
Turbomachinery 
Propulsion and Power

International Journal of

Article

Verification of the Axial Momentum Theory for
Propellers with a Uniform Load Distribution †

Rodolfo Bontempo * and Marcello Manna

Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, via Cluadio, 21, 80125 Napoli,
Italy; marcello.manna@unina.it
* Correspondence: rodolfo.bontempo@unina.it; Tel.: +39-081-7683281
† This paper is an extended version of our paper published in the Proceedings of the 13th European Conference on

Turbomachinery Fluid Dynamics and Thermodynamics.

Received: 18 April 2019; Accepted: 8 May 2019; Published: 14 May 2019

Abstract: The paper provides an evaluation of the errors embodied in the Axial Momentum Theory
(AMT) as applied to a uniformly loaded actuator disk model without wake rotation. Although this
model exhibits some unphysical features, such as the tip singularity and the violation of the angular
momentum equation, it is still considered a touchstone in the theoretical aerodynamics of propellers.
To simplify the model, a purely mathematical assumption is commonly used in the differential form
of the axial momentum equation, i.e., the contribution of the pressure forces on the lateral surface of
the infinitesimal streamtubes swallowed by the disk is neglected. In this paper, the errors introduced
by this simplifying assumption are evaluated by comparing the results of the AMT with those of a
nonlinear method modelling the free wake as the superposition of ring vortices distributed along the
wake boundary. Firstly, the validity of this method is verified in terms of global performance coefficients.
Then, using a CFD approach, it is also verified in terms of local flow quantities. The comparison between
the ring-vortices method and the AMT shows that, for a highly loaded propeller, significant errors exist
in the axial velocity at the disk, especially near the tip. Moreover, despite the uniform load, the axial
velocity at the disk varies in the radial direction. Instead, the velocity magnitude remains almost uniform
only for values of the thrust coefficient lower than 1.

Keywords: axial momentum theory; actuator disk; aerodynamics of propellers

1. Introduction

Not disregarding the classical CFD approaches [1–6], the design and/or analysis of aeronautical
and marine propellers are generally carried out using many numerical methods such as lifting-line [7,8],
lifting surface [9,10] and panel methods [11,12]. However, when compared with the classical engineering
approach based on the momentum theory, these models have never shown a definitive improvement
in the accuracy of the performance prediction and/or in the robustness of the numerical algorithm [13].
For this reason, despite the great variety of more advanced methods, the simple and robust Blade-Element
Momentum Theory is still the most used approach for the evaluation of propeller performance. This theory
stems from the coupling of the Blade-Element Theory and of the Momentum Theory (MT). Two versions
of this latter theory exist: the generalized (GMT) and the axial (AMT) Momentum Theory [14]. While the
former takes into account the wake rotation, the AMT completely disregards the tangential velocity, even in
the wake. The MT relies on the steady, incompressible, axisymmetric, and inviscid flow assumptions.
However, additional simplifying assumptions are typically introduced when the MT is used to evaluate
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local quantities such as the radial distribution of the axial velocity at the disk. Specifically, as shown
in [15–19], the AMT disregards the axial contribution of the pressure forces on the lateral surfaces
of the infinitesimal streamtubes swallowed by the rotor. Due to the great relevance of this theory,
the evaluation of its errors and the impact on the reliability of its results are of interest. Generally,
the evaluation of these errors is carried out by comparing the MT results with those of more advanced
actuator disk approaches which do not rely on the MT simplifying assumptions. For example, consider
the nonlinear actuator disk of Wu [20] further developed in [21–23]. The method has been also extended
to a ducted configuration in [24–30]. The ring-vortex wake method proposed by Øye [31] has also
been employed by van Kuik and Lignarolo [32] to verify the AMT when applied to a wind turbine.
Sørensen and Mikkelsen [33], Madsen et al. [34], Sørensen [35] and Madsen et al. [36] also assessed the
validity of the MT using several actuator disk approaches.

Despite the large amount of works on this topic, a precise evaluation of the AMT errors as applied
to the classical uniformly loaded propeller is still missing. The relevance of this issue relies on the fact
that the uniformly loaded disk still represents the benchmark model for two reasons. Firstly, thanks to
its great simplicity, this model is the most studied and used approach. Secondly, it can be easily proven
that a uniformly loaded disk is characterized by the maximum propulsive efficiency, thus making this
oversimplified model a reference point for the performance estimation of real propellers. In this paper,
the errors embodied in the AMT as applied to a uniformly loaded propeller are evaluated comparing
its results with those of a free-wake ring-vortex actuator disk (FWRV-AD) method which models the
wake through the superposition of ring vortices placed in the control points of N straight panels [37,38].
The far wake is represented by a semi-infinite vortex cylinder. The velocity induced by a panel on itself
is computed considering the wake curvature both in the cross and meridional plane. Two constrains are
used to iteratively evaluate the wake shape and the density strengths of the vortices, i.e., the panels are
required to be aligned with the overall flow field and to have a zero static pressure jump across them.

