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Abstract: Conventional signal processing methods such as Principle Component Analysis (PCA)
focus on the decomposition of signals in the 2D time–frequency domain. Parallel factor analysis
(PARAFAC) is a novel method used to decompose multi-dimensional arrays, which focuses on
analyzing the relevant feature information by deleting the duplicated information among the multi-
ple measurement points. In the paper, a novel hybrid intelligent algorithm for the fault diagnosis
of a mechanical system was proposed to analyze the multiple vibration signals of the centrifugal
pump system and multi-dimensional complex signals created by pressure and flow information. The
continuous wavelet transform was applied to analyze the high-dimensional multi-channel signals
to construct the 3D tensor, which makes use of the advantages of the parallel factor decomposition
to extract feature information of the complex system. The method was validated by diagnosing
the nonstationary failure modes under the faulty conditions with impeller blade damage, impeller
perforation damage and impeller edge damage. The correspondence between different fault char-
acteristics of a centrifugal pump in a time and frequency information matrix was established. The
characteristic frequency ranges of the fault modes are effectively presented. The optimization method
for a PARAFAC-BP neural network is proposed using a genetic algorithm (GA) to significantly
improve the accuracy of the centrifugal pump fault diagnosis.

Keywords: parallel factor analysis; genetic algorithm; BP neural network; fault diagnosis

1. Introduction

Mechanical equipment plays a significant role in the construction of the national econ-
omy and is an integral part of the entire industrial sector [1]. With the great developments
in the improvement of modern production that have taken place, the structures of modern
equipment are becoming much more complex. The mechanical equipment needs to remain
resilient in severe working conditions. Due to the influence of many unavoidable severe
environmental factors, machinery and equipment such as the centrifugal pumps, gearboxes,
engines, and other major components that work under a heavy load, high temperature
and high pressure experience a variety of the failures. Especially given the extension in
their working life, the mechanical components inevitably suffer aging, wear, tear, etc. If
failure in the machinery and equipment is not handled promptly, minor damages progress
to severe failures, which delays production, causes huge economic losses and serious
accidents that endanger the lives of staff [2]. The timely prevention of mechanical equip-
ment failure to maintain the safe operation of equipment in industrial production is of
paramount importance.

Centrifugal pumps have excellent properties such as a simple structure, high efficiency
and stable performance. They are widely used in industrial production. It is necessary to
diagnose and monitor the running status of the centrifugal pumps during the complex
industrial process such as in the oil industry, etc. [3]. The current mainstream vibration
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signal-based centrifugal pump fault diagnosis method mainly relies on machine learning [4].
Reference [5] selects the time-domain characteristic signal of an electrical submersible pump
using the decision tree algorithm and inputs it into a classifier to realize fault separation.
Studies in the literature [6] introduce the idea of the k-nearest neighbor algorithm into
traditional Markov distance fault judgment to forecast three common centrifugal pump
faults. Bordoloi D J et al. used support vector machines to effectively diagnose the blockage
level and obstruction cavities at different pump speeds [7]. In the context of Industry 4.0,
given the progress in computer science, sensors, cloud technology, big data, etc., the large
scale of data collection and the storage of the complex industrial systems are becoming
easier and the scale of data is becoming larger, which characterizes the structure of data
as high-dimensional. Currently, the processing of high-dimensional data from the large
scale industrial processes, which are used to mine valuable information, is a hot topic in
the literature [8].

Traditional data-processing methods have a great capability of reducing the dimension
of data, such as the Principal Component Analysis (PCA), Intrinsic Modal Analysis (EMD),
Wavelet Packet Energy (WPE) and local characteristic analysis (LFA) [9]. Combining the
above dimensionality reduction method with a neural network to process massive data
and realize data mining has become the mainstream research direction in the research
community [10]. C Cui constructed the PCA-BP-MSET model to achieve effective fault
warning in an air compressor fault diagnosis system [11]. For abnormalities in the sensor
system, Yu used EMD to process the data and PNN as a classifier to achieve fault classi-
fication [12]. Compared with the above algorithms, the parallel factorization processing
tensor has the advantage of reducing data loss and computational complexity because the
tensor represents the properties of the higher order data without damaging the intrinsic
structure and underlying information of the data. One of the most promising theories of
parallel factorization comes from Kruskal and the new concept of k-order [13]. The k-order
for matrix A is the maximum that satisfies the condition that any k column vectors of the
matrix A are uncorrelated linearly, which reveals sufficient conditions for the application
of the parallel factorization method and lays foundations for its applications in signal
processing [14]. Zhang et al. applied PARAFAC decomposition for radar spatial-temporal
signal processing to achieve the automatic angle and frequency matching [15]. Li et al. [16]
used the parallel factor analysis to deal with the separation of multiple fault sources in
the mechanical equipment and achieved the desired results. Sidiropoulos et al. used
PARAFAC analysis for the recognition and identification of multiple targets in MIMO
radar systems [17]. Weis et al. used the PARAFAC algorithm in their EEG data analysis to
determine the individual components of the correlation [18]. Yang et al. constructed tensor
using wavelet transform and processed multi-dimensional fault signals with parallel factor
theory to achieve effective classification [19].

