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Abstract: This paper presents a methodology for predictive and prescriptive analytics of a gas
turbine. The methodology is based on a combination of physics-based and data-driven modeling
using machine learning techniques. Combining these approaches results in a set of reliable, fast,
and continuously updating models for prescriptive analytics. The methodology is demonstrated
with a case study of a jet-engine power plant preventive maintenance and diagnosis of its flame tube.
The developed approach allows not just to analyze and predict some problems in the combustion
chamber, but also to identify a particular flame tube to be repaired or replaced and plan maintenance
actions in advance.

Keywords: hybrid modeling; prescriptive analytics; gas engine; machine learning

1. Introduction

Following Gartner [1], prescriptive analytics is a form of advanced analytics which examines
data or content to answer the question “What should be done?”. In structural health monitoring and
industrial asset management, it is used to build solutions aiming to prescribe particular actions in
order to avoid malfunctions and defects development during machine operation. This methodology is
of high interest in the engineering community [2–4] since it can be considered as the next step towards
predictive analytics and it leads to optimized decision making.

For predictive analytics of gas turbines, a physics-based approach and a data-driven approach
are the two most common methods. Prescriptive analytics requires a combination of both approaches
together with digital twin technology, as it is shown hereafter.

1.1. Physics-Based Approach

The physics-driven approach uses numerical modeling of a gas turbine and its subsystems.
Gas turbines’ working processes are described mostly by thermodynamics equations. Modeling includes
computational fluid dynamics (CFD) simulation of compressors and turbines [5], simulation of
the burning process [6], and high-level modeling [7]. Typically, a physical model is designed
using a combination of disciplines, such as hydraulics, pneumatics, mechanics, electromechanics,
thermodynamics, and chemistry. The physical model can be validated using field data.

Previous papers have presented generalized models for steady-state condition monitoring [8].
Algorithms based on exergetic analysis have shown a good correlation with the field data.
The models presented in [8] can be used to determine thermodynamic parameters providing suitable
operating conditions.

However, physics-based modeling also has drawbacks:

• Subsystems designed with simplified differential equations are not accurate enough for
realistic simulation of a system’s dynamics. For instant, control systems can use a simplified
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dynamic model of the engines, but these models usually can not describe abnormal behavior,
which corresponds to some developing malfunctions.

• Usually, operators and predictive system developers do not have subsystems and component
characteristics (e.g., performance maps of compressors and turbines) required for physics-based
model development.

1.2. Data-Driven Approach

A data-driven approach uses field data to design statistics-based or machine learning-based
models. Compared with physics-based modeling, the data-driven approach does not need engineering
documentation (performance maps, etc.) to develop a model. However, this approach requires a lot
of field data. Algorithms such as support vector machines (SVM) have shown good results in [9,10].
SVM has been used for gas turbine fault detection, where it showed an accuracy greater than 80% for
test data and gas turbine prognostics. To monitor vibration levels, algorithms such as random forest or
gradient boosting are used [11]. The main problem of the implementation of these algorithms is the
lack of field data for training.

Artificial neural networks (ANNs) are promising algorithms in industrial predictive analytics.
An interesting application of neural networks to gas turbines is unsupervised learning [12]. This study
examined the problem of gas turbine combustion monitoring. The performance of an unsupervised
model was better than that of a model with handcrafted features.

The drawback of fault detection is that it does not determine the reason for the abnormal behavior
it detects. This problem can deal with a model which implements explainable AI. The model does not
just identify abnormal behavior of the gas turbine or other equipment, but also identifies the reason
for such behavior. Moreover, lack of labeled data, which are a group of samples that have been tagged
with one or more labels like different faults, complicates the development of feasible algorithms.

The complexity of the task makes it difficult to develop a model using only one of these
approaches; the task requires more complicated hybrid modeling, which uses both physics-based and
data-driven approaches.

1.3. Digital Twin

Traditionally, computer-aided engineering (CAE) systems and tools have focused on
the development and production stages of the product life cycle, including design, testing,
model validation, and manufacturing. Since the 1980s, a huge amount of data has been generated, and it
is used to develop and manufacture complex products in industries such as aerospace, automotive,
and machinery. Nowadays, more and more attention is paid to multi-level simulation of products to
support their development process and reduce the number of physical tests needed.