The article is organized as follows. Firstly, the typical simplifying assumptions used in the AMT
are described in Section 2. Then, most of the theoretical and numerical aspects of the FWRV-AD method
are outlined, and its stability and convergence properties are discussed in some details (see Section 3).
Moreover, its results are verified in terms of global performance coefficients using the AMT in Section 4.1.
A further verification in terms of local flow quantities is carried out against a CFD actuator disk model
(see Section 4.2). Finally, in Section 4.3, the AMT errors on the axial velocity at the disk, and on the axial
induction factor are quantified.

2. The Axial Momentum Theory for the Uniformly Loaded Propeller: Review and Analysis of the
Simplifying Assumptions

In the AMT, a uniformly loaded propeller is modelled by the steady, incompressible, inviscid, and
axisymmetric flow through an actuator disk which experiences a uniform pressure jump across it. To fully
take advantage of the axisymmetric flow assumption, a cylindrical coordinate system (z, r, θ) is introduced.
The z axis is orthogonal to the disk face and, by convention, oriented in the downstream direction. Without
loss of generality, the origin of the reference frame is placed at the disk center. Moreover, to further
simplify the analysis, the tangential velocity is typically assumed to be zero everywhere, even in the wake.
Obviously, for finite rotor angular velocity, this assumption contradicts the angular momentum equation.
However, since the dynamic load associated with the change in the tangential velocity is usually small
in comparison with the static load, the above assumption is generally accepted as a first approximation.
Moreover, it can be easily proven [15] that a uniformly loaded actuator disk without wake rotation is
characterized by the maximum propulsive efficiency, thus making this oversimplified model a reference
point for the performance of real propellers.
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At upstream infinity, the axial velocity vz(z → −∞, r) and the static pressure p(z → −∞, r) are
considered to be uniform and, for the sake of simplicity, they are termed v∞ and p∞, respectively. Across
the disk, the axial vz(0, r) and the radial vr(0, r) velocity are supposed to be continuous (that is vz(0−, r) =
vz(0+, r) and vr(0−, r) = vr(0+, r)). The axial and radial velocities at the disk are termed vz,d and vr,d,
where the subscript d stands for disk. While the velocity components are continuous functions across
the disk, a radially uniform pressure jump ∆pd takes place there, i.e., ∆pd = p(0+, r)− p(0−, r) = const.
At downstream infinity, the wake is supposed to be fully developed in the axial direction without a radial
velocity component. Then, since there is no rotation in the wake, it is easy to show that the static pressure
at downstream infinity is everywhere equal to p∞ [15], a fact that can be easily proven using the Bernoulli
and the radial momentum equations. The wake axial velocity at downstream infinity vz(z→+∞, r) is
termed vz,w. This quantity can be related to the pressure jump across the disk by applying the Bernoulli
equation to the streamtubes swallowed by the rotor. By so doing, it can be shown that

∆pd =
1
2

ρ(v2
z,w − v2

∞), (1)

where ρ is the fluid density. The above equation implies that if a uniform pressure jump exists all along
the rotor span, then the wake axial velocity at downstream infinity vz,w must be uniform in the radial
direction, too. Since ∆pd > 0 for a propeller, Equation (1) also means that the axial velocity in the wake
must be greater than v∞, so that, using the continuity equation, the streamtube swallowed by the disk
must contract moving from upstream to downstream infinity.

A further relation between the rotor load and the wake velocity can be obtained by applying the axial
momentum equation which returns [15]

T =
∫

S
∆pddS =

∫ R

0
ρvz,d(r)

[
vz,w

(
rw(r)

)
− v∞

]
2πrdr, (2)

where T is the propeller thrust and S = πR2 is the rotor swept area. Moreover, if r is the radius of a generic
streamtube at z = 0, then the function rw(r) returns the radius of that streamtube at downstream infinity.
When a uniform pressure jump is used, Equation (2) reduces to

∆pd = ρ(vz,w − v∞)vz,d. (3)

In the above equation vz,d is the area averaged axial velocity at the disk defined as

vz,d =
1

πR2

∫
S

vz(0, r)dS. (4)

Then, from Equations (1) and (3), it is easy to prove that the averaged axial velocity at the disk is the
arithmetic mean between the velocity at upstream and downstream infinity i.e.,

vz,d =
vz,w + v∞

2
. (5)