Genetic algorithm (GA) comes from the idea and mechanism of natural evolution
as the optimal parallel search in the laws of biology. It is constructed by simulating
the principle of “natural selection and survival of the fittest” in the natural evolutionary
process. GA provides a solution to complex nonlinear problems that are not easily solved
by the traditional optimization methodology [20]. A genetic algorithm was proposed for
combination with the support vector machine (SVM) to achieve the optimal algorithm for
fault diagnosis of the rolling bearing machines [21]. The ICA algorithm was implemented
for the feature extraction of the signal in the motor bearing, which is combined with GA
to optimize the radial basis neural network for fault diagnosis. The diagnostic accuracy
was significantly improved [22]. Compared with the traditional neural network (NN), the
optimized and improved NN has an optimal network structure and higher accuracy.

This paper investigates the relevant theory relating to signal matrix decomposition and
applies continuous wavelet transformation to multi-channel signal analysis to construct
a three-dimensional tensor. The parallel factor decomposition achieves the characteristic
information extraction of the complex systems, which determine the frequency range of
the faulty centrifugal pump. The effective feature frequency information extraction is
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combined with the excellent adaptive updating ability and nonlinear characteristics of
BP-NN. The BP-NN model is established to diagnose the fault modes of the centrifugal
pump. In order to overcome the disadvantage of the slow convergence of the BP-NN, the
optimization method based on GA is proposed to optimize the BP neural network model so
that it finds the appropriate weights and thresholds at a quicker rate and rapidly achieves
fault classification.

2. Principle of Parallel Factor Analysis

Tensor is the high-dimensional form of data construction. The dimensionality of the
data is called the order of the tensor and is considered the generalization of the matrix and
vector in the high-dimensional spatial construction. Traditional methods such as ICA, PCA,
etc. used for processing data with high dimensionality generally spread the data into a
two-dimensional matrix for processing to remove the structural data. The solution often
fails to achieve the expected results. PARAFAC is a common decomposition treatment in
tensor decomposition. The core idea is to approximate the original tensor data by the sum
of finite rank-1 tensors.

2.1. Parallel Factor Model

Tensor is a high-dimensional extension of the matrix. The order of the tensor rep-
resents the dimensions of the tensor as shown in Figure 1. The vector formed by the
one-dimensional time series of the vibration signal collected by the single-channel sensor is
the 1st order tensor. The matrix is the 2nd order tensor. The multi-dimensional array above
the three-dimensional level is the high-order tensor.
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Figure 1. Tensor.

In the two-dimensional matrix, the variable xp,q generally is applied to indicate the
components of the two-dimensional matrix that the subscript denotes the x-axis and the
subscript q denotes the y-axis during the x—y 2D coordinate system. The variable xp,q,k
indicates the element of the three-dimensional matrix that the subscript p denotes x—axis,
subscript q denotes y—axis and subscript q denotes z− axis during the x—y—z 3D coordinate
system. The 2-D array of the 3D matrix constitutes the subarray of the 3D matrix. The
subarray is labeled as the slice of the 3D matrix in the axis. The low-rank decomposition of
the matrix is extended to construct the 3D matrix. Let the variable xp,q,k be the elements of the
three-dimensional matrix X ∈ CP×Q×K, where p = 1, · · · , P; q = 1, · · · , Q; k = 1, · · · , K.
Three-dimensional matrices can be represented as vector outer product as follows:

X = a1 ◦ b1 ◦ c1+, . . . ,+aR ◦ bR ◦ cR =
R

∑
r=1

ar ◦ br ◦ cr (1)

where ar ∈ CPbr ∈ CQcr ∈ CKr = 1, 2, . . . , R. Equation (1) provides the low order
decomposition process of the 3D matrix. The orders of the 3D matrices X are R. The model
for the low-rank decomposition of the 3D matrix as shown in Equation (1) is Parallel Factor
Model. Figure 2 shows the procedure of the PARAFAC model.
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Here, the definitions of the three matrices are as follows:

A = [a1, . . . , aR]
B = [b1, . . . , bR]
C = [c1, . . . , cR]

(2)

The symbols A, B, and C are the three loading arrays in the PARAFAC model. Equation (2)
shows that the components in the 3D array X are decomposed as the sum of the multiplication
of R components.

2.2. Uniqueness of Parallel Factor Decomposition

For a two-dimensional matrix, when the rank of the matrix is greater than 1, the two-
dimensional matrix’s low-rank decomposition is not unique if there are no special structural
constraints. For the matrix decomposition process X = ABT, there exists another set of
matrices A, B that is X = ABT . However, A 6= AΠA∆A, B 6= BΠB∆B, Here, the symbols
ΠA and ΠB are column swap matrices and the symbols ∆A and ∆B are the diagonal scale
matrices. The uniqueness of the two-dimensional matrix decomposition is illustrated by
the converse method. Given any full-rank approach T ∈ CF×F with

X = ABT = ATT−1BT = ABT (3)

Among them
A = AT = [a1, . . . , aF] (4)

B = B(T−1)
T
=
[
b1, . . . , bF

]
(5)

where a f and b f are the column vectors of the arrays A and B. If the arrays A, B are full
rank, A and B are also full rank matrices, then we have

X = ABT
= a1bT

1 + a2bT
2 + · · ·+ aFbT

F (6)

The above formula satisfies the definition of the low order decomposition. However,
T 6= Π∆. Therefore, the 2D matrix low-rank decomposition is not unique.