System models built using systems modeling languages (SysML), functional models built in
Modelica-oriented environments, finite-element models, and finite-volume models are managed using
special modules in product life cycle management (PLM) systems called simulation process and data
management (SPDM) modules. All the models mentioned above, along with increasing computing
power, make it possible to introduce the concept of digital twins [13]. A digital twin is based on the
virtual physics-driven model of a product, system, or process. The digital twin enables real-time
monitoring to avoid malfunctions before they occur in its physical counterpart [14]. In addition,
a digital twin reduces the cost of system testing and verification. Unlike an ordinary virtual model,
which simulates a perfect product, a digital twin represents a particular instance of a product at
different stages of its life cycle (testing, production, maintenance, and disposal).

In this study, we aim to utilize the concepts of digital twins and hybrid modeling for prescriptive
analytics of a gas turbine engine. The efficacy of the approach will be demonstrated with a case study.
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2. Materials and Methods

The study considers prescriptive analytics of an FT8 gas turbine. It is derived from the Pratt &
Whitney JT8D series aircraft engine [15]. The JT8D is a two-spool engine with a fan at the compressor
inlet. The configuration of the FT8 includes two new compressor stages instead of the fan. The FT8
has a turbo-annular combustor arrangement. The combustor consists of 9 individual flame tubes [16].
A high-pressure turbine (HPT), a low-pressure turbine (LPT), and a power turbine (PT) are placed
after the combustion chamber. Figure 1 shows the scheme of the FT8 gas turbine.

(a) FT8 gas turbine scheme

(b) Major assembly sections of FT8 gas turbine

Figure 1. FT8 gas turbine [16].

2.1. Problem Statement

The combustion system is a critical part of any gas engine. Combustion conditions are commonly
monitored in the industry [12,17]. A combustion process occurs under high pressure, temperature,
and gas flow rate conditions that create high thermodynamic loading for the combustor components.
Combustion instabilities and injector malfunctions may lead to imbalanced fuel distribution in the
flame tubes and cause serious faults, such as fuel nozzle faults, flame tube burnouts, and intensive
vibrations. These anomalies may lead to catastrophic failures of gas turbines. Thus, early detection
of abnormal behaviors and flame tube malfunctions is important during the gas turbine life cycle.
The flame tube malfunction can be detected based on the temperature profile of thermocouples placed
at a certain distance from the combustion chamber. The FT8 gas turbine is equipped with probes
which measure exhaust gas temperature (EGT). They enable operators to ensure an even temperature
distribution. The system for EGT measurements consists of nine thermocouples located after the LPT
(Figure 2a). Due to swirl of the exhaust gas after the combustion chamber, the thermocouple number
corresponds to previous number of flame tube (for instance, the 7th thermocouple shows temperature
after the 6th flame tube). In our experiments, we have done a correction on the thermocouple numbers
to make it the same as the flame tube number. As a result of the EGT probes’ locations, a properly
performing gas engine has a characteristic curved EGT profile. The profile has a special shape,
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as shown in Figure 2b. The following counting of thermocouple numbers is chosen from operation
documentation. It has the best view for operators to observe possible faults.

(a) Rotated probes’ location due to flow swirl (b) Characteristic EGT profile of gas engine

Figure 2. Exhaust gas temperature (EGT) probes’ placement and temperature profile characteristics [12].

In our work, the following data were available:

1. Two years of real FT8 gas turbine field data;
2. 24 features, such as pressures and temperatures in different parts of the turbine, environment

conditions, shafts’ rotary speed.;
3. moments of time when flame tubes were repaired;
4. numbers of flame tubes which were broken.

2.2. Physics-Based Model of a Gas Turbine

In this chapter, the development of a gas turbine physics-based model is described. Gas turbine
power plants produce mechanical power from the expansion of hot gases in a turbine. The Brayton cycle
is a thermodynamics cycle upon which all gas turbines operate [18]. A typical industrial gas turbine
power plant has two shafts and a detached power turbine, which is connected to a generator [16,19].

The physics-based model of a gas turbine enables the detection of malfunctions even without any
field data, using thermodynamic laws and equations [20]. A digital twin of a gas turbine power plant
would allow the operators to simulate any malfunction to perform prescriptive maintenance of gas
turbines. However, the lack of data on the physical characteristics of gas turbines complicates the task
of developing the digital twin of a gas turbine power plant.

