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Abstract: Data analysis is an important part of aero engine health management. In order to complete 

accurate condition monitoring, it is necessary to establish more effective analysis tools. Therefore, 

an integrated algorithm library dedicated for engine anomaly detection is established, which is 

PyPEFD (Python Package for Engine Fault Detection). Different algorithms for baseline modeling, 

anomaly detection and trend analysis are presented and compared. In this paper, the simulation 

data are used to verify the function of the anomaly detection algorithms, successfully completing 

the detection of multiple faults and comparing the accuracy algorithm under different conditions. 
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1. Introduction 

Predictive maintenance mainly addresses the reliability problem of the engine, en-

suring that the aero-engine has the ability to operate normally under specified conditions. 

This is an important prerequisite for aircraft safety, because failures of safety-critical sys-

tems such as aircraft engines can cause significant economic disruptions and even major 

accidents with a potential loss of human lives. Therefore, the prediction of the engine fail-

ure is of great importance for maintaining the functionality of safety-critical systems, 

which puts forward higher requirements for engine performance status monitoring [1–3]. 

The trend within the aerospace maintenance industry is searching for new technologies, 

such as predictive maintenance systems based on health monitoring, to detect degrada-

tion earlier and proactively schedule maintenance activities in order to reduce the un-

scheduled maintenance events. Therefore, the prediction of the engines failure is of great 

importance for maintaining the functionality of safety-critical systems, which puts for-

ward higher requirements for engine performance status monitoring [4]. 

Advanced sensor technology has led to the development of condition monitoring 

technologies. For industrial applications, the frontier issue of multi-modal data analysis 

should be the combination of applicable data mining methods [5]. Nowadays, data-driven 

techniques have been reported in the literature for health monitoring of gas turbine en-

gines. Those algorithms can be divided into classification, clustering, regression, dimen-

sionality reduction, etc. William R. et al. proposed a fault detection framework, combining 

Gaussian mixture model and Hidden Markov model to perform state determination of 

VSVA (variable stator vane actuator) system used in aero-engine [6]; Consumi et al. es-

tablished a Bayesian inference method to execute turbojet engines gas path analysis [7]. 

The Cluster AD-Flight clustering model proposed by Li L uses the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) algorithm for multi-dimensional 

clustering analysis to exclude abnormal flight from multiple nominal patterns in takeoff 

phase [8]. Regression-based methods are also widely used. These methods use regression 
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models to fit multi-dimensional data, and then detect abnormalities based on the predic-

tions of the regression models and the differences in data observations. Dewallef P et al. 

adapted Kalman filter model to deal with the performance monitoring and fault diagnosis 

problems based on several gas path measurements, including fuel flow, spool speed and 

the temperature of compressor blade and casing [9]; Seo D H et al. proposed a neural 

network framework fusing with support vector machine to monitor engine’s working 

state, and the framework has been applied to the on-design and off-design performance 

data of a turbo-shaft engine have been generated by the gas turbine simulation program 

(GSP) [10]. 

Another topic related to anomaly detection is the neighborhood-based method. It se-

lects a distance or use a similarity measurement method to define a neighborhood, and 

calculates the distance or relative density between a sample point and its neighborhood 

as an anomaly score. In this field, Puranik et al. applied both k-nearest neighborhood 

(KNN) and local outlier factor (LOF) to conduct quantitative analysis of flight data outlier 

detection [11]. Another KNN method used for data anomaly detection is carried out by 

Manukyan A et al. aiming at detecting instantaneous abnormal points [12]. 

However, the development process of anomaly detection algorithm for engine’s data 

reflects several problems. First, very few public data sets to obtain. Algorithm develop-

ment requires data sets, especially fault data for verification, while the real engine data is 

difficult to obtain due to confidentiality issues, and the number of faults contained is very 

rare. Moreover, engine data usually involves technical secrets and cannot be easily re-

leased [13]. Second, although there are many algorithms, only part of them is suitable for 

engine detection, that is, lacking an integrated detection algorithm library. The complete 

engine monitoring process includes baseline construction, anomaly detection and trend 

prediction, and this requires multiple algorithms’ cooperation. Lastly, too many applica-

tions of classic machine learning algorithms, and lack of some attempts to apply new al-

gorithms in the field of artificial intelligence for engine condition monitoring [14]. 