The fundamental difference between the parallel factorization and the 2D matrix
decomposition is the uniqueness of its decomposition, which is one of the reasons that the
PARAFAC model is widely used in data analysis. The uniqueness theorem of PARAFAC
decomposition comes from the new concept of the k-order. The k-order for a matrix A is
the maximum order of k and satisfies the condition that any k column vectors of the array
A are linearly uncorrelated, which reveals the sufficient conditions for the uniqueness of
the parallel factorization method for application in data analysis. Consider the sub-profile
matrix of the PARAFAC model along the X-axis.

XQ×K
P = BDp(A)CT p = 1, 2, . . . , P (7)
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Here, the matrix is A ∈ RP×R, B ∈ RQ×R, C ∈ RK×R, if the following inequality
is satisfied

kA + kB + kC ≥ 2(R + 1) (8)

The matrices A, B, and C are unique.

3. Hybrid Method with PARAFAC_GA_BP_NN
3.1. Algorithm on PARAFAC
3.1.1. Nuclear Consistency Estimation

The PARAFAC algorithm is very sensitive to the pre-estimated factor F. When the
parameter F is estimated as too low, no physically meaningful solution is obtained. If
the parameter F is estimated as too high, it leads to an increase in the model error and
makes the deviation between the calibration values and the true values larger. Therefore,
a suitable value for factor F is very important for constructing the PARAFAC model. It
is necessary to pre-estimate the number of factors. Since the ranks of the tensors are
obtained asymptotically, different methods are usually used to evaluate the decomposition
factor number from several perspectives. Here, Core Consistency estimation is an effective
methodology for the estimation of the factors by calculating the level of the similarity
between the super-diagonal array T and the core 3D data array G in the PARAFAC model.
The calculation of Core Consistency (δ) is defined as follows:

δ = 100×

1−

F
∑

d=1

F
∑

e=1

F
∑

f=1

(
gde f − tde f

)2

F

 (9)

where the parameter F is the factor number in the PARAFAC model, the parameter gde f
is the element of the matrix G, the parameter tde f and is the element of T. For the ideal
PARAFAC model, the superdiagonal arrays T and G should be very similar, at which point
the kernel agreement value equals 100%. Usually, when the kernel agreement value is
equal to or more than 60%, the model is considered to be close to trilinearity. However,
when the kernel agreement value is lower than 60%, the model is considered to deviate
from trilinearity. A much more accurate factor number is obtained according to the change
in the kernel agreement value.

3.1.2. Trilinear Alternating Least Squares (TALS)∣∣∣Xpqk

∣∣∣ is an arbitrary three-dimensional data set. The two-dimensional matrices
defined as Xp(Q× K), Xq(P× K) and Xk(P×Q) that the corresponding elements satisfy
the following conditions.

Xp(q, k) = Xq(p, k) = Xk(p, q) = Xpqk (10)

Then, the three-dimensional matrix is described as the joint cubic equation along the
three different dimensions.

Xp = Bdiag(A(p, :))CT , p = 1, 2, . . . , I
Xq = Cdiag(B(q, :))AT , q = 1, 2, . . . , J
Xk = Adiag(C(k, :))BT , k = 1, 2, . . . , K

 (11)
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where the variables Xp Xq and Xk denotes the slice of the three-dimensional matrix X in
the three directions P, Q and K. The symbol diag(A(k, :)) denotes the square matrix after
the diagonalization of the kth row elements of the matrix A and so on from Equation (11).

Bdiag(A(1, :))CT

Cdiag(B(2, :))CT

...
Adiag(C(I, :))CT

 =


Bdiag(A(1, :))
Cdiag(B(2, :))

...
Adiag(C(I, :))

CT =


Xi=1
Xi=2

...
Xi=I

 = XPQ×K (12)


Bdiag(A(1, :))
Cdiag(B(2, :))

...
Adiag(C(I, :))

 = A•B (13)

Then, the PARAFAC model is expressed in the form of the Khatri-Rao product.

XP×QK = A(B•C)T

XQ×KP = B(C•A)T

XK×PQ = C(A•B)T
(14)

The basic idea of the TALS method is to update one array at one step by initializing a
matrix and updating the remaining matrices using the Least Mean Square (LMS) Method.
This step is repeated until the algorithm converges.