Much information about FT8 gas turbine power plants required for developing a digital twin
is unknown. Some papers describe an approach for the analysis of FT8 gas turbines [21,22], but this
analysis is not enough to develop a digital twin.

A scaling procedure for performance maps is a helpful tool for the analysis of compressors and
turbines [23]. The scaling procedure described in the present article suggests the following approach:

1. An engineer defines a type of the considered compressor or turbine.
2. A component of the same type with a known performance map (reference map) is taken.
3. The reference map is scaled by mass flow rate, pressure ratio, rotary speed, and isentropic

efficiency factors to obtain an actual performance map.

Taking into account reference maps for components of different types [5,24–28] makes it possible to
design a physics-based model of the FT8 gas turbine.

2.3. Workflow for Physical Model Development

The physics-based model was developed using the Python programming language. The model
considers only a gas engine without a power turbine so it uses LPT exit conditions for simulation.
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The model could also be simplified assuming that the steady-state relationship of the pressure after
low-pressure compressor (LPT) vs. the rotary speed of high-pressure compressor (HPC) could be
defined. Figure 3 presents a workflow for the physics-based model development.

The approach used in this study consisted of three main steps:

1. The model is represented as a black box. Only the input parameters and output parameters are
known. The field data and model documentation are collected.

2. Some subsystems are identified using papers, documentation, and measurements, while subsystems
remain as black boxes.

3. Optimization algorithms are used to tune the parameters of unknown subsystems using field data.

Figure 3. Workflow for physics-based model of a gas turbine power plant development.

2.3.1. Subsystems Description

In this study, the physics-based model of a gas turbine was divided into submodels connected in
series. The submodels were described by equations determining how they work. The model developed
in this study used a gas model with a 6 component gas:

y = (yi) =
(

N2 O2 Ar H2O CO2 C10H20

)
(1)

Enthalpy of formation of species h f 0i
and specific heat cpi , cvi vs. temperature in the range of

200 K to 6000 K were taken from NASA documentation [29]. Figure 4 represents the composition of
the physical model.
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Figure 4. Architecture of the gas turbine model.

The model uses field data to define initial conditions, such as the pressure in chambers,
environmental temperature, pressure, and humidity. The submodels are elaborated below.

2.3.2. Atmospheric Source

The atmospheric source represents a submodel with no input and constant thermodynamic values.
To be initialized, the model required pressure P, temperature T, species fraction y, and molar mass µ.
The submodel calculates a specific enthalpy hout and a heat capacity ratio γ:

cpmix (T) =
6

∑
i=1

yicpi (T), cvmix (T) =
6

∑
i=1

yicvi (T) (2)

γ =
cpmix

cvmix

(3)

hout = cpmix T (4)

2.3.3. Chamber with Constant Volume

The chamber model solves the variation of internal energy using the first law of thermodynamics
for an open system. This study assumed that thermal losses due to irradiation, convection,
and conductivity are negligible. To be initialized, the model requires the values of pressure P,
a temperature T, species fraction y, molar mass µ, and volume V. The submodel calculates the
specific universal gas constant for the mixture.

rmix =
n

∑
i=1

yi
µi

R (5)

ρmixinit =
Pinit

rmixTinit
(6)

ρi = yiρmix (7)

The following equations are used to calculate a steady-state condition during simulation:

dρi
dt

=
1
V

(
yiin ṁin − yiout ṁout

)
(8)

dT
dt

=
ṁinhin − ṁouthout −m ∑6

i=1
dyi
dt ui − dm

dt

∫
cvmix dT

mcvmix

(9)

P = ρmixrmixT (10)
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hout = cpmix (T)T (11)

For fuel specific heat calculations, we use averaged value obtained with temperature on the
current and previous integration steps. It can be done because of the errors of the sensors (fuel
consumption sensor, temperature sensors, etc.) are higher then the integration error.