Under all the aforementioned simplifying assumptions, Equations (1)–(5) are exact. However, in the AMT,
these equations are further simplified by adopting the following differential form of Equation (2):

∆pd = ρvz,d(vz,w − v∞) (6)
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which, making use of Equation (1), promptly returns the famous Froude law

vAMT
z,d =

vz,w + v∞

2
. (7)

Contrarily to Equation (5), the above equation implies that for a uniform ∆pd, the axial velocity at the disk
must be radially uniform, too. For this reason, the AMT is often considered a one-dimensional theory.
However, as shown in [16,17,32,33], Equation (6), and so (7), are not exact since they disregard the effect
of the pressure forces on the lateral surface of the infinitesimal streamtubes swallowed by the rotor. As
discussed in [16], this effect is intimately related to the wake contraction. In Equation (7), the superscript
AMT is used to denote the axial velocity at the disk evaluated under the simplifying assumptions of the
AMT. Also note that Equations (5) and (7) readily yield vAMT

z,d = vz,d.
In the following sections, it is shown that, even if the load is uniform, the flow through a uniformly

loaded disk is not one-dimensional since the axial velocity at the disk is not uniform. Moreover, the errors
introduced in Equations (6) and (7) are evaluated comparing them with the results of the FWRV-AD model
which does not rely on the simplifying assumption used to retrieve those equations.

3. The Free-Wake Ring-Vortex Model for the Uniformly Loaded Propeller without Wake Rotation

The actuator disk method described in this section stems from an infinite-blade variant of the
Joukowsky vortex model [39]. Basing on the Stokes and Kutta-Joukowsky theorems, this model represents
each blade as a line vortex. In fact, a lift force is typically related to each blade section which, using the
Kutta-Joukowsky theorem, must experience a bound circulation, too. Hence, from the Stokes theorem,
a non-zero vorticity flux exists through any surface containing the blade section. This justifies the modelling
of the blades through vortex lines. When a variation of the lift force takes place along the blade span,
the associated vorticity flux must change accordingly. Since the vorticity is a solenoidal vector field,
a trailing vorticity is also associated with the bound circulation variation. However, for a rotor with a
uniform lift force distribution, the trailing vorticity is spread only from the tip and the root of the blades.
Summarizing, three vortex systems are used to model the rotor: the blade bound vorticity, a straight line
vortex representing the vorticity originating by the roots of the blades, and helicoidal vortex filaments
for the vorticity spread by the blade tips (see Figure 1a). This filament is customarily decomposed in a
tangential and in a meridional wake vortex system [40].

(a) (b)

Figure 1. (a) Joukowsky vortex model: blade vortices (blue), root vortex (black), helicoidal wake vortices
(red). (b) Actuator disk model: disk sheet vortex (blue), root vortex (black), wake sheet with meridional
vorticity (red), wake sheet with tangential vorticity (green).
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In the limiting case of infinite blades, the two components of the wake vortex filaments are spread
over the wake boundary-surface to obtain two contoured cylindrical sheet-vortices (see Figure 1b) whose
strengths are directed in the meridional and tangential direction, respectively. The blade line-vortices are
also uniformly distributed on the swept disk surface, while the root vortex is unchanged.

Please note that the tangential vorticity induces an axial and a radial velocity, whereas the meridional
component of the vorticity can also induce a tangential velocity. Hence, to obtain the classical actuator disk
without wake rotation by the Joukowsky model, the blade, the root, and the meridional wake vorticity
must be neglected, while the sole tangential vortex-sheet of the wake has to be used.

The geometry and the strength distribution of this tangential vortex-sheet, which represents the
boundary of the wake, are not known a priori, and they must be computed using two different conditions.
Firstly, the sheet must be aligned with the overall flow field, a condition which allows evaluation of the
wake geometry. Secondly, the stability of the wake edge has to be enforced by requiring that the static
pressure just beneath and above the sheet is the same, i.e., ∆psv = 0, where the subscript sv stands for
sheet vortex. By so doing, the strength distribution of the sheet vortex can be evaluated as described in the
following. First, it is convenient to introduce a curvilinear abscissa s along the wake edge, with s = 0 at
the rim of the disk. Then, a density strength distribution γ is also introduced along the sheet, so that the
strength of a sheet-element with infinitesimal length ds becomes γds (see Figure 2).

s
sheet vortex

v−
sv

v+
sv

ds

Figure 2. Infinitesimal sheet-vortex element.