The hypothetical 3D dataset X with the dimensions P× Q× K is represented by a
trilinear model in the following form.

xp,q,k =
F

∑
f=1

ap, f bq, f ck, f + epqk p = 1 . . . P q = 1 . . . Q k = 1 . . . K (15)

Here, the symbol F denotes the number of components, the symbol ap, f is the pth com-
ponent of the vector a f , the symbol bq, f is the qth component in the vector b f , the symbol
ck, f is the kth component in the vector c f . The symbol xp,q,k (p = 1, . . . , P, q = 1, . . . , Q,
k = 1, . . . , K). P× Q× K forms the three-dimensional space of the data set X. The symbol
epqk(p = 1, . . . , P, q = 1, . . . , Q, k = 1, . . . , K) is the error, which forms the 3D error set E on
the P×Q× K coordinate system. The symbol A = [a1, a2, . . . , aP] is defined as a P× F matrix.
B = [b1, b2, . . . , bQ] is a Q× F matrix. The symbol C = [c1, c2, . . . , cK] is a K× F matrix.

Matrix A is calculated as:
X...1
X...2

...
X...K

 =


BdiagC(1, :)
BdiagC(2, :)

...
BdiagC(K, :)

AT + EK (16)

Here, X...k = Bdiag(C(k, :))AT + E...k, k = 1, 2, . . . , K, Ek is the error.
The least mean square estimate of the matrix AT is determined by the following equation.

ÂT =


BdiagC(1, :)
BdiagC(2, :)

...
BdiagC(K, :)


+

X...1
X...2

...
X...K

 (17)

Here, [ ] + is the generalized inverse.
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The matrix B is determined as:
Y...1
Y...2

...
Y...P

 =


CdiagA(1, :)
CdiagA(2, :)

...
CdiagA(P, :)

BT + EP (18)

Here, Y...p = Cdiag(A(p, :))BT + E...p, p = 1, 2, . . . , P, EP is the error.
The least mean square estimate of the matrix BT is defined as:

B̂T =


CdiagA(1, :)
CdiagA(2, :)

...
CdiagA(P, :)


+

Y...1
Y...2

...
Y...P

 (19)

The matrix C is determined as follows.
Z...1
Z...2

...
Z...Q

 =


AdiagB(1, :)
AdiagB(2, :)

...
AdiagB(Q, :)

CT + EQ (20)

Here, Z...q = Adiag(B(q, :))CT + E...q, q = 1, 2, . . . , Q, EQ is the error.
The least mean square estimate of the parameter CT is defined as:

ĈT =


AdiagB(1, :)
AdiagB(2, :)

...
AdiagB(Q, :)


+

Z...1
Z...2

...
Z...Q

 (21)

Loop (1) to (3) are repeated, and the matrix is updated until convergence.

3.1.3. Algorithm Implementation of Parallel Factor Analysis

Each element Xpqk of the tensor XP×Q×K consists of a trilinear component model
as follows:

xpqk =
F

∑
f=1

ap f bq f ck f + epqk (22)

In signal processing, the parameter F contributes to the transient response signal,
the variable ap f is the value of the f component related to the pth sample information,
the variable bq f is the response value of the f th component related to the qth sample
information, the variable ck f is the value of the f th component related to the kth sample
information. The variables ap f , bq f and ck f are the components of the array A, B and C. The
variable epqk is the measurement error. The above equation is in the form of the PARAFAC
model. It can be expressed in terms of three slice matrices that the trilinear model is
expressed as in the following form, which is similar to the singular value decomposition
in PCA.

Xp...(Q× K) = Bdiag(ap)CT + Ep...(J × K), p = 1, 2, . . . , P
Xq...(K× P) = Cdiag(bq)AT + Eq...(K× I), q = 1, 2, . . . , Q
Xk...(P×Q) = Adiag(ck)BT + Ek...(P×Q), k = 1, 2, . . . , K

(23)

Here, the parameters ap, bq and ck are the pth row of the array A, the qth row of the
array B and the kth row of the array C. The symbols diag(ap), diag(bq) and diag(ck) are
diagonal vectors of the F × F matrix. The parameters ai, bj and ck are the elements of
the diagonal vectors. The symbol “T” denotes the transpose of the matrix. The variables
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Ep...(Q× K), Eq...(K× P) and Ek...(P×Q) are three slices of the error array. Equation (22)
is expressed as a matrix.

X = AT(F×FF)(C⊗ B)T + E (24)

Here, the symbol ⊗ is the Kronecker product, the array T(F×FF) is a two-dimensional
matrix of the recombination of the core 3D data frame T. The variable T is a unit diagonal
3D-data array (also called a super diagonal array) with the matrix size (F× F× F) where
the super diagonal element equals 1 and the remaining elements are zero.

In the standard PARAFAC model, the sum of squared residuals (SSR) is the minimiza-
tion of the loss function, which is defined as:

SSR =
P

∑
p=1

Q

∑
q=1

K

∑
k=1

(
xpqk −

F

∑
f=1

ap f bq f ck f

)
=

P

∑
p=1

Q

∑
q=1

K

∑
k=1

e2
pqk (25)

PARAFAC decomposition can be implemented using Alternate Least Squares (ALS)
with the following iterative process.

Determining the number of the components F.
Initialize arrays B and C
Solve matrix A.

