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Abstract: In the sCO2-HeRo project, the Chair of Turbomachinery at the University of Duisburg-
Essen developed, built and tested a turbomachine with an integral design in which the compressor,
generator and turbine are housed in a single hermetic casing. However, ball bearings limited
operation because their lubricants were incompatible with supercritical CO2 (sCO2) and they had
to operate in gaseous CO2 instead. To overcome this problem, the turbomachine was redesigned
built and tested in the sCO2-4-NPP project. Instead of ball bearings, magnetic bearings are now used
to operate the turbomachine with the entire rotor in sCO2. This paper presents the revised design,
focusing on the usage of magnetic bearings. It also investigates whether the sCO2 limits the operating
range. Test runs show that increasing the density and rotational speed results in greater deflection
of the rotor and greater forces on the bearings. Measurements are also analyzed with respect to
influence of the density increase on the destabilizing forces in the rotor–stator cavities. The conclusion
is that for the operation of the turbomachine, the control parameters of the magnetic bearings must be
adjusted not only to the rotor speed, but also to the fluid density. This enabled successful operation
of the turbomachine, which reached a speed of about 40,000 rpm during initial tests in CO2.

Keywords: supercritical carbon dioxide; magnetic bearings; rotor dynamics

1. Introduction

This research paper focuses on the work conducted by the Chair of Turbomachinery
at University Duisburg-Essen in the sCO2-4-NPP project to develop and test a compact
turbomachine with integral design and active magnetic bearings (AMB) in CO2 in the
supercritical state (sCO2). It is part of a novel heat removal system for residual decay heat
in nuclear power plants developed in the previous project sCO2-HeRo (Benra et al. [1] and
Starflinger et al. [2]). The application requires the overall system and the turbomachine to
be compact, robust and simple. Therefore, the original turbomachine, called sCO2-HeRoB

TAC, presented by Hacks et al. [3] consists of a one-stage compressor and turbine on either
end of a shaft with an alternator in the middle. While the TAC meets the requirements
of compactness and simplicity due to all components being housed in a single hermetic
casing, it has hybrid angular ball bearings lubricated with grease to support the rotor.
Unfortunately, the grease proved to be incompatible with sCO2. As a result, an additional
auxiliary pump had to be applied to reduce the pressure of the CO2 at the bearings and run
them in gaseous CO2 instead. This made the system less compact and harder to control
because the outlet pressure of the auxiliary pump and compressor had to be balanced
against each other. Furthermore, a safety relief valve ensured subcritical pressure at the
bearings. Therefore, a failure of the pump results in loss of CO2 inventory and renders
the heat removal system less robust. To overcome this drawback of the original design,
the new TAC needs to operate with all rotor–stator cavities filled by sCO2 as indicated by
the darker blue and purple colors in Figure 1. AMBs do not require lubricants. Therefore,
they represent a suitable technology to replace the ball bearings in the original design and
eliminate the additional auxiliary pump in the system.
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Figure 1. Cross-sections of sCO2-HeRoB TAC [3] (top left) and sCO2-HeRoM TAC (bottom right)
with indication of CO2 pressure and temperature inside rotor stator cavities.

However, there is scarce research documented in the literature concerning the opera-
tion of turbomachines for sCO2 with AMB. To the author’s knowledge, only a collaboration
between the Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea) and the Ko-
rea Advanced Institute of Science and Technology (KAIST, Daejeon, Korea) has published
experiments on AMB operating in sCO2. They aim to operate a hermetic compressor with
high-pressure sCO2 at the bearings, similar to the TAC described by the authors for the
sCO2-HeRo system. In 2016, Cha et al. [4] reported sCO2 fluid properties to cause instability
of the bearing rotor leading to the erection of AMB test rig. In 2019, Kim et al. [5] published
first results. Based on their experiments, they show that sCO2 indeed has the potential to
affect the rotor due to high density and sensitivity of density to pressure [6]. Consequently,
they are working on a model to predict the effect of sCO2 in the turbomachinery cavities
on the rotor and to find a suitable control strategy for the AMBs [6,7].