2.3.4. Compressor

A compressor performance map is the most important data for submodel initialization.
The performance map defines several steady-state compressor operating regimes with interpolation
for other regimes. The model also requires the values input and output pressure Pin and Pout, input
temperature Tin, and rotary speed ω to be initialized. The performance map is represented as two
functions PMm(ω, Pout

Pin
) and PMη(ω, Pout

Pin
), which define mass flow rate ṁ and isentropic efficiency η

with a correction to a real compressor’s working conditions:

ωcorrected = ωactual

√
290
Tin

(12)

ṁcorrected = PMm(ωcorrected,
Pout

Pin
), η = PMη(ωcorrected,

Pout

Pin
) (13)

ṁactual = ṁcorrected

√
290
Tin

Pin (14)

The outlet temperature and enthalpy are then computed:

Tout = Tin

[
1 +

( Pout
Pin

)
γ−1

γ − 1

η

]
(15)

hout = cpmix (T)T (16)

2.3.5. Combustion Chamber

The combustion chamber was described using the same equations as the Chamber with constant
volume with some additional heat generated due to chemical reaction:

15O2 + C10H20 ⇒ 10H2O + 10CO2 (17)

The generated heat flow was calculated using the enthalpy of formation of species i:

Qreact = ∑ − dmih f 0i
(18)

To calculate a steady-state condition, the thermodynamic equations from Chamber had to
be changed:

dρi
dt

=
1
V

(
yiin ṁin + y f uelṁ f uel − yiout ṁout

)
(19)

dT
dt

=
ṁinhin + ṁ f uelh f uel − ṁouthout +

dQreact
dt −m ∑6

i=1
dyi
dt ui − dm

dt

∫
cvmix dT

mcvmix

(20)

P = ρmixrmixT (21)

hout = cpmix (T)T (22)
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2.3.6. Turbine

The turbine submodel had the same initialization requirements, inputs, and outputs as the
Compressor submodel, but the outlet temperature was calculated in a different way:

Tout = Tin

[
1 + ((

Pout

Pin
)

γ−1
γ − 1)η

]
(23)

where η is the isentropic efficiency of a turbine. Mass flow rate ṁ and isentropic efficiency η were
determined by the performance map of a turbine. Mass flow rate and rotary speed were corrected as
described in the Compressor model.

2.3.7. Exhaust Gas Temperature Distribution

We assumed a Gaussian temperature distribution at the end of flame tubes and simulated each
flame tube as a heat source with the heat flow and temperature distribution in a circumferential
direction, where the x-axis represents the angle from 0 to 360 degrees, as presented in Figure 5.
According to our assumption, a breakage in a flame tube leads to a widening of the tube’s temperature
profile (in a simplified model), but in fact it is actually more complex. In fact, the mean position of the
temperature distribution peak changes too, because burnouts are not symmetrical.

Figure 5. Exhaust gas temperature distribution after one flame tube.

Temperature distributions at the end of each k flame tube were determined as:

T(α, αk) = A ∗ exp(
(α− αk)

2

2σ2 ) (24)

and ∫ 2π

0

9

∑
k=1

T(α, αk)dα = 2πTEGT (25)

where αk is the angle of the k-th thermocouple placement.

2.4. Tuning of the Gas Turbine Physical Model

Having developed the physics-based model architecture, we tuned its parameters to fit the real
operation data of the gas turbine. We used the Nelder-Mead method to minimize the difference
between the mass flow rate of the gas turbine from field data and the mass flow rate of the components
of the physical model.

As was mentioned above, performance maps determine the operating conditions of turbines
and compressors. In the study, the LPC performance map was obtained from the turbine operator,
but the maps for other turbine components had to be acquired. We decided to use an optimization
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algorithm to find the scaling parameters for fitting the performance maps. We used 10 points of the
operation data from a different period of the gas turbine’s performance. These points were obtained
from the steady-state working conditions of the gas turbine because, in steady state, we can say that
the mass flow rates of all compressors and turbines are equal. The optimization algorithm was applied
to minimize the following functions:

FN
j (RPj) =

N

∑
i=1

(ṁi LPC − ṁi j(RPj))
2 (26)

where RPj represents resizing parameters for the Fj function and j = 1, 3 corresponds to HPC, HPT,
and LPT, respectively. N is the number of points used for optimization, which equals 10.