Solving the estimate aT
p = diag

[
B+Xp...(CT)

+
]

p = 1, . . . , P of matrix A, which
means the vector diag(•) obtains the elements on the main diagonal of the matrix. The
superscript “+” indicates the generalized inverse, B+ = (BT B)−1BT .

The arrays B and C are estimated by the following equations.

bT
q = diag

[
C+Xq...(AT)

+
]
, q = 1, . . . , Q (26)

cT
k = diag

[
A+Xk...(BT)

+
]
, k = 1, . . . , K (27)

Then, (3) and (4) are repeated until the SSR is less than the threshold, which is set by
default as 1× 10−6.

Based on the unique multi-decomposition in the PARAFAC model, the sub-arrays
A, B and C are obtained, which represent the sample information, the response process
information and sensing information.

3.2. Algorithm on GA

GA is an evolutionary heuristic algorithm, which was developed from Darwin’s
natural selection and biological evolution of genetics in 1975. It was originally created to
handle large scale and complex optimization problems that could not be solved effectively
by classical mathematical methods. The idea of GA is as follows: In a random initialized
set, individuals are selected according to their fitness size, and then crossover and mutation
by genetics produce new sets that are better than the previous one and also relatively closer
to the global optimal solution.

When GA is used to solve a problem, the objective function and variables of the
problem are determined firstly and the variables are encoded. The solution to the problem
is represented by the strings of numbers in GA. The genetic operator operates directly on
the strings. The encoding method is divided into binary encoding and real encoding. If
the individual is represented by the binary encoding, the decoding formula for converting
binary numbers to decimal numbers is defined as:

F(xi1, xi2, . . . , xil) = Ri +
Ti − Ri

2i − 1

l

∑
j=1

xij 2j−1 (28)
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Here, the parameters xi1, xi2, . . . , xil are the ith string. The length of each string is l. Each
parameter is 0 or 1. The parameters Ti and Ri are the two endpoints of the ith string Xi.

The fundamental procedure of GA consists of selection, crossover and mutation
operations. The new population is chosen from the old population with the probability
threshold, which is determined by the fitness values. The principle is that the better the
fitness value of an individual the higher the probability of a new population. The crossover
operation consists of exchanging and combining two chromosomes to produce a new
superior individual. The mutation is to select any individual from the population and a
point in the chromosome is chosen to b mutated to produce a better individual. In this
paper, GA is used to optimize BP to improve the classification diagnosis of centrifugal
pumps. The basic implementation process is as follows:

(1) Random initialization of populations.
(2) Calculate the population fitness values from which the optimal individuals are identified.
(3) Select the chromosomes.
(4) Crossover chromosomes.
(5) mutation of chromosomes.
(6) Determine if the evolution is finished, if not, return to step 2.

3.3. Principle on BP_NN

Back Propagation is the multilayer feed-forward NN, which is trained according
to the error. It has the broadest applications among NN at present. BP-NN is typical
of the forward network and has more than three layers without feedback. There is no
interconnection within layers. Its structure is shown in Figure 3. The structure shows that
the BP-NN neural network can realize the mapping from an n-dimensional input matrix
to an m-dimensional output matrix by connecting the updated weight and threshold. In
general, BP_NN uses the Sigmoid function or linear function as the transfer function.

f (x) =
1

1 + e−x (29)
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In the BP_NN model, the node number of the hidden layer has a great influence on
diagnostic accuracy. A smaller number of nodes reduces the ability of the net to learn,
which required an increase in the number of training cycles. Too many nodes makes
the training time longer, meaning that overfitting can easily occur. Reference [23] points
out that the optimal number of hidden layer nodes must exist. For the exploration of
this number of nodes, many scholars have given various solutions [24–26], including
the use of the experimental method, the introduction of the hyperplane, dynamic full
parameter self-adjustment and so on. A series of empirical formulas are obtained. After
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the summary, the optimal number of hidden layer nodes can be obtained. Refer to the
following formula [24–26]:

l <
√

m + n + a
l = logn

2
(30)

Here, the parameter n is the number of nodes on the input level, the variable l is the
number of nodes on the intermediate level, the variable m is the number of nodes on the
output level and the variable a is a constant between 0 and 10. In the paper, the input nodes
(n) equal 8, the output nodes (m) equal 4 and the nodes of intermediate level are set to be 3.

4. Experimental System of Centrifugal Pump

The industrial experimental system of the slurry pump is shown in Figure 4. The
model for the centrifugal pump in the experiment is Weir/Warman 3/2 CAH with a closed
impeller that is C2147. The diameter of the impeller is 8.5 inches. The centrifugal pump is
driven by the motor. There is a V-belt drive between the motor and the centrifugal pump
with a transmission ratio of 13/6. The parameters of the motor are shown in Table 1.
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Table 1. Motor parameters.