This paper describes the design and operation of the newly built TAC with AMB
(called sCO2-HeRoM TAC). The key features and dimensions are highlighted in this paper.
Similar to previous studies at KAERI and KAIST, a theoretic analysis is performed, showing
potential of sCO2 in the alternator cavity to cause the largest destabilizing forces, compared
to the other cavities. Consequently, a cooling concept was developed to reduce the density
of sCO2 within the rotor–stator cavity and the resulting destabilizing forces. During
the initial test runs in the sCO2-HeRo cycle, the density of CO2 gradually increased.
Measurements are presented for increasing the speed at different density levels. Based on
this, additional measurements at constant rotational speed are employed to evaluate the
potential of sCO2 density to destabilize the rotor. During this process, the sCO2-HeRoM

TAC reached the design rotational speed of 50,000 rpm in air and approximately 30,000 rpm
at compressor inlet density of almost 650 kg/m3. Furthermore, observations of adapting
control parameters of the AMB system to the sCO2 fluid density are presented. Overall,
operability of sCO2-HeRoM TAC is demonstrated.
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2. Design of the sCO2-HeRoM Turbomachine with Active Magnetic Bearings

The design of the sCO2-HeRoM TAC is based on the sCO2-HeRoB TAC. Hacks et al. [3]
describe the design of the latter in detail and show main cycle parameters. The compres-
sor geometry [3,8] as well as performance measurements [9,10] are public, too. Figure 1
shows the overall layout of the TACs. It is identical for both the sCO2-HeRoM TAC and
the sCO2-HeRoB TAC bearing a turbine, alternator and compressor on a single shaft in
a hermetic casing. Design features such as the compressor and turbine geometry are
identical, too. The major difference is the type of bearing. In the sCO2-HeRoM TAC, the
original ball bearings were replaced by AMB to eliminate the limitations imposed by
the grease. The latter was found to dissolve in sCO2 and was therefore maintained in
gaseous CO2 in the sCO2-HeRoB TAC by reducing CO2 pressure to subcritical pressure,
indicated by lighter blue color in Figure 1, with an additional pump. AMB do not
require a lubricant and therefore overcome the restrictions imposed by gaseous CO2 at
the bearings. However, they have certain characteristics, which must be considered
for design and operation. In general, AMB systems require two radial bearings and a
separate axial thrust bearing, which is different from the hybrid angular ball bearings
originally used. Previously, only a single radial and one combined axial–radial bearing
were required because this bearing type can support both axial and radial forces [3].
Furthermore, AMB requires sensors to control the position of the levitated rotor and
additional safety bearings to keep the rotor from crashing into the stator in case of
AMB failure or overload. This has several implications for the new TAC. First, the rotor
is about 20% longer due to the additional axial bearing, sensors and safety bearings.
Therefore, the shaft must have a larger diameter to keep the critical speed above the
design speed. Second, the thrust disk of the axial bearing adds significantly to the
already high windage losses. These are larger in the sCO2-HeRoM TAC compared
to the sCO2-HeRoB TAC due to the larger shaft diameter in general, the new thrust
disk and because sCO2 is denser than gaseous CO2. In addition, uneven pressure
distribution on both sides of the thrust disk may result in high axial thrust. Third, the
labyrinth seal clearance is kept at 0.1 mm because of the small design mass flow rate of
the cycle of only 0.65 kg/s. Therefore, maximum deflection of the rotor must remain
below 0.1 mm at the seals and is only 0.08 mm at the safety bearings. This requires
precise manufacturing and assembly. It also limits the maximum radial deflection of
the rotor during operation.