To determine the exact position of the EGT probes, we used the Nelder–Mead method, optimizing
10 parameters. The algorithm varied the distribution of the temperature at the end of flame tubes
determined by the variance and positional angle of the EGT probes to minimize the following
goal function:

FN(σ, α1, α2, ...α9) =
9

∑
j=1

[ N

∑
i=1

T̃Cij(σ, αj)− TCij

N

]2
(27)

where T̃Cij(σ, αj) and TCij are j simulated and measured temperature on the j-th thermocouple in the
i-th experiment.

2.5. Model Validation

To validate the tuned model, we simulated the operation of the turbine for 2000 min. Figure 6
compares the field data values and the simulation results of the physical model.

Figure 6. Simulated and measured combustion pressure and EGT histories.

The physics-based model showed good accuracy in the gas turbine’s steady-state regime of work,
where the error was less than 2%.

Applying the optimization algorithm to determine the thermocouples’ position allowed us to
obtain the optimized function’s value:

F10(σ, α1, α2, ...α9) = 12.15 (28)

F100(σ, α1, α2, ...α9) = 10.24 (29)

2.6. Hybrid Modeling

After the physics-based model of a gas turbine was created, it was combined with a machine
learning model.
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Taking into account the lack of labeling (only one label was known when the flame tubes
were repaired), we decided to use a machine learning model trained by a physics-based model.
In this configuration, we produced much-labeled data, which were then fitted to the machine
learning-based model.

The problem and assumptions can be stated as follows:

1. Nine flame tubes were placed in the combustion chamber. Each could be broken in the same period
of time (in the present case study, seven flame tubes were broken simultaneously). The number
of broken flame tubes at a given moment may range from zero to nine with unknown probability.

2. Malfunction of the flame tubes led to changes in the temperature profile of the EGT probes.
3. Malfunction of the different flame tubes led to unique differences in the temperature profile of the

EGT probes.

We used neural networks as the architecture for the machine learning model, as they are well
suited for multiclass classification problems [30,31]. It was also interesting to check different neural
network structures and observe the trainability of the model.

We tried different architectures for the neural networks with different numbers of hidden layers
and neurons. Although different architectures produced almost equal results, the neural network with
three hidden layers performed the best.

We used two different activation functions in the hidden layers (Rectified Linear Unit (ReLU) and
Exponential Linear Unit (ELU)) to compare their performance to possibly improve the results [32,33]:

ReLU(x) = max(0, x) (30)

ELU(x) =

{
x x > 0

α(ex − 1) x < 0
(31)

For the output layer, the sigmoid activation function was used:

σ(x) =
1

1 + e−x , prediction =

{
1 σ(x) > 0.5
0 σ(x) ≤ 0.5

(32)

The inputs to the model were the EGT probes’ temperatures Ti from the physics-based model,
and the outputs were nine possible classes aj corresponding to flame tube malfunctions:

input =


T1

T2

...
T9

 , output =


a1

a2

...
a9

 , where aj =

{
1 j flame tube is broken
0 j flame tube is whole

(33)

Figure 7 shows the neural network structure.

Figure 7. Structure of the neural network used for flame tube malfunction detection.
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We used the Adam optimizer [34] and binary crossentropy loss function [35] for the model.
Let [input, hidden layer 1, hidden layer 2, hidden layer 3, output] represent the number of neurons in
a network. In this study, we used the following architectures for the model:

1. [9− 50− 50− 40− 9], dropout = 0.1, ReLU activation function in hidden layers
2. [9− 50− 50− 40− 9], dropout = 0.1, ELU activation function in hidden layers
3. [9− 70− 70− 50− 9], dropout = 0.1, ELU activation function in hidden layers

2.6.1. Combination of Approaches for Flame Tubes Health Monitoring

Physics-based and machine learning models were combined in the way in which the physics-based
model simulated flame tube breakages. The following algorithm describes the simulation process:

1. The physics-based model chose a random number N from zero to nine, which determined the
amount of broken flame tubes in the data sample.

2. Random flame tubes nj, j = 1, N were defined as broken.
3. Malfunction in each nj flame tube was simulated as the increased variance of the temperature

distribution. Figure 8 shows an example of the simulated malfunction in the third flame tube.
4. The physics-based model simulated the steady-state working conditions of the turbine and

calculated the EGT distribution.

Figure 8. Temperature distribution after LPC turbine with a broken third flame tube.