Model Rated
Voltage (V)

Maximum
Speed
(RPM)

Rated
Speed
(RPM)

Rated
Ambient

Temperature
(◦C)

Rated
Power
(HP)

Overload
Factor

Motor
Size

230/460 1200 1180 40 40 1.15 362 T

The vibration signal acquisition system is shown in Figure 5, which mainly consists of
a signal analyzer and a laptop computer for storing data. The system acquires multiple
channel signals including 3-axis vibration, acoustics, flow, pressure and temperature. The
following conditions are satisfied for the acquisition of the experimental data.

(1) Data collection does not begin until the centrifugal pump is running smoothly.
(2) The sampling frequency satisfies the sampling theorem.
(3) Multiple sets of data are collected for experiments conducted in each state.
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In order to collect nonlinear multi-fault-mode characteristic signals, when the centrifu-
gal pump is running steadily, the motor speed is set to be 1200 rpm for data acquisition. The
data acquisition time of each group is 20 s. The sampling frequency is 9 kHz. The system
synchronously collects online data on the vibration, acoustics, flow, pressure, etc. The
nonlinear operation state of the machinery during the industrial process is simulated by
controlling the flow rate and pressure of flow during the processing circuit, which consists
of the nonlinear and nonstationary multi-failure mode.

5. Simulated Signal for PARAFAC Analysis

Considering that the vibration signals acquired in the condition monitoring of me-
chanical equipment in the practical industrial environment generally were corrupted by the
heavy noise signals, the typical numerical signal is generated to simulate the characteristic
vibration information in the fault diagnosis of a mechanical system by using Equation (31),
which is used to assess the effectiveness of the proposed method based on PAFARAF and
continuous wavelet transform (CWT). The simulated signal consists of impulse signals
when the fault occurs in the equipment and Gaussian White Noise (GWN) with 1 dB
signal-to-noise ratio (SNR).{

x(t) = s(t) + n(t)
s(t) = ∑

i
(1 + 0.2 cos(2 ∗ pi ∗ frt))e−700(t−i/ fi) cos(2 ∗ pi ∗ fn(t− i/ fi))

(31)

Here, the function s(t) is the periodic shock signal, the symbols fr and fi are the
rotation frequency and faulty frequency, which are 30 Hz and 200 Hz. The inherent
frequency fn is 2000 Hz. The symbol n(t) denotes the noise signal. The faulty signal is
simulated to consist of the rotational frequency, faulty frequency and intrinsic frequency
with noise corruption. The sampling frequency and analysis points are set as follows:
fs = 12, 000, N = 8192. The time and frequency domains of the simulated signal are shown
in Figure 6, and it can be found that the fault characteristics are correlated with both the
inherent frequency of the system and the rotation frequency of the motor shaft. It can be
seen that the frequency components related to the fault characteristics include harmonic
frequencies 2 fi, modulation frequencies fn − n fi, and other frequencies. The key point
for accurate fault identification is to extract the useful frequencies related to the faulty
characteristics from the original noise signal.
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Figure 6. Corrupted simulation signal with noise.

Although the frequency domain of the simulated signal in Figure 6 presents the
frequency information related to the fault characteristics, it is buried by heavy noise
and inherent frequency-related components. The failure characteristics are buried and
located in heavy noise. It is necessary for the corrupted data to be processed to extract the
fault characteristic frequencies accurately. CWT is used to analyze the simulated impulse
signal. The wavelet basis function is “comr3−3”. The center frequency of the wavelet
function is 3 Hz. Figure 7 shows the CWT of the simulated signal. However, the fault-
related frequency components are not filtered out, which indicates that the traditional time-
frequency transformation is not effective enough to extract the weak fault characteristics of
the frequency components from the simulated complex noised signal.
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Figure 7. Wavelet transform of the simulated signal.

PARAFAC is a tensor decomposition algorithm and the decomposition is unique. In
the case that the tensor models the N-dimensional relationship well, the parallel factor
decomposition retains the original characteristic signal to a large extent while the feature
caused by the failure component of the mechanical system is extracted effectively from the
original complex system information. Based on the advantage of PARAFAC, the wavelet
coefficients of the simulated signal after continuous wavelet transform are obtained, which
is applied to construct one 3rd-order tensor with the dimension 1 × 200 × 8192. The tensor
is decomposed by the parallel factor analysis to extract multiple factor components, which
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contain the channel, time and frequency information of the high-dimensional original
signal. To build a correct parallel factor model, it is necessary to select the appropriate
factor group fraction. The simulated signal determines the factor number F by considering
the cross-validation and the kernel consistency method proposed in Section 3.

Figure 8 shows the cross-validation of the simulated signal. When the number of
factors F is set to be from 1 to 3, the parallel factor cross-validation of the simulation signal
is better in both the fitting group and the validation group. The values of the explanatory
variables reach more than 80% and the kernel consistency of the parallel factor model
reaches 100%. In summary, it is considered that the number of factors F is chosen as 3 to
establish the parallel factor model for the tensor, which is constructed by the simulation
signal for the data analysis.

Int. J. Turbomach. Propuls. Power 2022, 7, x FOR PEER REVIEW 14 of 23 
 

 

8192. The tensor is decomposed by the parallel factor analysis to extract multiple factor 

components, which contain the channel, time and frequency information of the high-di-

mensional original signal. To build a correct parallel factor model, it is necessary to select 

the appropriate factor group fraction. The simulated signal determines the factor number 

F by considering the cross-validation and the kernel consistency method proposed in Sec-

tion 3. 