2.1. Design of Internal Flow Paths

Further requirements relate to the design of flow paths within the TAC. The AMB
and sensors are electronic components that need to stay below their temperature limit
of about 150 ◦C. However, CO2 temperatures at the turbine measure up to 200 ◦C which
is above the limit and requires cooling by cold CO2. Furthermore, the sCO2 properties
inside the TAC affect the rotor and components such as the bearings and alternator and
require interactive design of the rotor, sCO2 flow paths and AMB controller parameters.
On one hand, the sCO2 needs to provide cooling to the alternator and AMB, which
requires high heat capacity and consequently high density of the sCO2. On the other
hand, high density means a stronger interaction between the rotor and surrounding
sCO2, which translates into higher windage losses and higher pressure gradients inside
rotor–stator cavities causing larger forces on the rotor. At the thrust disk and impellers,
the pressure gradients may cause significant axial thrust, which must be covered by
the load capacity of the axial thrust bearing. Pressure gradients in the radial direction
cause forces that must be supported by journal bearings. If these are too large, the
deflection of the rotor increases until the rotor touches the safety bearings causing the
TAC to shut down. To meet the contradictive demand of high vs. low density inside
the rotor–stator cavities, an additional sCO2 inlet and outlets were implemented in the
central part of the TAC to control CO2 flow rate, direction and density. The positions
of the additional inlet and outlets are marked in the cross-section in Figure 2 and the
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simplified scheme in Figure 3 shows two resulting configurations for the internal flow
paths. Configuration 1 uses the leakage outlet (c) and is similar to the original design,
depicted in Figure 1. It has the advantage of requiring no additional cooling flow
through (a). However, cold sCO2 from compressor leakage with high-density flows
along large portions of the rotor, around the axial thrust disk and through the generator
cavity before it is mixed with hot turbine leakage in mixing point M3. This translates
to high windage losses, large axial thrust and high radial forces in the generator cavity.
In configuration 2, the leakage is extracted at the thrust disk (b) of the axial bearing.
It is a mixture of the compressor leakage and the cooling flow through the generator,
mixed in point M1. The cooling flow (a) is mixed with hot turbine leakage between
turbine hub seal (6) and radial bearing (5) in mixing point M2. Thus, density of sCO2
flowing through the generator cavity (4) is lower and controllable by cooling flow (a).
This means lower windage losses, radial fluid forces and axial thrust.

Figure 2. Sections considered for calculation of stiffness and damping coefficients.
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Figure 3. Simplified scheme of CO2 two configurations of flow paths inside sCO2-HeRoM TAC
with labyrinth seals 1, 2, 6, 7, radial magnetic bearing clearance 3, 5 and generator cavity 4 (colors
according to Figure 1).

2.2. Fluid Forces of sCO2 in Rotor–Stator Cavities of the sCO2-HeRoM Turbomachine

As this paper relates to the AMB used in sCO2-HeRoM TAC, windage losses, axial
thrust and the cooling effect of sCO2 calculated with in-house code are not discussed in
detail. The focus lies on the radial deflection of the rotor and radial forces in the bearings.
These are caused by forces on the rotor due to imbalance and rotationally asymmetric
pressure fields around the rotor. The latter occurs in the impellers and in the rotor–stator
cavities. The rotor–stator cavities are the labyrinth seals and cavities in the manner of
cylindrical shells such as the journal bearings (safety bearings, sensor rings, radial bearings)
and the generator cavity. In the radial bearing, the space between the electromagnets is
closed similar to the journal bearing shown by Jin et al. [7] to obtain a nearly cylindrical
surface and avoid large forces caused by irregular geometry reported by Kim et al. [5].
To account for the forces (F) in the rotordynamics analysis, equivalent stiffness (K) and
damping coefficients (C) are used together with deflection x and y (see Equation (1)). These
are calculated using the commercially available tool xLRotor [11] for different sections
indicated in Figure 2. For labyrinth seals, a model designed for a compressible gas seal
was used, while the other cavities were approximated as annular seals. Calculations of
stiffness and damping coefficients were performed for sections in Figure 2 considering the
pressure and density distribution along the flow path of sCO2 inside the TAC. However, a
constant average density and viscosity was used as input for the annular seal model and
the compressible gas seal model used a constant compressibility factor to account for fluid
properties. Due to the small change of fluid properties within the annular cavities and
relatively little pressure difference across the seals, the deviations caused by the inaccuracy
of fluid properties are considered to be limited. They reveal that all cavities considered have
a destabilizing effect, i.e., the forces of the fluid act on the rotor in a direction that increases
the deflection of the rotor. Considering flow path configuration 1, Figure 4 shows the results
of an example calculation. Coefficients of the different sections in Figure 2 are displayed
as a fraction of those in the generator cavity (4). Note that sections (3) and (5) are divided
into the different elements of the radial bearing, safety bearing, sensor ring and the radial
bearing itself. According to Figure 4, the generator cavity (4) dominates the rotordynamic
influence of the sCO2 compared to the other cavities. Coefficients are at least six-times
larger for cross-coupled stiffness