This paper has been divided into five sections. Section 2 introduces the engine con-

dition monitoring data and enumerates its particularity. Section 3 enlists the machine 

learning techniques in the developed algorithm toolbox for engine anomaly detection. 

Section 4 includes detailed description of the simulation data set of engine gas path faults 

and the comparison of the detection results using the various algorithm of the developed 

toolbox. Finally, Section 5 concludes the work. 

2. Commercial Aircraft Engine Condition Monitoring 

2.1. Engine Gas Path Analysis 

The performance of aero-engines is referred to the carefully tuned interaction among 

each gas path component. The high-pressure compressor (HPC) and high-pressure tur-

bine (HPT) is often referred to as the core engine, which is in charge of generating power 

that the LPT uses to transform into mechanical power for driving the fan. Typical sensors 

in aero-engine system include temperature sensors, speed sensors and pressure sensors 

located in different stations of engine. These raw sensor data contain control and feedback 

mechanisms; thus, simple analysis cannot obtain effective degradation information. Other 

condition parameters, such as Mach number, altitude and atmospheric temperature are 

included for further analysis. Figure 1 shows the online built-in sensor parameters of a 

typical modern turbofan engine, covering the main gas path components of the engine 

and important accessory systems (accessory systems such as lubricating oil and fuel con-

trol), etc. [15].  
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Figure 1. Typical engine built-in sensor parameters. 

Gas path analysis (GPA) is a method that relates variations of measured engine per-

formance parameters resulting from engine deterioration to the condition of its gas path 

components [16]. It is meaningful to the existing gas turbine diagnostic methods, which is 

wildly used for condition-based maintenance. In order to put these methods into practical 

applications, improving diagnostic accuracy has been the focal point for developing better 

GPA techniques [17–19]. 

Existing approaches can be grouped in two categories: physics-based methods and 

data-driven methods. The physics-based methods aim at describing the physics of failure 

mechanisms by mathematical modeling for the components and the systems under the 

study. Such methods are applicable where there is enough information about the internal 

parameters of the system and the failure mechanisms can be parameterized on that basis. 

Houman Hanachi et al. developed a robust physics-based performance indicator for aero-

engine [20]. A comprehensive physics-based thermodynamic model for the gas path of a 

single shaft engine was developed in their work to accurately predict the cycle parameters 

based on limited actual operating data. Physical degradation processes are only well un-

derstood for critical or relatively simple components, and physics-based approaches are 

generally hindered by their limited ability to properly tune the parameters of models with 

high complexity or model incompleteness, which restricts the deployment in practical ap-

plications [21]. The alternative approach for health monitoring is the use of data-driven 

models [22]. These approaches use large amounts of data, preferably from various 

sources, and apply data analytics techniques such as machine learning and artificial neu-

ral networks to discover patterns and relations in the data sets. This means that in princi-

ple no knowledge on the system characteristics or failure behavior is required, which 

makes the approach popular and widely accessible [23].  

2.2. Engine Condition Monitoring Data 

A flight is divided into different flight phases, each phase has a different impact on 

the engine, which increases the difficulty of data monitoring. Currently, Quick Access Re-

corders (QAR) is widely adopted by airlines, providing full flight data continuously sam-

pled at frequencies of 1 Hz and more, and enabling the researches of new methods in 

engine condition monitoring. All other functions such as exceedance tests, report genera-

tion, are based on, and controlled by the flight phase. For the flight phase diagram, see 

Figure 2. Flight phase is determined based on a state-transition machine, that means once 

a given flight phase is entered, it can only transmit to another flight phase under defined 
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conditions. Therefore, the flight phase can be used as a performance tag to describe how 

the engine is currently operating. The flight phases that are mainly discussed in Figure 2 

are shown in Table 1. 