By convention, γ is considered to be clockwise-positive around the positive z axis, and thus, from the
Stokes theorem, the strength γds is equal to the clockwise velocity circulation around the dashed curve
reported in Figure 2. Then, it is easy to prove that

γ = v+sv − v−sv, (8)

where v−sv and v+sv are the velocities just beneath and above the sheet, respectively. Please note that since
the velocity in a propeller wake is higher than that outside it (v−sv > v+sv), γ is a negative quantity all along
the wake.

To enforce the free-force condition ∆psv = 0 on the wake edge, consider now the total pressure
distribution inside and outside the wake. As stressed in the previous section, the axial and radial velocities
are supposed to be continuous functions across the disk (vz(0−, r) = vz(0+, r) and vr(0−, r) = vr(0+, r)),
whereas no tangential velocity exists both ahead and behind the disk. Then, the uniform pressure jump
across the rotor plane is directly associated with a uniform total pressure jump there, namely

CT = (pt,w − pt,∞)/( 1
2 ρv2

∞), (9)

where CT = ∆pd/( 1
2 ρv2

∞) is the thrust coefficient, while pt,w and pt,∞ are the uniform total pressure inside
and outside the wake, respectively. The same total pressure jump also exists across the sheet vortex
which actually separates the wake from the stream not swallowed by the rotor. Hence, the static pressure
difference across the sheet readily reads ∆psv = pt,∞ − pt,w + 1/2ρ(v−sv

2 − v+sv
2
). Consequently, the sheet
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stability condition ∆psv = 0 returns pt,∞ − pt,w = 1/2ρ(v+sv − v−sv)(v+sv + v−sv) which, with the help of
Equations (8) and (9), promptly becomes

CT = −2γ̂v̂sv. (10)

In the above equation, vsv is the velocity at the sheet defined as vsv = 1/2(v+sv + v−sv), while γ̂ = γ/v∞

and v̂sv = vsv/v∞. Please note that hereafter the disk radius R and the freestream velocity v∞ are used
as reference in all dimensionless quantities. The free-force condition (10) implies that the product γ̂v̂sv

must be uniform on the sheet vortex, and it can be used to evaluate the density strength along the wake
edge once the sheet velocity distribution and the thrust coefficient are known. At downstream infinity,
the stability condition (10) can be cast in a simplified form. Recall that as stressed in the previous section,
the static pressure tends to p∞ as z→ +∞. Thus, from Equation (9), the wake axial velocity at downstream
infinity becomes

v̂z,w =
√

1 + CT . (11)

Glauert [15] showed that the axial velocity outside the wake must reach the freestream velocity v∞ as
z → +∞. Therefore, at downstream infinity, the sheet velocity becomes v̂sv,z→+∞ = (1 +

√
1 + CT)/2,

while the density strength reads
γ̂z→+∞ = 1−

√
1 + CT . (12)

3.1. The Discrete Free-Wake Ring-Vortex Model

The tangential sheet vortex can be modelled as the superposition of ring vortices placed in the control
points of N annular panels. Furthermore, a semi-infinite vortex cylinder (SIVC), aimed at modelling the
fully developed far wake, is also introduced. Figure 3 shows a sketch of this model in the meridional view.

zSIVC

D
is

k

SIVC

R
SI

V
C

∆sn

γn∆sn

z

r

Figure 3. Sketch of the rotor vortex model.

The diamonds represent the endpoints of the panels whose lengths are ∆sn with n = 1, . . . , N. Crosses
are used to denote the control points of the panels where the anticlockwise ring vortices are located. The
density strength of the n-th ring-vortex, with center at zn and radius rn, is γn∆sn, where γn is obviously
the unknown density strength. The SIVC begins at zSIVC, while RSIVC is the radius of this vortex element
and γSIVC is its density strength.

The overall velocity induced at the control point of the m-th panel can be expressed as the sum of four
contributions, viz. the self-induced velocity by the m-th panel, the velocity induced by the other N − 1
ring vortices, the one induced by the SIVC, and, finally, the free stream contribution. Thus, the axial and
radial velocity components at the m-th panel can be written in dimensionless form as

v̂z,m =
N

∑
n=1

v̂z,n→m + v̂z,SIVC→m + 1 and v̂r,m =
N

∑
n=1

v̂r,n→m + v̂r,SIVC→m, (13)
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respectively. In the above equation, vz,m is the overall axial velocity induced on the m-th panel, while
vz,n→m and vz,SIVC→m are the axial velocities induced on the control point of the m-th panel by the n-th
ring vortex and by the SIVC, respectively. A similar notation is used for the radial velocities. However,
in order to use Equation (13), the velocities induced by a ring vortex and a SIVC must be evaluated. In the
following, the expressions used to compute the velocity components induced by a ring vortex are first
given. Then, the SIVC flow field is described.