(
Kxy = Kyx

)
and direct damping

(
Cxx = Cyy

)
and almost
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10-times higher for direct stiffness
(
Kxx = Kyy

)
and cross-coupled damping

(
Cxy = Cyx

)
.

The reason for the dominance of the generator cavity is the size of the cavity, which has
twice the diameter and more than twice the length of the cavity in safety bearings. The latter
has high coefficients because of a narrow radial gap width of only 0.08 mm. In addition, the
liquid-like sCO2 causes larger coefficients for seals and bearings on the compressor side,
even though those on the turbine side bear the same geometry. Since Figure 4 suggests
that forces originating in the generator cavity are dominant over those in other cavities,
particular attention is paid to the effect of density alterations inside this cavity on radial
deflection and bearing forces.[

Fx
Fy

]
= −

[
Kxx Kxy
Kyx Kyy

][
x
y

]
−

[
Cxx Cxy
Cyx Cyy

][ .
x
.
y

]
(1)

Figure 4. Ratio of stiffness coefficients (K) and damping coefficients (C) with respect to coefficients of
generator cavity (density = 310 kg/m3) calculated for flow path configuration 1.

Figure 5 shows a sensitivity study of radial clearance, density inside the generator
cavity and rotational speed on the stiffness and damping coefficients. In the study, only
one parameter is changed while the others remain constant. To increase radial clearance,
the rotor diameter is reduced. Density is changed at constant pressure. The study is carried
out with xLRotor [11] using a model for a short annular seal. Although the cavity fails
to meet the requirements of a short seal, relationships in terms of the studied parameters
are considered equal for long- and short-seal models. Figure 5 presents clearance height
as having a significantly larger effect on the cross-coupled stiffness (and direct damping)
than on direct stiffness. On the other hand, decrease in density and rotational speed lead
to a larger reduction of direct stiffness coefficients. In terms of forces, this means density
and rotational speed have more influence on forces pointing towards (stabilizing) or away
from the center of rotation (destabilizing). For sCO2-HeRoM TAC, the focus lies on these
forces and consequently the direct stiffness coefficients. The reason is that in the (original)
flow path configuration 1 (see Figure 3) the direct stiffness coefficients were too large for
operation of the sCO2-HeRoM TAC. Therefore, flow path configuration 2 was established
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to reduce the density in the generator cavity and to allow operation of the sCO2-HeRoM

TAC. This and the general influence of density suggested by Figure 5 means that it must be
controlled during operation.

Figure 5. Ratio of stiffness and damping coefficients for decrease of rotational speed, increase of
radial clearance and decrease of density in generator cavity of sCO2-HeRoM TAC.

3. Operation of the sCO2-HeRoM Turbomachine

The goal of the initial operation of the sCO2-HeRoM TAC is to prove its operability
in the sCO2-HeRo cycle. It also aims to verify the concept of internal flow paths and
improve understanding of the effects of rotational speed and density on the operation
of the TAC in sCO2. Based on findings of the previous chapter and the publications of
Cha et al. [4] and Kim et al. [5], operation of a TAC with AMB becomes more difficult as
density increases. Therefore, the tests start with operation in air at atmospheric pressure,
considered as known conditions. Then, they proceed with CO2 in gaseous conditions and
low density. As shown in Figure 6, the density at the compressor inlet, representing the
highest density in the cycle, increased gradually starting from the gaseous state of CO2 at
160 kg/m3 in region I until reaching supercritical conditions for the first time in region III
with a density above 300 kg/m3. Finally, region V reached design density and design static
inlet pressure of 566 kg/m3 and 78.3 bar at the compressor inlet, respectively. Together
with regions III, IV and VI, the tests covered the whole range of possible compressor inlet
conditions. This includes higher static inlet pressures of up to 90 bar, maximum inlet
density of 650 kg/m3 and conditions around the critical point. During operation of the
TAC in the different regions of compressor inlet conditions in Figure 6, the deflection of the
rotor and the radial, magnetic forces calculated for the bearings were monitored. Radial
deflections are measured at the radial bearings with eddy current sensors monitoring the
position of the rotor relative to the stator. At each bearing, four sensor pairs opposite to
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each other are employed. The increase of rotational speed in different regions of compressor
inlet conditions is presented first. Afterwards, measurements at constant rotational speed
are discussed with respect to the influence of density. Measurements are compared to
obtain a qualitative understanding regarding the dependence of deflection and bearing
forces on rotational speed and sCO2 density.