Figure 8 shows the cross-validation of the simulated signal. When the number of fac-

tors F is set to be from 1 to 3, the parallel factor cross-validation of the simulation signal is 

better in both the fitting group and the validation group. The values of the explanatory 

variables reach more than 80% and the kernel consistency of the parallel factor model 

reaches 100%. In summary, it is considered that the number of factors F is chosen as 3 to 

establish the parallel factor model for the tensor, which is constructed by the simulation 

signal for the data analysis. 

 

Figure 8. Cross-validation for simulated signal. 

Figure 9 shows the three subspaces which are obtained after the parallel factor de-

composition of the simulated fault signal with noise addition. The loading values corre-

spond to the channel, time and frequency information of the original signal. The residual 

values of the model fitting are obtained. The simulated signal is decomposed by PARA-

FAC into a frequency matrix, time matrix and time–frequency information. The ampli-

tudes corresponding to the simulated impulse signal in the frequency matrix have obvi-

ous peaks at frequencies of 2000 Hz and 0~100 Hz, which shows the disadvantage that the 

low-frequency characteristics associated with the fault component are not clearly ex-

tracted. The time–information matrix obtained after the decomposition of the parallel fac-

tor is analyzed with the power spectrogram as shown in Figure 10. The comparison be-

tween Figure 7 and the results in Figures 9 and 10 verifies that the PARAFAC algorithm 

has a great advantage in a more accurate and efficient form of feature extraction of the 

complex corrupted vibration signals in fault diagnosis as compared to the traditional 

time–frequency domain signal processing methods.  
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Figure 9 shows the three subspaces which are obtained after the parallel factor decom-
position of the simulated fault signal with noise addition. The loading values correspond
to the channel, time and frequency information of the original signal. The residual values
of the model fitting are obtained. The simulated signal is decomposed by PARAFAC
into a frequency matrix, time matrix and time–frequency information. The amplitudes
corresponding to the simulated impulse signal in the frequency matrix have obvious peaks
at frequencies of 2000 Hz and 0~100 Hz, which shows the disadvantage that the low-
frequency characteristics associated with the fault component are not clearly extracted. The
time–information matrix obtained after the decomposition of the parallel factor is analyzed
with the power spectrogram as shown in Figure 10. The comparison between Figure 7 and
the results in Figures 9 and 10 verifies that the PARAFAC algorithm has a great advantage in
a more accurate and efficient form of feature extraction of the complex corrupted vibration
signals in fault diagnosis as compared to the traditional time–frequency domain signal
processing methods.
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6. Discussion

Based on the simulated signal analysis as shown in Figures 9 and 10, it has been verified
that the time and frequency feature matrices can accurately characterize the fault model
information. The multiple dimensional data model can be constructed by containing the
acquired data from the accelerometer, flow sensor and pressure sensor, which is analyzed
and processed by the PARAFAC algorithm. The time and frequency loading matrices
are extracted as the characteristic signals. The forty sets of data are collected from the
centrifugal pump system under one of the four running states that are normal (F1), impeller
blade damage (F2), impeller edge damage (F3) and impeller perforation damage (F4), which
are used to analyze the operation status of the centrifugal pump for the nonlinear multiple
fault diagnosis.

Based on Nyquist’s sampling theorem, the maximum frequency of the signal spectrum
is half of the sample frequency of 4500 Hz. The time for data acquisition in each mode of
the impeller in the experiment is 20 s with eighteen thousand data points. A reduction in
the complexity of data processing for a better comparison is required, and the proposed
PARAFAC algorithm as described in Section 3 is used directly to obtain data points for the
four failure modes for feature extraction.

PARAFAC was used to process the test data. We considered the vibration signals,
flow signals and pressure signals from the multiple measurement points collected in the
above experimental system for a total of the fifteen channel signals. The purpose of choos-
ing 15 data channels is that the 15 physical system variables are sufficient as systematic
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characteristics to control the nonstationary operation status. The operating status of the cen-
trifugal pump is evaluated comprehensively from the multiple physical information facets,
which makes the fault diagnosis of the centrifugal pump more reasonable and effective.

The number of factors of the PARAFAC model can be determined by choosing the kernel
consistent diagnosis method in Section 3. The number of factors ranges from 1 to 8. There are
three groups of data to test the factors. Figure 10 shows nuclear consistency estimation.