 

Figure 2. Flight phase diagram. 

Table 1. Flight phase. 

Number Code Flight Phase 

0 PRF Pre-flight 

1 ESR Engine Start 

2 TXO Taxi Out 

3 TKO Takeoff 

4 INC Initial Climb 

5 CLB Climb 

6 CRS Cruise 

7 DES Descent 

8 APP Approach 

9 FNA Final Approach 

10 GOA Go Around 

11 LAN Landing 

12 TAG Touch and Go 

13 TIN Taxi In 

14 ESP Engine Stop 

For cruise data acquisition, data points must be recorded under stable operating con-

ditions, which is stabilized at cruise setting for at least 5-min before recording data. Dur-

ing recording, fan speed (N1) variation needs to be minimized, and stable airplane/engine 

conditions needs to be maintained. For takeoff data acquisition, monitoring data should 

be recorded at, or near, conditions when peak EGT typically occurs for the engine, that is, 

during full-rated or derated thrust takeoff, at any ambient temperature. These data points 

can effectively reduce the amount of data required for analysis, but provide very little 

information to reflect the variation in the performance state of the engine throughout the 

entire flight segment. 

Actual analysis rarely analyzes the entire flight data, but extract certain operating 

points during takeoff and cruise for condition monitoring. However, the form of the con-

dition monitoring data may lead to difficulties distinguishing between faults and random 
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scatter. Depending on the faulty component and the severity of the fault, it may take mul-

tiple data points to detect [24], which may cause false alarms and missed alarms. There-

fore, continuous monitoring of the entire flight segment should be performed to improve 

the fault detection rate.  

3. Development of Engine Data Mining Toolbox 

Existing approaches for engine data mining can be grouped in three categories: base-

line construction, anomaly detection and trend prediction.  

Baseline model is widely used in engine condition monitoring. Baseline model, i.e., 

the health indicator, is proposed to characterize the unobserved degradation state of the 

engine. Non-parametric modeling techniques, such as Multivariate State Estimation Tech-

nique (MSET) and Random Forest (RF), can be adopted to calculate the health indicator. 

Based on the developed baseline model, the delta value between the real value of and 

baseline value is monitored in real time to monitor the gas path component condition and 

to trigger a warning once some fault occurs. 

Engine anomaly detection usually refers to detecting and locating the fault by ana-

lyzing the mechanical condition of the main engine mechanical damage, engine vibration, 

lubrication, transmission and fuel control systems, and comprehensively analyzing the 

performance condition parameters [25]. The detection method requires the ability to ac-

curately isolate the fault, but also needs a quantitative assessment of the severity of the 

fault to provide input for the remaining life prediction and maintenance decision making. 

Several different anomaly detection algorithms are integrated in this module, covering 

functions such as outlier detection, trend anomaly detection and clustering. 

Parameter trend prediction includes the prediction of the gas path performance and 

the remaining life of key components. In the trend prediction, the gradual performance 

deterioration is tracked to obtain the degradation state of each module before the fault, 

then the information is incorporated when isolating and assessment the fault to improve 

the health assessment results. 

This article collects the algorithms applied for engine anomaly detection and inte-

grates them into an algorithm library, including supervised and unsupervised algorithms. 

Table 2 introduces different types of algorithms involved in the algorithm library. Due to 

the complicated forms of engine failure, the diversity of algorithms needs to be guaran-

teed in order to improve detection efficiency.  

Table 2. Algorithm Detail. 