Figure 6. Regions of compressor inlet conditions during steps of initial operation depicted in T-s-
diagram for CO2 with lines of constant pressure (p) and density (ρ).

3.1. Increasing Rotational Speed

Here, a comparison between test runs in different regions of Figure 6 is presented.
Each test run also shows the effect of rotational speed on the radial deflection of the rotor
and the radial forces in the bearings. From Figure 5, the observation of an increase in
force and/or deflection when increasing both rotational speed and density is expected.
Whereby rotational speed is expected to demonstrate a larger effect. The analysis starts
with a preliminary test conducted in air. The TAC reached a design rotational speed
of 50,000 rpm as shown in Figure 7. For readability, the (thousands) of measurement
points are not depicted. Instead, the shaded areas represent the area where 90% of the
measurement points are located. That means that for each rotational speed, the lower
and upper bound of the shaded area are chosen in a way that 90% of measurements at
the respective rotational speed are included. During air pre-tests, a basic AMB controller
was used without considering rotordynamic coefficients of seals and cavities. Since air
density represents only 1% of the density in region I of operation in CO2 (see Figure 7) and
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even less, only 0.3%, of the compressor design inlet density, forces due to fluid inside the
impellers and cavities are considered negligible compared to operation in CO2. Figure 7
shows deflection of rotor at standstill to be on average 3 µm for the compressor bearing and
2 µm for the turbine bearing and to fluctuate in the same range. As speed increases, both
deflection and forces increase slightly. At 50,000 rpm, the maximum deflection reached
approximately 12 µm or 15% of the maximum clearance in the safety bearings. Forces
remained well below 10% of the maximum bearing force.

Figure 7. Deflection and forces at radial bearings on compressor and turbine side during air pre-tests
for speeds ranging from 0 rpm to 50,000 rpm.

In general, the preliminary air test reached 50,000 rpm and showed the rotor to be
well-balanced and clearances to be as designed. It proved general operability of the TAC
and provided the basis for further testing in CO2.

The next step included the first tests regions I–III in Figure 6, where CO2 was in a
gaseous or gas-like state. From regions I–III, the density increases at the compressor inlet
and in the whole cycle. Furthermore, the density difference between the turbine inlet and
compressor inlet is small because the maximum temperature of CO2 is kept well below
60 ◦C. Finally, the maximum speed during these tests is limited to 40,000 rpm because,
unlike tests in air, the TAC relies on turbine power to reach maximum speed owing to
the higher density at the compressor requiring more power. Due to low compressor inlet
density and low turbine inlet temperature, this power cannot be provided.

