier.
Decision Trees proved to be reliable when dealing with binary classification against streaming
data. While using a Decision Tree in this experiment showed great results, unfortunately one of
the disadvantages of Decision Trees is that each tested object will have only one leaf associated
with it. Also, missing or inaccurate data results lead to false classifications. Accordingly, Fuzzy
Representation is becoming popular in dealing with the problems of missing and inexact data.
This leads to Fuzzy Decision Trees (FDTs) that combine both the readability of Decision Trees with the
Fuzzy Representation of missing data [35]. FDT helps in situations where data is missing or inexact,
for example in intrusion detection.

5. Conclusions and Future Work

In this paper, we discussed the need for a fast, real-time Intrusion Detection System to handle
evolutive traffic and provide classifications to protect a network. Our proposed system uses Apache
Spark Structured Streaming to process and detect anomalies in real-time. Besides being distributed,
scalable and fault tolerant, this system is used with Microsoft Azure to showcase its performance
within a distributed cloud infrastructure. We used the MAWILab dataset to evaluate the proposed
system against cyber-threats. Based on our experimentation, our Spark-based IDS yields a 99.95%
accuracy using a Decision Tree classifier. Achieving good accuracy was not our only top priority; this
system can also process more than 55,175 records in one second using only a two worker-nodes cluster.
Hence, the processing rate can achieve higher rates by allocating more nodes to the cluster.

There are some issues in our approach that could be improved or fixed in the future. First, the
speed of data processing could be improved by using the newly introduced feature of Spark Structured
Streaming: continuous streaming. This makes it possible to process data in milliseconds (1 ms) and not
just seconds. Another improvement would be using Fuzzy Decision Trees (FDTs) [35] to classify data
and not traditional Decision Trees. Another issue we noticed is the advantages of using more than
one evaluation data set. Another potentially useful new feature introduced in Apache Spark is called
Stream-to-Stream joins. This makes joining two different streams of data into one stream possible.
Using this feature to merge data sets will improve the evaluation schemes [36].

For future work, we aspire to test another Big Data framework such as Apache Beam. It is
expected to give interesting results. Using Deep Learning is trendy and it is widely used because it
has the potential to extract better representations from the data to create much better models, and it is

Big Data Cogn. Comput. 2019, 3, 1 12 of 13

inspired by recurrent neural networks [37]. Combining both to produce a Deep Learning approach
based on Big Data technologies for intrusion detection will give an edge over the commonly used
Machine Learning techniques.

Author Contributions: M.H. performed literature review and experiments including data collection,
preprocessing and implementation of proposed approach. This work was supervised by F.J. whom also verified
the writing of the original draft.

Funding: This research received no external funding.

Acknowledgments: The authors would to thank the reviewers for their valuable suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Top-5-Cybersecurity-Concerns-for-2018. Available online: https://www.csoonline.com/article/3241766/
cyber-attacks-espionage/top-5-cybersecurity-concerns-for-2018.html (accessed on 23 June 2018).

2. Cisco Cybersecurity Reports. Available online: https://www.cisco.com/c/en/us/products/security/
security-reports.html#~{}stickynav=2 (accessed on 9 August 2018).

3. Myers, S.; Musacchio, J.; Bao, N. Intrusion Detection Systems: A Feature and Capability Analysis; Baskin School
of Engineering: Santa Cruz, CA, USA, 2010.

4. Stergiou, C.; Psannis, K.E.; Byung-Gyu, K.; Brij, G.B. Secure integration of IoT and Cloud Computing.
FuTure Gener. Comput. Syst. 2018, 78, 964–975. [CrossRef]

5. Apache Hadoop. Available online: www.apache.com/hadoop (accessed on 8 December 2018).
6. Apache Spark. Available online: www.apache.com/spark (accessed on 8 December 2018).
7. Ar, L.; Levent, E.; Vipin, K.; Aysel, O.; Jaideep, S. A comparative study of anomaly detection schemes in

network intrusion detection. In Proceedings of the SIAM Conference on Applications of Dynamical. Systems,
Snowbird, UT, USA, 27–31 May 2003.