Type Algorithm 

Baseline Construction 

module 

RF (Random Forest) 

MSET (Multiple State Estimation Technique) 

LSTM (Long Short-Term Memory) 

Anomaly detection module 

MD (Mahalanobis Distance) 

Iforest (Isolation Forest)  

XGBOD (Extreme Gradient Boosting Outlier Detection)  

MCD (Minimum Covariance Determinant)  

WFCS (Feature Weighted Fuzzy Compactness and Separa-

tion) 

GMM (Gaussian Mixture Model) 

DTW (Dynamic Time Warping) 

VAE (variational autoencoder) 

Parameter trend prediction 

module 

ARMA (Autoregressive–moving-average model) 

State Space Model 

This paper mainly uses the following four anomaly detection methods. 
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1. Isolation Forest, IF 

Isolation forest is an unsupervised learning algorithm for anomaly detection that 

works on the principle of isolating anomalies [25]. Instead of trying to build a model of 

normal instances, it explicitly isolates anomalous points in the dataset. The main ad-

vantage of this approach is the possibility of exploiting sampling techniques to an extent 

that is not allowed to the profile-based methods, creating a very fast algorithm with a low 

memory demand. other algorithms for an efficient fault detection system. 

2. Extreme Gradient Boosting Outlier Detection, XGBOD 

XGBOD is demonstrated for the enhanced detection of outliers from normal obser-

vations in various practical datasets. It combines the strengths of both supervised and 

unsupervised machine learning methods by creating a hybrid approach that exploits each 

of their individual performance capabilities in engine outlier detection. Compared to 

other semi-supervised outlier ensemble methods, XGBOD provides better predictive ca-

pabilities, eliminates the dependency of building balanced subsamples and averaging the 

results, and improves efficiency with more stable execution [26]. 

3. Minimum Covariance Determinant, MCD 

The minimum covariance determinant (MCD) method of Rousseeuw (1984) is a 

highly robust estimator of multivariate location and scatter [27], using the Mahalanobis 

distances as the outlier scores. Its objective is to find h observations (out of n) whose co-

variance matrix has the lowest determinant. 

4. One-class Support Vector Machine, OCSVM 

Support Vector Machine (SVM) is a generalized linear classifier method for binary 

classification of data, which belongs to supervised learning. SVM is defined as a linear 

classifier with the maximum interval in the feature space, and its learning strategy is to 

maximize the interval, which is finally transformed into the solution of a quadratic pro-

gramming problem. The difference between One-class Support Vector Machine (OCSVM) 

and support vector machine is that there is only one category of training data. When the 

test data is input into the model, the model will detect whether it is similar to the training 

data. For anomaly detection, the training data is health samples, and whether the test data 

is abnormal is determined by judging whether the test data is similar to the health data. 

4. Case Study: Gas Path Fault Simulation 

An application test case is conducted on a two spool, partially mixed, high bypass 

ratio turbofan, which is representative of the modern turbofan engines in civil aviation. 

The engine performance model consists of 10 health parameters to characterize the condi-

tion of five components and 7 performance measurements being representative of a meas-

urement set of today’s civil turbofan are produced by the model. Figure 3 shows the pro-

cess of the entire research case. The specific parameters are shown in Figure 4 and Table 

3. 
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Figure 3. Case study process. 

 

Figure 4. Engine performance simulation parameters overview. 

Table 3. Parameter Detail. 

Health Parameter Gas Path Performance Measurement 

Fan flow correction factor SW1 (%) Outlet pressure of the fan P13 (bar) 

Fan efficiency correction factor SE1 (%) Outlet temperature of the fan T13 (C) 

LPC flow correction factor SW2 (%) Outlet temperature of the HPC T3 (C) 

LPC efficiency correction factor SE2 (%) Outlet pressure of the HPC P3 (bar) 

HPC flow correction factor SW3 (%) Low pressure rotor speed NL (rpm) 

HPC efficiency correction factor SE3 (%) High pressure rotor speed NH (rpm) 

HPT flow correction factor SW4 (%) Exhaust gas temperature T6 (C) 

HPT efficiency correction factor SE4 (%) Inlet pressure of HPC P2 (bar) 

LPT flow correction factor SW5 (%) Inlet temperature of HPC T2 (C) 

LPT efficiency correction factor SE5 (%)  

4.1. Simulation Process 

All simulation data are obtained using TurboFan Engine Simulator. By inputting a 

specific working condition, the simulation software can calculate the performance param-

eters under the condition.  