Figure 8 presents a comparison of measurements for three test runs and the test run in
air. Test run Ia and Ib are at the density in region I and run II is in region II. During run
Ia, the initial controller design used for the air test was not modified. As in the air test,
increased deflections and forces were observed as rotational speed increased. Moreover, the
fluctuations in measurements (depicted as larger enclosed area) now seem to also increase.
Above 20,000 rpm, the deflections are larger than for the test run with air, especially on the
compressor side. Figure 8 shows large deflections of about 25 µm or 31% of the clearance at
the compressor bearing at a speed of 33,000 rpm or 66% of design rotational speed. This
is already more than twice the deflection found in the air test at design rotational speed.
Note the peak at approximately 5000 rpm, which indicates switching on the imbalance
controller. It is active for larger rotational speeds and strongly reduces the deflection of the
rotor. Similar action is taken again during test runs Ib and II. The controller parameters
are changed so that the deflection of the rotor is reduced at speeds above 27,000 rpm.
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Therefore, there is drastically less deflection of the rotor for rotational speeds above 27,000
rpm compared to run Ia. For approximately 38,000 rpm, values are now 40–50% larger than
values at design speed in the test run with air. Observing the radial force in both bearings,
the forces in the compressor bearing are larger than for the air case. On the other hand,
forces in the turbine bearing remain similar but for larger fluctuations (larger enclosed
area). Run Ia is an exception, exhibiting a much larger force. It is interesting to note that
changing the control parameters when exceeding 27,000 rpm leads to a steeper increase in
the forces as a function of speed.

Figure 8. Deflections and forces depicted as function of speed for region I and II in Figure 6 for three
test runs compared to the air test: (top) deflections; (bottom) forces; (left) at compressor bearing;
(right) at turbine bearing.

These observations suggest that conditions in CO2 indeed have an effect on operating
the TAC with AMB. The reason for the observed behavior is likely due to the approximately
100-fold higher density. Furthermore, a change in control parameters is required to balance
the effect of CO2 on the rotor.

The next step is test run III, where CO2 is in supercritical, gas-like conditions in region
III right of the pseudocritical line (see Figure 6). The density is now 150–200% of the density
of run II, which was performed with a compressor inlet density of about 200 kg/m3. Ap-
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proaching 20,000 rpm, the deflection at both the turbine bearing and compressor increases
more than previously observed (see Figure 9). Therefore, the rotational speed for adjusting
control parameters to limit deflections is reduced from 27,000 rpm to just above 18,000 rpm.
This results in deflections at speeds greater than 18,000 rpm being in the same range as the
previous test runs in CO2. A change in forces similar to before is observed. However, the
size of the enclosed area representing the scatter of radial forces of the bearings increases
rather than the mean value. The fluctuations are approximately twice as large as previously
measured. Again, it is assumed that this is related to the increasing interaction of CO2 with
the rotor due to greater density.

Figure 9. Deflections and forces depicted as function of speed for region III in Figure 6 compared
to previous test runs: (top) deflections; (bottom) forces; (left) at compressor bearing; (right) at
turbine bearing.

Finally, compressor inlet conditions for test run IV and V are brought to liquid-like
sCO2 conditions left of the pseudocritical line in regions III, IV and V. The test runs featured
compressor inlet densities of about 450 kg/m3 and 600 kg/m3, respectively. Note that
the density at the turbine inlet remains similar to test run III due to the elevated inlet
temperature. As in the previous run, the maximum deflection increases mainly at the
compressor bearing (see Figure 10). The maximum deflection reaches 40% of the clearance
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height at approximately 30,000 rpm (60% of design speed). While maximum force in
Figure 10 and its fluctuation at the compressor are similar to previous tests, the scatter
of measured values for deflection increases. For the turbine bearing, a reduction in force
can be seen at 15,000 rpm when the turbine bypass valve that was previously completely
open is closed to 30%. At 25,000 rpm, it is closed to 10%, resulting in an increase in force
at the turbine bearing. Additionally, the force increases more rapidly as rotational speed
rises. Between 11% and 30% opening of the turbine bypass marks the point at which the
flow direction changes at the turbine. While the turbine impeller “pumps” sCO2 due to
e.g., friction at the disk when the pressure ratio across the turbine is low due to the open
bypass valve, closing the valve means the pumping effect can no longer overcome the
rising pressure ratio. Thus, a “wrong” flow direction at the turbine results in a larger force
on the turbine bearing. In addition, deflections up to 15,000 rpm are in a similar range to
the air tests, but become much larger at speeds near 30,000 rpm. Therefore, future test runs
require further modification of the control parameters to achieve speeds above 30,000 rpm
when the compressor is operated with high-density liquid-like CO2.