Considering the generic point P with coordinates (zP, rP), the axial and radial velocities induced by
the n-th ring vortex at P can be cast in the following form [41]:

v̂z,n→P = − γ̂n∆ŝn

2πr̂n
√

z̃2 + (r̃ + 1)2

{
K(k)−

[
1 +

2(r̃− 1)
z̃2 + (r̃− 1)2

]
E(k)

}
, (14)

v̂r,n→P =
γ̂n∆ŝn z̃/r̃

2πr̂n
√

z̃2 + (r̃ + 1)2

{
K(k)−

[
1 +

2r̃
z̃2 + (r̃− 1)2

]
E(k)

}
, (15)

where z̃ = (zP − zn)/rn and r̃ = rP/rn. As customary, K(k) and E(k) are used to denote the complete
elliptic integrals of the first and second kind with modulus k =

√
4r̃/[z̃2 + (r̃ + 1)2]. For 0 ≤ k ≤ 1,

the value of these two special functions can be numerically computed using several approaches, viz. series
expansions, integration-based methods, duplication techniques, look-up table, polynomial approximations
etcetera. All these methods show some pros and contra. For example, series expansion approaches
require a significant computational cost to obtain high accuracy, while the convergence rate of integration
methods is quite slow moving towards the singular point k = 1. For this reason, the more efficient
Arithmetic-Geometric Mean method [42] is used in this work. Figure 4a shows the streamlines of the flow
induced by a unit strength ring vortex with center in ẑ = 0 and unity radius. This figure also clarifies
the adopted convention for the sign of the ring-vortex strength. The radial profiles of the axial and radial
velocity at different axial stations are reported in Figure 4b.
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(a)

0 0.5 1 1.5 2 2.5 3

−0.8

−0.6

−0.4

−0.2

0

0.2
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v̂ z
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ẑ = 0.5
ẑ = 0.8
ẑ = 1.4
ẑ = 2.0

(b)

Figure 4. Flow field induced by a ring vortex with unity strength, center in ẑ = 0 and unity radius.
(a): streamlines. (b): axial and radial velocity distributions at different axial stations.

The self-induced velocity (m = n) of a rectilinear panel is evaluated following the approach proposed
by Lewis [43]. The latter expressed the self-induced velocity as the sum of two contributions associated
with the sheet curvature in the (r,θ) and (z,r) planes, respectively. For the sake of simplicity, Lewis [43]
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assumed that both curvatures act independently and their contributions can be estimated separately.
The contribution due to the curvature in the (z, r) plane is assumed to be equal to the self-induced
velocity of a planar rectilinear panel; an assumption that returns a reasonable accuracy provided
∆sm/rm is small. The contribution associated with the (r, θ) curvature can be evaluated considering
the approximate Lamb [44] formula for the self-induced velocity of a smoke ring vortex. Specifically,
this contribution has been evaluated in [45,46] adapting the Lamb [44] expression to a ring surface vorticity
element. Having said that, the axial and radial components of the overall self-induced velocity can be
written as [43]

v̂z,m→m =

{
− βm+1 − βm−1

8π
cos βm −

∆ŝm

4πr̂m

[
ln
(

8πr̂m

∆ŝm

)
− 1

4

]}
γ̂m, (16)

v̂r,m→m = − βm+1 − βm−1

8π
γ̂m sin βm, (17)

where β is the slope of the panel.
The last vortex element to be analyzed is the SIVC. Its induced velocity can be retrieved by directly

integrating the Biot-Savart law along the lateral surface of the cylinder [47]. By so doing, the axial and
radial velocity components induced at P(zP, rP) read

v̂z,SIVC→P = − γ̂SIVC

2π

δ +
z∗√

z∗2 + (r∗ + 1)2

[
K(k)− r∗ − 1

r∗ + 1
Π(n, k)

] , (18)

v̂r,SIVC→P = − 2γ̂SIVC

πk2
√

z∗2 + (r∗ + 1)2

[
E(k)−

(
1− k2

2

)
K(k)

]
, (19)

where z∗ = (zP − zSIVC)/RSIVC, r∗ = rP/RSIVC, δ = 0 for r∗ > 1, δ = π/2 for r∗ = 1 and δ = π

for r∗ < 1. Moreover, Π(n, k) is the complete elliptic integral of the third kind with modulus k =√
4r∗/[z∗2 + (r∗ + 1)2] and characteristic n = 4r∗/(r∗ + 1). This special function, which is evaluated

using the duplication algorithm proposed in [48,49], exhibits a singular behavior when r∗ tends to the
unity. However, since the quantity (r∗ − 1)Π(n, k) goes to zero as r∗ → 1, the axial velocity can be also
expressed through the following asymptotic relation:

v̂z,SIVC→P = −γ̂SIVC

[
1
4
+

z∗

2π
√

z∗2 + 4
K(k)