First a fleet of engines is simulated. The system’s components will experience degra-

dation due to wear and tear resulting from usage. It is most often a slow phenomenon, 

which is detected relative to past performance on the same engine. It is very difficult to 

detect an efficiency drop in absolute value, because each unit of the fleet has slightly dif-

ferent initial wear at the engine sub-component due to manufacturing and assembly tol-

erances, which leads to differences in the health parameters of each engine component in 

the fleet, such as efficiency and flow.  
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For the above reasons, each engine in the startup fleet can be distinguished based on 

the difference in the initial health parameters. Assuming that the deviation between the 

health parameters of a specific engine unit and the baseline value conform to a triangular 

distribution, the maximum and minimum deviation values of the parameters of each com-

ponent are shown in Table 4. 

Table 4. Health Parameter Deviation. 

Health Parameter 
Minimum De-

viation 

Maximum Devi-

ation 

Fan flow correction factor SW1 (%) −1 1 

Fan efficiency correction factor SE1 (%) −0.3 0.1 

LPC flow correction factor SW2 (%) −1 1 

LPC efficiency correction factor SE2 (%) −1 0.5 

HPC flow correction factor SW3 (%) −1 1 

HPC efficiency correction factor SE3 (%) −0.6 0.6 

HPT flow correction factor SW4 (%) −1.5 1.5 

HPT efficiency correction factor SE4 (%) −0.35 0.15 

LPT flow correction factor SW5 (%) −0.5 0.5 

LPT efficiency correction factor SE5 (%) −0.5 0.5 

Based on the triangular distribution of the parameters, this paper adopts the Monte 

Carlo idea to randomly select values, and generates 100 sets of unit body health parameter 

deviation values, and uses this to distinguish each specific engine. Figure 5 shows the 

triangular distribution of Fan efficiency deviation. 

After obtaining the fleet data, the next step is to simulate different take-off conditions 

for each individual engine. Each set of different takeoff conditions simulation represents 

a specific flight. The simulation method is the same as the fleet data. Assuming that the 

parameters of the take-off condition also conform to the triangular distribution, the max-

imum and minimum deviation values are shown in Table 5. 

 

Figure 5. Probability density of fan efficiency deviation. 

Table 5. Condition Parameter Deviation. 

Condition Parameters 
Minimum  

Deviation 

Maximum  

Deviation 

Altitude (m) −500 500 

Mach number 0.24 0.26 

Standard atmospheric temperature difference (C) −20 20 

Fuel flow (kg/s) 0.83 0.97 
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Each engine randomly generates 1000 sets of condition parameter values for flights 

simulation. After the simulation calculation is completed, the performance data of 100 

engines is obtained, and 1000 flights are simulated for each engine. The gas path parame-

ters calculated with the aid of the performance model do not contain noise, but in practice 

the sensor will inevitably introduce measurement noise. Therefore, a certain amount of 

Gaussian noise is added to the gas path parameters to simulate actual measurement noise. 

4.2. Data Preprocessing and Fault Injection 

The baseline model of engine can reflect the basic functional relationships of engine 

performance parameters in a healthy state. When the engine is in a healthy state, the per-

formance parameter deviation value obtained by subtracting the baseline value from the 

actual measurement value should theoretically fluctuate around 0. The abnormal detec-

tion of the engine performance parameter can be realized by analyzing the deviation value 

sequence. 

The performance measurement deltas ( Y ) of each parameter needs to be calculated 

to facilitate the detection of the algorithm. The formula is as follows: 

0YYY −=  (1) 

where Y represents the value of the parameter, and Y0 the nominal value at a typical tak-

ing-off condition when the engine is at a clean and new condition. (That is, using the Ran-

dom Forest algorithm for parameter regression).  