Figure 10. Deflections and forces depicted as function of speed for region IV and V in Figure 6
compared to previous test runs: (top) deflections; (bottom) forces; (left) at compressor bearing;
(right) at turbine bearing.
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The speed up tests showed that at low rotational speeds of up to 15,000 rpm, deflection
is similar to the test run in air, regardless of density. It appears that the AMB is able
to compensate the influence of sCO2, even though larger forces are required. At larger
rotational speeds, radial deflections and forces remain almost constant in test run with
air, while the values and scatter of the measurements increase significantly for test runs in
CO2. The difference becomes larger when the density at the compressor inlet increases. As
shown, a change of AMB control parameters can reduce deflections at the cost of larger
forces. Therefore, AMBs are able to actively compensate the effect of sCO2 on the rotor in
the speed and density range investigated.

3.2. Increasing Density

The previous section clearly shows that the radial deflection of the rotor and the radial
forces in the bearings increase with speed. It also shows an increase in deflection and
bearing forces for test runs in regions with higher compressor inlet density. A similar
result is presented by Kim et al. [6], who describe the effect of different sCO2 conditions on
radial force on the rotor for a cylindrical shell-type rotor–stator cavity. They show that an
increase in density can also increase forces of sCO2 on the rotor. To investigate the effect
more closely, measurements at a constant rational speed are presented. Figure 11 shows
that an increase in compressor inlet density indeed increases radial deflection of the rotor
and radial forces inside the bearings. However, it should be noted that the increase of
compressor inlet density has several effects. For example, it leads to an increase in the
pressure ratio and thus in the force acting on the blades of the impeller.

Figure 11. Deflection of the rotor and radial force of the bearings on turbine and compressor
side over compressor inlet density at constant rotational speed of 25,000 rpm: (left) deflection;
(right) radial force.

To separate the different effects of increases in density, the pressure ratio is more
closely examined. The pressure ratio can usually be changed by altering the flow rate of
the compressor. The sCO2-HeRo cycle features a compressor bypass valve for this purpose.
However, the change in pressure ratio due to closure of the bypass valve is small and no
effect on deflection or radial bearing forces was observed. This is due to flat curves of
constant speed in the compressor performance map (compare Hacks et al. [3]). However,
the pressure rise in the compressor is strongly dependent on its inlet density (compare
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Hacks et al. [9,10]). In the case of Figure 11, it doubles as inlet density increases from
325 kg/m3 to 580 kg/m3. Therefore, it can be concluded that a change of flow rate at the
compressor inlet is not responsible for the increase in bearing forces and radial deflection
of the rotor but the direct effect of density on pressure rise might be.

Second, the effect of density inside the rotor–stator cavities is analyzed. As Figure 5
indicates, fluid forces inside rotor–stator cavities increase with local density, which was
also reported by Kim et al. [6]. Here, only the effect of changing the density in the generator
cavity is considered, because design calculations indicated the largest destabilizing forces to
be caused by CO2 inside the cavity (see Figure 4). Figure 12 presents the radial deflection of
the rotor and radial bearing forces for one set of measurements when the valve controlling
the cooling flow rate (a) was throttled. The further this valve is throttled, the lower the
density inside the generator cavity becomes. The expectation is that lower density reduces
the deflection of the rotor and radial force in the AMB due to smaller destabilizing forces.
However, Figure 12 shows no considerable change of deflection and larger forces for smaller
density inside the cavity (contrary to expectations). The behavior was also checked for
other series of measurements. While the change in radial force is often less pronounced
than in Figure 12, no definite increase in deflection or radial force is observed with density.
The reason behind this is uncertain, but might be related to one of the following reasons.
Leakage flow over the hub seal of the turbine impeller mixes with the cooling flow rate (a)
inside the TAC (see Figure 3). Neither of the two mass flows can be measured directly, but
must be calculated. Since the mixing with the leakage flow occurs inside the TAC, only the
density inside the cavity is calculated and thus subject to uncertainties in calculating mass
flow over the seal and valve. Another reason could be that according to the model used
for Figure 5, the direct stiffness coefficient has a quadratic dependency on rotational speed.
Therefore, radial forces in the cavity might only be significant at higher rotational speeds.