]
for r∗ → 1. (20)

Finally, to give an idea of the characteristics of the flow field induced by a SIVC, Figure 5 shows the
contours of the axial and radial velocity components along with the streamlines.
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Figure 5. Unit strength semi-infinite vortex cylinder (ẑSIVC = 0, R̂SIVC = 1) : streamlines and axial velocity
contours (top), radial velocity contours (bottom).

3.2. Solution Algorithm

Having said that, the iterative solution algorithm used to evaluate the unknown wake shape and
the density strength distribution can be outlined as follows. The thrust coefficient is a user-defined
input parameter. Thus, the SIVC density strength is directly evaluated by Equation (12) which returns
γ̂SIVC = 1 − √1 + CT . Please note that this value remains the same throughout the whole solution
procedure. Then, the panel density strengths and the wake shape are initialized imposing γ̂n = γ̂SIVC,
R̂SIVC = 1 and r̂n = 1 for n = 1, . . . , N. The axial coordinates of the panel endpoints are evaluated adopting
a cosine stretching law with a higher panel density in the proximity of the disk rim.

The iterative procedure begins locating the N control points in the middle of each panel. Then,
the overall flow field is evaluated there using the velocity expressions (14)–(20) in Equation (13).
The density strength distribution is now updated imposing the free-force condition (10) which gives

γ̂m = −CT/(2v̂m), where v̂m =
√

v̂2
z,m + v̂2

r,m. As previously stated, the wake shape is updated requiring
that all panels are aligned with the overall flow field. This is simply achieved computing the change
in the endpoint coordinates as ∆ẑm,end−point = v̂z,m∆ŝm/v̂m and ∆r̂m,end−point = v̂r,m∆ŝm/v̂m. Then,
the coordinates of the endpoints are evaluated by integration through

ẑm,end−point =
m

∑
n=1

∆ẑn,end−point, r̂m,end−point = 1 +
m

∑
n=1

∆r̂n,end−point, (21)

with ẑ0,end−point = 0 and r̂0,end−point = 1. In this wake updating process, an under-relaxation factor is
typically used to preserve the stability of the iterative procedure, especially for high CT values. Finally,
the radial coordinate of the last endpoint is used to update R̂SIVC and convergence is checked. Then, a new
iteration is started by computing the coordinates of the newly obtained control points and repeating the
previously described steps.

3.3. Analysis of the Results

Figure 6 shows the convergence history and the final wake shape for different values of the thrust
coefficient. The residual is defined as the magnitude of the difference between the values of the SIVC
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radius at two successive iterations. To preserve the stability of the iterative procedure, an under-relaxation
factor α is introduced for high values of CT . Specifically, considering the cases reported in Figure 6, no
under-relaxation is used for CT = 1, 2 and 4, while α = 0.4 and 0.3 is used for CT = 6 and CT = 8,
respectively.
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Figure 6. Residual (a) and converged wake shape (b) for different values of CT .

Finally, to give an idea of the flow field induced by a uniformly loaded disk without wake rotation,
the contours of the velocity magnitude and pressure coefficient are reported in Figure 7 along with the
vector field and the streamlines. The thrust coefficient is set equal to 5, while as customary, the pressure
coefficient is defined as Cp = (p − p∞)/( 1

2 ρv2
∞). The figure highlights the significant contraction of

the wake for a highly loaded disk and the jet of the propeller. Also note that according to the free-force
condition, no pressure jump occurs at the wake outer edge. Instead, along this edge, a velocity discontinuity
exists due to the presence of the wake sheet vortex.
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ẑ

r̂

(a)

−2 −1 0 1 2
0

1

2

ẑ
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Figure 7. Flow field obtained through the FWRV-AD method for CT = 5. (a): vector field and contours of
the velocity magnitude. (b): streamlines and contours of the pressure coefficient.
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4. Verification of the Free-Wake Ring-Vortex Method and Error Estimate of the Axial
Momentum Theory