The health parameter deviation is calculated as follows: 

%100)( 0 −= fff  (2) 

where f0 = 1 meaning the engine is at a clean and new condition. The interrelation among 

the health parameters deviations and the measurements deltas is expressed through a 

multi variable regression model, which is obtained by linearizing of the engine perfor-

mance model at a typical taking-off operating point. 

In this paper, two kinds of baseline values Y0 are calculated. One is to randomly select 

400 sets of data from all health status data of the fleet to calculate a baseline value. The 

other is based on the first 400 health data of each engine, a total of 20 engines’ personalized 

baseline values was established separately. 

Component faults are simulated by deviating of the corresponding health parame-

ters from their nominal values, i.e., the flow and efficiency deviations of each module. To 

demonstrate the proposed information fusion mechanism, a typical set of fault scenarios 

has been examined, which covers different possible faults in all individual components 

(given in Table 6). 

Table 6. Failure modes. 

Failure Modes Changes in Health Parameters 

Failure mode A Fan flow rate drops by 1%, efficiency drops by 1.5% 

Failure mode B HPC flow rate drops by 1%, efficiency drops by 0.7% 

Failure mode C HPT flow rate drops by 1%, efficiency drops by 1% 

Failure mode D LPT flow rate drops by 1%, efficiency drops by 0.5% 

Failure mode E HPC efficiency decreased by 1.5% 

Failure mode F HPT efficiency decreased by 1.5% 

For each fault case, a series of n = 400 measurement sets from the taking-off operating 

point has been recorded for following, including 20 fleet samples and 20 single engine 

samples. They were randomly selected from the fleet data without putting it back. The 

first 360 sets are health status data, and the last 40 sets are abnormal conditions (Inject 

according to the failure mode of Table 4). 
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4.3. Results Analysis and Comparison 

In the detection, four binary classifiers, IForest, XGBOD, MCD, OCSVM (one class 

support vector machine), are chosen as detection algorithms. The algorithms will output 

two indicators to measure classification accuracy: AUC and Precision. AUC is the area 

under the ROC curve, its value is equivalent to the probability that a randomly chosen 

positive example is ranked higher than a randomly chosen negative example. As for pre-

cision, it is the probability of how many real positive examples are in the sample predicted 

to be positive. 

This article compares the test results from the following three aspects: 

1. Comparison of anomaly detection effects between the fleet baseline model and a sin-

gle personalized baseline model:  

The deviation values obtained from the two baseline models are input into the isola-

tion forest, MCD, XGBOD, OCSVM algorithm. The AUC value and accuracy rate of the 

abnormal detection of six abnormal modes is calculated by the algorithm model. Since 

each algorithm has been tested many times, the calculation result is the average of multi-

ple tests. After detection, the comparison of AUC and precision is shown in the figure 

below. 

It can be seen from Figures 6 and 7 that only three faults (i.e., fault C, D and E) have 

relatively high detection accuracy. The remaining fault cases are misdiagnosed. Among 

the four anomaly detection algorithms, XGBOD is an ensemble learning algorithm, so the 

overall effect is the best. The overall anomaly detection effect of MCD and IForest is not 

much different. In abnormal modes A and F, IForest is better than MCD. In abnormal 

mode B, MCD is better than IForest. OCSVM has the worst anomaly detection effect over-

all. 

 

Figure 6. AUC value comparison. 
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Figure 7. Precision comparison. 

2. The influence of engine performance parameters on anomaly detection effect: 

In the above, the deviation values of the nine performance parameters are all detected 

for abnormality. In the actual situation, the data collected by the sensor does not include 

the HPC inlet pressure and inlet temperature. Therefore, this section will compare the 

anomaly detection effects of the nine parameters and the seven parameters. Tables 7 and 

8 show the results. 

Table 7. Detection Results (AUC). 