Figure 12. Deflection of the rotor and radial force of the bearings on turbine and compressor
over density inside generator cavity at constant rotational speed of 27,500 rpm: (left) deflection;
(right) force.

Finally, it was discovered that an increase in density at the compressor inlet does not
lead to an increase in density in the generator cavity, even though the cooling flow rate
rises and the temperature drops. Instead, the density remains almost constant because the
pressure inside the cavity decreases. This also hints that forces acting on the compressor



Int. J. Turbomach. Propuls. Power 2022, 7, 18 15 of 16

impeller dominate the fluid forces that originated in the generator cavity. Therefore, the
effects on the compressor impeller dominate the increase in radial deflection of the rotor
and the increase in radial bearing forces, at least in the speed and density range studied.

4. Summary and Conclusions

The paper first presents the design of the sCO2-HeRoM TAC. Its shaft is supported
by AMBs so that the CO2 can remain in a supercritical state throughout the TAC, shaking
off the shackles of the previously used grease lubrication, which requires gaseous CO2.
To integrate the AMBs into the TAC, the cooling concept was revised to ensure cooling
of the AMB on the turbine side and reduce windage losses, axial thrust and destabilizing
forces. It is shown that the latter can be expressed by stiffness and damping coefficients
and the coefficients of the generator cavity are expected to be dominant. They increase with
rising rotational speed and density and decrease with larger clearance height. Furthermore,
it is demonstrated that objectives of cooling on one hand and reducing windage losses
and fluid forces on the other hand are contradictory since one requires cold and the other
warm CO2 with high and low density, respectively. The new cooling concept allows for
a compromise, as regulation of the cooling flow regulates the temperatures and densities
inside the TAC. Moreover, the density in the generator cavity can be kept constant even
if the density increases at the compressor inlet. Therefore, cooling concept 2 is suitable
for sCO2-HeRoM TAC with AMBs. Finally, the first test runs with the sCO2-HeRoM TAC
were successfully completed. By adjusting the controller parameters to match the fluid
properties, stable operation of the TAC was achieved at 30,000 rpm for a compressor inlet
density as high as 650 kg/m3. The conclusion is that a TAC using AMBs can be operated in
sCO2 if the forces related to the high density are considered.

Furthermore, measurements of radial deflection of the rotor and radial forces in the
AMBs during several test runs are presented. In an initial step, the sCO2-HeRoM TAC
reached design rotational speed of 50,000 rpm in air, proving operability with negligible
fluid-induced forces. Increasing compressor inlet density and rotational speed demon-
strated an expected increase in radial deflection of the rotor and radial forces in the bearings
with both increasing density and rotational speed. Furthermore, it was shown that adjust-
ing controller parameters bears the ability to reduce deflection of the rotor by applying
larger forces in the AMBs to balance fluid-induced forces.

Moreover, density increase is also analyzed at constant rotational speed. An increase
of density at the compressor inlet is associated with an increase in radial deflection of the
rotor and larger radial forces. The density on the turbine side and inside the generator
cavity remains approximately constant for the related measurements. However, pressure
rise increases strongly with compressor inlet density. In another attempt to demonstrate the
impact of density on destabilizing forces inside rotor–stator cavities of the cylindrical-shell
type, the density inside the generator cavity was changed while other properties were
kept approximately constant. Contrary to expectations, no significant change in radial
deflection was observed. Radial forces even tended to decrease. It appears that, at least at
for the rotational speed studied, the force inside the generator cavity does not dominate
the overall radial forces on the rotor. This may be related to a quadratic dependency of the
direct stiffness coefficient on rotational speed indicated by the model used. Therefore, the
relationship between the fluid forces that originated in the cavity and the total radial force
on the rotor could increase and become dominant at higher rotational speeds. However,
for the speed and density range studied, other radial forces acting on the compressor
impeller or in the cavities on the compressor side seem to dominate the fluid forces on the
rotor and need to be considered in future studies. A detailed experimental analysis of the
different components of the destabilizing force on the rotor requires a rotor geometry with
reduced complexity.
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