8. Massimiliano, A.; Erbacher, R.F.; Jajodia, S.; Persia, M.C.F.; Picariello, A.; Sperli, G.; Subrahmanian, S.V.
Recognizing unexplained behavior in network traffic. Netw. Sci. Cybersecur. 2013, 55, 39–62.

9. Manzoor, M.A.; Morgan, Y. Real-time Support Vector Machine based Network Intrusion Detection system
using Apache Storm. In Proceedings of the IEEE 7th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), Vancouver, BC, Canada, 13–15 October 2016.

10. Belouch, M.; el Hadaj, S.; Idhammad, M. Performance evaluation of intrusion detection based on machine
learning using Apache Spark. Procedia Comput. Sci. 2018, 127, 1–6. [CrossRef]

11. Pallaprolu, S.C.; Sankineni, R.; Thevar, M.; Karabatis, G.; Wang, J. Zero-Day Attack Identification in Streaming
Data Using Semantics and Spark. In Proceedings of the IEEE International Congress on Big Data (BigData
Congress), Honolulu, HI, USA, 25–30 June 2017.

12. Gupta, G.P.; Kulariya, M. A Framework for Fast and Efficient Cyber Security Network Intrusion Detection
Using Apache Spark. Procedia Comput. Sci. 2016, 93, 824–831. [CrossRef]

13. Terzi, D.S.; Terzi, R.; Sagiroglu, S. Big data analytics for network anomaly detection from netflow data.
In Proceedings of the International Conference on Computer Science and Engineering (UBMK), Antalya,
Turkey, 5–8 October 2017.

14. Cisco Systems NetFlow Services Export Version 9. Available online: https://tools.ietf.org/html/rfc3954
(accessed on 2 June 2018).

15. Casas, P.; Soro, F.; Vanerio, J.; Settanni, G.; D′Alconzo, A. Network security and anomaly detection with
Big-DAMA, a big data analytics framework. In Proceedings of the IEEE 6th International Conference on
Cloud Networking (CloudNet), Prague, Czech Republic, 25–27 September 2017.

16. Callegari, C.; Giordano, S.; Pagano, M. Statistical Network Anomaly Detection: An Experimental Study.
In Proceedings of the International Conference on Future Network Systems and Security, Paris, France,
23–25 November 2016.

17. Fontugne, R.; Borgnat, P.; Abry, P.; Fukuda, K. MAWILab: Combining diverse anomaly detectors
for automated anomaly labeling and performance benchmarking. In Proceedings of the International
Conference on emerging Networking EXperiments and Technologies (CoNEXT), Philadelphia, PA, USA,
30 November–3 December 2010.

https://www.csoonline.com/article/3241766/cyber-attacks-espionage/top-5-cybersecurity-concerns-for-2018.html
https://www.csoonline.com/article/3241766/cyber-attacks-espionage/top-5-cybersecurity-concerns-for-2018.html
https://www.cisco.com/c/en/us/products/security/security-reports.html#~{}stickynav=2
https://www.cisco.com/c/en/us/products/security/security-reports.html#~{}stickynav=2
http://dx.doi.org/10.1016/j.future.2016.11.031
www.apache.com/hadoop
www.apache.com/spark
http://dx.doi.org/10.1016/j.procs.2018.01.091
http://dx.doi.org/10.1016/j.procs.2016.07.238
https://tools.ietf.org/html/rfc3954

Big Data Cogn. Comput. 2019, 3, 1 13 of 13

18. Fukuda Lab. Documentation. Available online: http://www.fukuda-lab.org/mawilab/documentation.html
(accessed on 8 December 2018).

19. Dataricks. About Databricks. Available online: https://databricks.com/spark/about (accessed on
6 May 2018).

20. Zubair, N. Pro Spark Streaming the Zen of Real-Time Analytics Using Apache Spark; Apress: Berkeley, CA, USA,
2016.

21. Armbrust, M.; Das, T.; Torres, J.; Yavuz, B.; Zhu, S.; Xin, R.; Ghodsi, A.; Stoica, I.; Zaharia, M. Structured
Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proceedings of the
International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018.

22. Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1. Available online: https://
databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
(accessed on 6 May 2018).

23. Benchmarking Structured Streaming on Databricks Runtime against State-of-the-Art Streaming Systems.
Available online: https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-
databricks-runtime-against-state-of-the-art-streaming-systems.html (accessed on 7 May 2018).

24. Yahoo Streaming Benchmarks. Available online: https://github.com/yahoo/streaming-benchmarks
(accessed on 8 December 2018).

25. Apache. Structured Streaming Programming Guide. Available online: https://spark.apache.org/docs/
latest/structured-streaming-programming-guide.html (accessed on 7 June 2018).

26. Microsoft. Azure Regions. Available online: https://azure.microsoft.com/en-us/global-infrastructure/
regions/ (accessed on 5 May 2018).

27. What is Microsoft Azure and Why Use It? Available online: https://www.sumologic.com/resource/white-
paper/what-is-microsoft-azure-and-why-use-it/ (accessed on 5 May 2018).

28. Microsoft. Azure Storage Blobs. Available online: https://azure.microsoft.com/en-us/services/storage/
blobs/ (accessed on 8 December 2018).

29. Microsoft. Azure SDK for PYTHON. Available online: https://github.com/Azure/azure-sdk-for-python
(accessed on 8 December 2018).

30. Apache Parquet vs. CSV Files—DZone Database. Available online: https://dzone.com/articles/how-to-be-
a-hero-with-powerful-parquet-google-and (accessed on 6 February 2018).

31. Ullah, F.; Babar, M.A. Architectural Tactics for Big Data Cybersecurity Analytic Systems: A Review. arXiv
2018, arXiv:1802.03178.

32. Verma, R.; Kantarcioglu, M.; Marchette, D.; Leiss, E.; Solorio, T. Security Analytics: Essential Data Analytics
Knowledge for Cybersecurity Professionals and Students. IEEE Secur. Priv. 2015, 13, 60–65. [CrossRef]

33. Mllib Evaluation Metrics. Available online: https://spark.apache.org/docs/2.1.0/mllib-evaluation-metrics.
html (accessed on 3 June 2018).

34. Ivanov, T.; Taaffe, J. Exploratory Analysis of Spark Structured Streaming. In Proceedings of the International
Conference on Performance Engineering, Berlin, Germany, 9–13 April 2018.

35. Gaied, I.; Jemili, F.; Korbaa, O. Intrusion detection based on Neuro-Fuzzy classification. In Proceedings
of the 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA),
Marrakech, Morocco, 17–20 November 2015.

36. Essid, M.; Jemili, F. Combining intrusion detection datasets using MapReduce. In Proceedings of the
2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary,
9–12 October 2016.

37. Li, Z. A Neural Network Based Distributed Intrusion Detection Sysem on Cloud Platform; The University of Toledo:
Toledo, OH, USA, 2013.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.fukuda-lab.org/mawilab/documentation.html
https://databricks.com/spark/about
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://github.com/yahoo/streaming-benchmarks
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://www.sumologic.com/resource/white-paper/what-is-microsoft-azure-and-why-use-it/
https://www.sumologic.com/resource/white-paper/what-is-microsoft-azure-and-why-use-it/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://github.com/Azure/azure-sdk-for-python
https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and
https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and
http://dx.doi.org/10.1109/MSP.2015.121
https://spark.apache.org/docs/2.1.0/mllib-evaluation-metrics.html
https://spark.apache.org/docs/2.1.0/mllib-evaluation-metrics.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Research Methodology
	Data and Methods
	Dataset Description
	Apache Spark
	Microsoft Azure
	Decision Tree Classifier

	Extract, Transform and Prepare
	Real-Time Classification
	Machine Learning Pipeline

	Experimentation Results
	Experiment Setup
	Performance Metrics

	Conclusions and Future Work
	References