Failure 

Modes 

IForest XGBOD MCD OCSVM 

Nine 

PARAM 

Seven 

PARAM 

Nine 

PARAM 

Seven 

PARAM 

Nine 

PARAM 

Seven 

PARAM 

Nine 

PARAM 

Seven 

PARAM 

A 0.89 0.81 0.98 0.92 0.88 0.89 0.83 0.83 

B 0.90 0.85 0.99 0.98 0.96 0.92 0.76 0.75 

C 0.99 0.99 1.0 1.0 0.99 0.99 0.99 0.99 

D 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.98 

E 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0 

F 0.94 0.95 0.99 0.99 0.91 0.91 0.93 0.94 

Table 8. Detection Results (precision). 

Failure 

Modes 

IForest XGBOD MCD OCSVM 

Nine 

PARAM 

Seven 

PARAM 

Nine 

PARAM 

Seven 

PARAM 

Nine 

PARAM 

Seven 

PARAM 

Nine 

PARAM 

Seven 

PARAM 

A 0.49 0.36 0.78 0.71 0.51 0.53 0.41 0.41 

B 0.48 0.43 0.90 0.79 0.74 0.57 0.20 0.19 

C 0.94 0.90 0.99 0.99 0.93 0.96 0.98 0.98 

D 0.85 0.83 0.98 0.97 0.92 0.94 0.86 0.86 

E 0.97 0.98 1.0 1.0 1.0 1.0 1.0 1.0 

F 0.66 0.72 0.92 0.91 0.59 0.62 0.73 0.73 

The failure modes not accurately identified were failure mode A and B. For the failure 

mode B, the HPC fault with a simultaneous reduction in efficiency and flow capacity, 

which may affect LPC component, resulting in an evident LPC efficiency decrease. Due to 

the limited on-board performance measurement set, the measurements between the LPC 

and HPC are insufficient to characterize all fault information, for which they share a sim-

ilar measurement observation pattern due to the failure. 
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3. The influence of different levels of noise on the detection effect: 

Besides the on-board sensor measurements limitation, the measurement noise can 

also introduce uncertainty into the health parameters estimation. Especially when the 

fault magnitude is relatively smaller, the failure signature maybe masked in the measure-

ment noise, causing wrong diagnostics conclusions. Two types of noise are used to process 

the data here. The amount of noise is shown in Table 9. 

Table 9. Noise Setting. 

Gas Path Performance Parameter Noise A Noise B 

Outlet pressure of the fan P13 (bar) 0.25% 0.5% 

Outlet temperature of the fan T13 (C) 0.4% 0.8% 

Inlet pressure of HPC P2 (bar) 0.25% 0.5% 

Inlet temperature of HPC T2 (C) 0.4% 0.8% 

Outlet temperature of the HPC T3 (C) 0.25% 0.5% 

Outlet pressure of the HPC P3 (bar) 0.4% 0.8% 

Exhaust gas temperature T6 (C) 0.4% 0.8% 

Low pressure rotor speed NL (rpm) 0.05% 0.1% 

High pressure rotor speed NH (rpm) 0.05% 0.1% 

The test analysis for the above test results is given here. First, in the detection of dif-

ferent baseline model, the failure modes B, C, D, E and F show better effect with single 

engine baseline model. However, in the detection of failure mode A, the detection effect 

of the fleet baseline model is more accurate, which means that the failure mode A is less 

affected by the engine’s performance difference. The fan is the most exposed air path com-

ponent of the engine. Compared to changes in internal flow and efficiency of components, 

changes in the external environment are more likely to affect the efficiency of the fan. 

Second, most algorithms obtain better detection results when the input performance 

parameters are nine. However, the MCD algorithm performs even better when the input 

parameters are seven, which may be related to the internal calculation of the Mahalanobis 

distance. When the dimensionality of the data point increases, the calculated Mahalanobis 

distance will also increase. If the fault information can be reflected by only a few parame-

ters, adding more parameter dimension may cover up the fault information which needs 

to be expressed by the value of distance, and it may lead to the misjudgment of the algo-

rithm. 