In the combined model, the physics-based model generated new labeled data each iteration,
which prevented the neural network from overfitting. Figure 9 shows how the physics-based model
was connected with the machine learning model.
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Figure 9. Architecture of a combined model.

The model was trained in M iterations. The following Algorithm 1 was used for the training:

Algorithm 1: Training algorithm

for i = 0 to M do
The physics-based model generated 900 data samples and labels;
The accuracy of the neural network was estimated based on the generated data;
The neural network was trained for 8–16 epochs with the data;

end

We determined the absolute accuracy with the following formula:

acc =
∑M

j=1 ∑9
i=1 pij

9 ∗M
, where pij =

{
1 ãij = aij
0 ãij 6= aij

(34)

where aij is the label for i flame tube in j experiment out of M and ãij is the prediction for i flame tube
in j experiment out of M.

2.6.2. Model Training and Architectures Comparison

The most important task was to choose the right neural network architecture. We compared the
neural networks with different numbers of trainable parameters and hidden layers. Each architecture
was trained for 30 iterations, and its accuracy was checked on the same test dataset. The ELU activation
function was used in hidden layers. Each architecture was also trained with 15 epochs in each iteration
and was fitted with 100 batch sizes.

We investigated the hyperparameters of the neural network with three hidden layers.
Each architecture for the model was trained with 500 iterations. The results show good trainability for
the model, as presented in Figure 10. The architecture [9− 70− 70− 50− 9] with the ELU activation
function in hidden layers produced the most accurate results (−0.95).
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(a) Model accuracy for different NN architecture (b) Model accuracy for different epochs number

Figure 10. Neural network accuracy.

We have chosen the following hyperparameters for training:

• Epochs number—16.
• Batch size—40.

The mean timing for each iteration shows that the physics-based model, which generates datasets,
limits the speed of training:

• Mean time of the dataset generation = 9.6 s for 900 labeled data points.
• Mean time of the neural network training = 1.22 s for 16 epochs.

We considered other metrics as well. In the designed model, we checked the accuracy of the newly
generated datasets. However, we considered a more common way to validate the model that generates
just one test bench. On this test bench, we applied absolute accuracy and other metrics, such as F1
score, area under the receiver operating characteristic curve (AUC ROC) score, precision score, and
recall score [36,37]. Figure 11 shows the results on the accuracy for different metrics. Absolute accuracy
showed the same trend with the validation set as with the generated datasets.
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M
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recall_score_test

Figure 11. Accuracy results for different metrics.

The accuracy of the number of broken flame tubes was also investigated. The increase in
the number of broken flame tubes complicates the EGT profile, so the model should have a lower
accuracy value.

We designed an experiment where the pre-trained model was applied to eight different validation
sets consisting of 600 data samples each. In each validation set, the constant number of broken flame
tubes was simulated (0, 1, 2, . . . , 7 broken flame tubes). Figure 12 shows our hypothesis that the
accuracy would decrease with an increased number of simultaneously broken flame tubes was correct.
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Figure 12. Absolute accuracy for different number of broken flame tubes.

3. Results and Discussion

The physics-based model was used to train the neural network under various conditions of
malfunctioning flame tube, and it achieved an accuracy of more than 0.95. The next step was to
validate the model using field data.

3.1. Prescriptive Results

We applied the model to predict the probability of flame tube malfunction for each field datum
point. As the model worked with high accuracy only on steady-state conditions we accumulate the
error every 15 min interval. We call it a cumulative error as it presents the whole error during this
15 min working interval (Figure 13). We defined the 15 min interval as time index.

Figure 13. Error on field data and cumulative errors for the 4th EGT probe.

Figure 14 shows the cumulative error over six months for all nine flame tubes. As shown in the
figure, we identified three regions for discussion of the predictions. The regions are drawn in Figure 14:

1. Black color—14 August 2018. The day when flame tubes 1, 2, 3, 4, 6, 8, 9 were repaired.
2. Yellow color—11 July 2018. The day when flame tubes have broken, according to the

model prediction.
3. Red color—22 June 2018. A previous repair of flame tubes, according to the model prediction.
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(a) Breakage determination in flame tubes
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(b) Intact flame tubes determination

Figure 14. Application of the model to predict exact number of broken flame tubes.