As shown in Figure 11, when the number of factors is from 1 to 5, the kernel consistency
values are above 60%. When the number of factors is greater than 5, the kernel consistency
values decrease rapidly by 60%. Therefore, the amount of factors in the PARFAC model
is chosen to be 5. The PARAFAC algorithm is solved by the trilinear alternating least
squares method. Figure 12 shows the signal analysis by PARAFAC used to obtain the five
components in mode 2 under four operating states when the angular speed is 1200 rpm.
Mode 2 provides the frequency information. Figure 13 shows the signal analysis by
PARAFAC used to obtain the five components in mode 3 under four operating states when
the angular speed is 1200 rpm. Model 3 provides the time domain information.
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The multi-channel complex signals are obtained from the centrifugal pump, which are
analyzed by parallel factor decomposition to obtain the time and frequency information
matrices. The time matrices as shown in Figure 13 are analyzed by Discrete Fourier
Transform (DFT) to obtain the frequency domain information. DFT is defined as follows:

S(k) =
N − 1
k = 0

x(k∆tz)e
−2π jnk

N , (n = 1, 2, . . . , N − 1) (32)
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(F2) for blade damage, (F3) for impeller edge damage, (F4) for impeller perforation damage.

Figure 14 shows the spectra frequency of the fourth component under F1 and F2. The
characteristic frequency under F2 is 250 Hz. Figure 15 shows the spectra frequency of the
fifth component under F1 and F3. The characteristic frequency under F3 is 184 Hz. Figure 16
shows the spectra frequency of the third component under F1 and F4. The characteristic
frequency under F4 is 20 Hz. The rotation speed of the motor in this experiment was set to
1200 rpm and the rotation frequency was 20 Hz. It is known that the fault characteristic
frequency of the centrifugal pump impeller is generally related to the frequency component
of the rotation frequency. The frequency of the impeller blade failure is expressed by the
blade passing frequency, which is calculated by multiplying the rotation frequency by the
number of blades, which was 20 × 10 = 200 Hz in this paper. Regarding the blade damage
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and impeller edge damage mode, the characteristic frequency is approximately distributed
around 200 Hz. The characteristic frequency of the impeller perforation damage is 12 Hz,
which is about 1/2 of the rotation frequency. Based on the above analysis, it has been
verified that the parallel factor algorithm is more effective for the characteristic processing
of the centrifugal pump multidimensional signal.
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Figure 15. Spectra analysis of fifth component under F1 and F3.

The time–frequency features extracted from the multi-source signals by PARAFAC
decomposition are inputted to the BP model as features. The classification accuracy of
the model was calculated. The output of the BP model and the corresponding state of the
centrifugal pump are shown in Table 2.
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Table 2. Expected output of neural network corresponding to each state of centrifugal pump.

Output Label 1 2 3 4

F1 1 0 0 0
F2 0 1 0 0
F3 0 0 1 0
F4 0 0 0 1

The eight statistics of each component constitute the feature vectors for subsequent
NP_NN and GA_BP_NN classification. The time and frequency domain statistics of each
component are calculated as follows:

(1) Center of gravity frequency:

F1 =

K
∑

k=1
fs · S(k)

K
∑

k=1
S(k)

(33)

(2) Root Mean Square (RMS) of spectrum

F2 =

√√√√ 1
K− 1

K

∑
k=1

[
S(k)− 1

K

K

∑
k=1

S(k)

]2

(34)

(3) Frequency of root mean square (RMS)

F3 =

√√√√√√√√
K
∑

k=1
fk

2 · S(k)

k
∑

k=1
S(k)

(35)
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(4) Peak Factor

PF =
max|x(i)|√

1
N

N
∑

i=1
x(i)2

(36)

Clearance Factor

CLF =
max|x(i)|

( 1
N

N
∑

i=1

√
|x(i)|)

2 (37)

Waveform Factor

WF =

√
1
N

N
∑

i=1
x2

i

1
N

N
∑

i=1
|x(i)|

(38)

Impulse Factor

IF =
max|x(i)|
1
N

N
∑

i=1
|x(i)|

(39)

Kurtosis Factor

KF =

N
∑

i=1
(x(i)− x)

4

N
√

N
∑

i=1
(x(i)−x)

N


4

·
(√

1
N

N
∑

i=1
x2

i

)4
(40)

Figure 17 shows the diagnostic correction of centrifugal pump features in the BP_NN
classification model. There is one mistake between the actual value and predicted value for
F1 and five mistakes between the actual value and predicted value for F2. We improved the
identification correction accuracy of fault status, as GA was applied to optimize the weights
and thresholds between each connection layer of the BP_NN model. Figure 18 shows the
diagnostic correction of centrifugal pump features in the GA_BP_NN classification model.
There is just one mistake between actual value and predicted value for F3, which is much
better than that for BP_NN without GA optimization.
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7. Conclusions

Aiming at resolving the multiple failure modes of the centrifugal pump impeller,
an experimental system of a centrifugal pump was developed to collect multi-channel
complex fault signals for its operation state. The continuous wavelet transform was applied
to analyze the multi-channel signals to construct 3D tensors. The hybrid method of the
multiple-dimensional-data fusion was proposed based on PARAFAC, BP_NN and GA.
The multi-dimensional signal analysis of the complex systems accurately located the fault
frequency range of the centrifugal pump. An improvement in the diagnostic accuracy was
achieved. Due to the limitations of experimental conditions, this paper only investigated
the accuracy of the single fault classification of multi-channel signals, while the failure
modes of mechanical equipment in actual production would be more complex, which also
provides direction for future research.
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