Third, the detection results of noise case are given in Table 10. Indicator “Precision” 

is more obviously affected by noise, so it is selected as the observation target. 

Table 10. Detection Result of Different Noise. 

Failure 

Modes 

IForest XGBOD MCD OCSVM 

Noise A Noise B Noise A Noise B Noise A Noise B Noise A Noise B 

A 0.49 0.42 0.78 0.72 0.51 0.56 0.41 0.31 

B 0.48 0.48 0.89 0.73 0.74 0.59 0.20 0.37 

C 0.94 0.73 0.99 0.99 0.93 0.71 0.98 0.92 

D 0.85 0.75 0.98 0.97 0.92 0.83 0.86 0.85 

E 0.97 0.94 1.0 1.0 1.0 0.99 1.0 1.00 

F 0.65 0.49 0.92 0.80 0.59 0.33 0.73 0.66 

It can be observed that the detection ability of all algorithms decreases after the noise 

is doubled. Among them, the detection accuracy of failure modes C, D and F are signifi-

cantly reduced, which are all turbine failure. This shows the flow and efficiency deviations 

of turbine component have less impact on the engine, which can be easily masked in the 

noise. 
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Based on the above results, the XGBOD algorithm has the highest detection accuracy. 

It makes good use of its advantages as an integrated algorithm, and performs well in the 

case of reduced parameters or increased noise. In contrast, the detection accuracy of IFor-

est and OCSVM algorithms is not in a good level. Due to the lack of training data, the 

IForest failed to play its advantage in the detection of massive data. As for OCSVM, it is 

mainly good at single classification [28], and it does not perform well on two classification 

problems. 

In terms of failure modes, failure mode E has the highest detection accuracy. This 

shows that the reduced efficiency of the high-pressure compressor will seriously affect the 

performance of the whole engine. On the other hand, the detection rate of each algorithm 

for failure mode A is relatively low. The reason may be that the selected parameters can-

not well represent the characteristics of the failure, or the failure itself has a small impact 

on engine’s performance. 

5. Conclusions 

This paper presents a detailed review of an experimental data mining algorithm li-

brary for engine condition monitoring, which comprises different types of algorithms 

(baseline construction, anomaly detection, trend prediction). The algorithm library is val-

idated on engine simulation data, which shows great effectiveness on detecting different 

types of failure. 

The innovations of the algorithm library are listed below: 

1. This algorithm library is specifically established for engine condition monitoring; 

2. The simulation data set used in this article can be made public for verification by 

other anomaly detection algorithm developers; 

3. Compare the performance differences in anomaly detection algorithms in each con-

dition to provide reference for actual engineering applications. 

In the case study part of the paper, the performance data simulation of the engine 

fleet’s health status and abnormal conditions is carried out. The baseline models of the 

fleet and a single engine are established respectively, and the deviation value sequences 

obtained from different baseline models are compared for anomaly detection. This paper 

tested four anomaly detection algorithms: Isolated Forest, XGBOD, MCD, OCSVM. The 

conclusions are as follows: 

1. Different abnormal modes have different effects on engine performance parameters, 

leading to different detection results. The overall HPC and HPT abnormal detection 

results are the best; 

2. In the comparison of the four algorithms, the XGBOD anomaly detection based on 

the integrated idea is the most accurate and can detect most outliers; 

3. In terms of the deviation value sequences obtained by different baseline models, the 

individualized model is slightly better than the fleet model based on the fleet data in 

anomaly detection; 

4. The reduction in status monitoring parameters and increased noise will reduce the 

accuracy of detection. 

The successful application of these algorithms proves the reliability and efficiency of 

the algorithm library. To further improve the performance of the algorithm library, differ-

ent operating conditions still need to be investigated. Therefore, a potential future re-

search direction is a validation on actual failure data, as well as the installation of new 

algorithms. 
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