4.1. Verification against the AMT

Before proceeding with the analysis of the AMT error evaluation, it is convenient to verify the
FWRV-AD method. As previously stressed, some further simplifying assumptions are used in the
AMT when its approximated differential form is adopted. However, under the sole assumptions of
steady, incompressible, inviscid, and axisymmetric flow, the AMT returns exact values for some global
performance coefficients such as the averaged axial velocity at the disk v̂z,d, the averaged axial induction
factor a = v̂z,d − 1, the wake radius at downstream infinity R̂w, the power coefficient CP and the ideal
propulsive efficiency ηi = CT/CP. For this reason, the AMT can be rightly used as reference to verify
the accuracy of the FWRV-AD method if and only if the integral performance coefficients are sought. In
particular, the averaged axial velocity v̂z,d is computed in the FWRV-AD model by directly integrating the
radial distribution of the disk axial velocity vz,d(r) = vz(0, r); as reported in Equation (4). The exact value
of this performance coefficient is evaluated through the AMT which, with the help of Equations (5) and
(11) promptly returns

v̂AMT
z,d =

1 +
√

1 + CT
2

. (22)

In the FWRV-AD method, the radius of the wake at downstream infinity is set equal to that of the SIVC.
Conversely, the AMT evaluates this quantity through the continuity equation

vz,dπR2 = vz,wπR2
w

which, with the help of Equations (22) and (11), readily yields

R̂AMT
w =

√
1 +
√

1 + CT

2
√

1 + CT
.

The power coefficient CP is classically defined as CP = P/( 1
2 ρv3

∞πR2), where P is the propeller power.
In the simplified framework of a disk without wake rotation and with uniform ∆pd, the power P reads
∆pdπR2vz,d. Consequently, the power coefficient can be written as

CP = CT v̂z,d,

while the ideal propulsive efficiency becomes

ηi =
1

v̂z,d
.

These two equations are directly used in the FWRV-AD model. In the AMT, the CP and ηi expression can
be further elaborated with the help Equation (22) to give

CAMT
P = CT(1 +

√
1 + CT)/2

and
ηAMT

i = 2/(1 +
√

1 + CT).

Table 1 shows the exact values of these performance coefficients along with the relative errors
committed using the FWRV-AD method.
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Table 1. Verification of the free-wake ring-vortex actuator disk method.

CT v̂AMT
z,d

E
v̂AMT

z,d
[‰] aAMT EaAMT [‰] R̂AMT

w ERAMT
w

[‰] CAMT
P ECAMT

P
[‰] ηAMT

i EηAMT
i

[‰]

0.50 1.1124 0.0074 0.1124 0.0734 0.9530 0.3075 0.5562 0.0074 0.8990 −0.0074
1.00 1.2071 0.0151 0.2071 0.0882 0.9239 0.5062 1.2071 0.0151 0.8284 −0.0151
2.00 1.3660 0.0252 0.3660 0.0942 0.8881 0.7559 2.7321 0.0252 0.7321 −0.0252
3.00 1.5000 0.0308 0.5000 0.0923 0.8660 0.9120 4.5000 0.0308 0.6667 −0.0308
4.00 1.6180 0.0210 0.6180 0.0549 0.8507 1.0210 6.4721 0.0210 0.6180 −0.0210
5.00 1.7247 0.0052 0.7247 0.0124 0.8391 1.1032 8.6237 0.0052 0.5798 −0.0052
7.00 1.9142 −0.0371 0.9142 −0.0777 0.8227 1.2180 13.3995 −0.0371 0.5224 0.0371
9.00 2.0811 −0.2359 1.0811 −0.4540 0.8112 1.3035 18.7302 −0.2359 0.4805 0.2359

Specifically, the first column reports the analyzed values of the thrust coefficient. The second column
details the value of v̂AMT

z,d for each prescribed CT value, while the third column lists the relative error in v̂z,d
when computed with the FWRV-AD model. The same scheme is repeated for all other columns. All relative
errors are expressed in ‰. Inspecting Table 1, it clearly appears that the errors generally increase with
CT . However, they are globally less or equal than 1‰, thus providing a very good verification of the
FWRV-AD method.

4.2. Verification against the CFD Actuator Disk

A further verification of the FWRV-AD model is provided in terms of local flow quantities by
comparing its results with those of a CFD actuator disk method. In this popular approach, the axisymmetric
Euler equations are solved using classical CFD techniques, while the effect of the rotor is modelled
activating in the disk zone the source terms appearing in the axial and tangential momentum equations.
In the present study, a square computational domain is discretized using a structured grid, with the disk
region located at the middle of the lower side. A uniform velocity (resp. gauge pressure) is used at the
left (resp. right) side of the domain, while the bottom edge is modelled as an axis boundary condition.
Finally, the top edge is considered to be an inviscid wall. More details on the domain topology and a grid
convergence analysis can be found in [50]. A second order scheme is used for the spatial discretization,
while the SIMPLE algorithm is adopted for the pressure-velocity coupling. In the disk zone, a radially
uniform axial momentum source is introduced. Its magnitude can be easily related to the thrust coefficient
value through