The application of the model to the FT8 gas turbine dataset correctly determined the breakage
time for three broken flame tubes out of seven. False negative results (when the flame tube is broken,
but the model predicts it is healthy) may be due to small defects in the replaced flame tubes.

Detecting the deviation in EGT profile from normal behaviour the hybrid model predict the flame
tubes’ breakage a month before their repair. This means that the operating company used gas engines
with broken flame tubes for about a month.

Between 22 June 2018 and 11 July 2018, some increase in error, Figure 14a, was seen. This increase
presumably is linked with the breakage. It is probably connected to injector lag, so the subsequent
improvement of the model will allow us to observe the causes in more detail.

The proposed methodology can be applied not only for development of gas turbines but also
to any other complex systems, such as pumps, compressors, and turbochargers. The methodology
presented in this study may be integrated into maintenance, repair, and overhaul software and may be
used during the machinery life cycle for better performance.

3.2. Advantages of Combined Approach

As this work shows, the combined approach makes it possible to predict malfunction for even a
very small amount of labeled data. In our case we have only one label for the whole dataset—the date
when the flame tubes were replaced. Even so, we use this label not to train the model, but to validate
it. The following advantages of the combined approach may be of research interest in this field:
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• Only a small amount of the field data is needed to adjust the model to a real turbine. In the
case of the FT8 gas turbine, we worked with only 10 data points to identify the performance
maps. This means that the model could be tuned to new turbines after a day of operation,
which indicates the scalability of the approach.

• Compared with a purely data-driven approach, the combined model allows operators to detect
not only the abnormal behavior of gas turbines but also the reasons for it.

• Many malfunctions can be simulated. As soon as the physical model is validated, we can simulate
many types of faults.

4. Conclusions

This paper presented the workflow of prescriptive analytics of the gas turbine engine based on
its hybrid model. The model utilizes a data-driven and a physics-driven approach. The developed
model can accurately identify different malfunctions of the engine based on its performance. However,
the presented hybrid approach cannot be implemented without developing a physics-based model that
is tuned to fit the performance of a gas turbine. Therefore, the developed model has some limitations:

1. Lack of engineering data is the main limitation in the development of a physics-based model. It is
not possible to develop a model without performance maps for the compressors and turbines.

2. Unknown malfunctions or other malfunctions not taken into during machine learning model
training, could be identified incorrectly.

3. If the construction of a gas turbine is changed (for instance, if the EGT probes are placed
differently), the model has to be adjusted.
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Nomenclature

Latin Symbols
acc prediction accuracy −
ãij prediction for i flame tube in j experiment out of M −
aij label for i flame tube in j experiment out of M −
cpi specific heat at constant pressure of i-th gas component J

kg·K
cpmix gas mixture specific heat at constant pressure J

kg·K
cvmix gas mixture specific heat at constant volume J

kg·K
cvi specific heat at constant volume of i-th gas component J

kg·K
h f 0i enthalpy of formation of i-th gas component J
hout output enthalpy J
ṁ mass flow rate kg

s
M number of experiments −
Pin inlet pressure Pa
Pout outlet pressure Pa
Q heat flow Pa
rmix gas mixture individual gas constant m3·Pa

K·mole
Tin inlet temperature K
Tout outlet temperature K
V volume m3

yi i-th component of the gas mixture −
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Greek Symbols
αk angular placement of the k-th thermocouple rad
γ heat capacity ratio −
η isentropic efficiency −
ρmixinit initial mix density kg/m3

ρi pressure of the i-th mix component kg/m3

σ standard deviation of the exhaust gas temperature distribution K
ω compressor rotary speed rad/s

Abbreviations

AUC ROC Area under receiver operating characteristic
CAE Computer-aided engineering
CFD Computational fluid dynamics
EGT Exhaust gas temperature
ELU Exponential Linear Unit
HPC High pressure compressor
HPT High pressure turbine
LPC Low pressure compressor
LPT Low pressure turbine
NN Neural network
PLM Product lifecycle management
PT Pressure turbine
ReLU Rectified Linear Unit
RP Resizing parameters
SPDM Simulation process and data management
SVM Support vector machine
SysML Systems modeling language
TC Temperature at a thermocouple

Subscripts

in inlet
init initial
mix gas mixture
out outlet
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