Fz

[
N
m3

]
=

1
2 ρv2

∞

∆zd
CT , (23)

where ∆zd is the thickness of the disk. For two CT values, i.e., 1 and 5, Figure 8 compares the radial profiles
of the axial and radial velocity as obtained through the FWRV-AD and the CFD actuator disk. The profiles
are evaluated at five axial stations, i.e., ẑ = ±1.2,±0.4 and 0. As clearly shown by the figure, the agreement
between the two methods is very good at all ẑ station and for all CT values.
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Figure 8. Comparison between radial profiles of the axial and radial velocity as obtained through the
FWRV-AD (lines) and the CFD actuator disk (symbols) for ẑ = ±1.2,±0.4 and 0. (a,b): CT = 1; (c,d): CT = 5.

4.3. Evaluation of the AMT Errors

The evaluation of the errors introduced in the simplified form of the AMT is addressed here below.
Figure 9 shows the disk axial velocity v̂z,d(r̂) as computed both by the FWRV-AD method (black and solid
lines) and the Froude law (7) (red and dashdotted lines).
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Figure 9. Comparison between the axial velocity at the disk evaluated through the free-wake ring-vortex
method and the AMT.

Four different values of CT are analyzed, viz. CT =0.5, 1, 3.5 and 6. As clearly shown by the figure,
the axial velocity at the disk is far from being uniform in the spanwise direction, especially for high values
of the load. This is particularly true in the tip region where v̂z,d experiences a singular behavior.

As highlighted by van Kuik and Lignarolo [32], in the case of a uniformly loaded turbine, the velocity
magnitude at the disk is uniform till the maximum CT value i.e., CT = 1. Figure 10 shows the radial
distribution of the velocity magnitude (black and dash dot-dotted lines) and of the radial velocity (red and
dashed lines) at the propeller disk for CT =0.5, 1, 3.5 and 6.
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Figure 10. Magnitude and radial-component of the velocity at the disk evaluated through the free-wake
ring-vortex method.

From this figure, it clearly appears that, in agreement with the findings
of van Kuik and Lignarolo [32], the velocity magnitude |v̂d| is uniform all along the disk for CT 6 1.
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However, when the disk load is increased, |v̂d| loses its uniformity and exhibits a marked singularity at
the tip.

Finally, the percentage relative errors in v̂z,d and a are shown in Figure 11.
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Figure 11. (a): percentage relative error on the dimensionless axial velocity at the disk. (b): Percentage
relative error on the axial induction factor.

The singular behavior experienced by these two quantities at the disk rim induces very high values of
the errors there. Moreover, the error in the hub and in the mid-span region are also significant. For example,
for a lightly loaded propeller (CT = 1), EaAMT(r̂ = 0) is −2.8%, while it increases up to −8% when CT = 6.
Similar values are obtained at the mid-span section where EaAMT(r̂ = 0.5) is equal to −2.56% for CT = 1
and to −7.84% for CT = 6.

5. Conclusions

A free-wake ring-vortex actuator disk method is used to evaluate the errors embodied in the AMT
when applied to a uniformly loaded propeller. The method, which represents the wake as a set of ring
vortices, has been presented along with a discussion on its convergence and stability properties. It has been
also verified in terms of global performance coefficients against the AMT which returns exact values of
these quantities. For 0.5 6 CT 6 1, the differences between the numerical and the exact values are globally
less or equal than 1‰. A further verification is offered comparing the FWRV-AD results with those of a
CFD actuator disk approach. For ẑ = ±1.2,±0.4 and 0 , a very good agreement has been found between
the radial distributions of the velocity components as evaluated by the two methods. Then, the FWRV-AD
model has been used to quantify the errors in v̂z,d(r̂) and a(r̂) introduced by the simplified version of the
AMT. It has been shown that v̂z,d(r̂), despite the uniform load, is far from being uniform, especially at the
tip where it exhibits a singular behavior. Moreover, as in the case of an energy-extracting disk, the velocity
magnitude |vd| is uniform along the disk for CT 6 1. However, for CT > 1, |vd| is also not uniform with a
remarkable increment moving towards the tip. Significant errors have been detected also in the remaining
part of the disk. At the hub (resp. at the mid-span region) the relative error in a is −2.8% (resp. −2.56%)
when CT = 1, while it increases to −8% (resp. −7.84%) for CT = 6. Finally, the velocity magnitude at the
disk is also not uniform for CT > 1.
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