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Abstract: Since the 1960s, turbomachinery design has mainly been based on similarity theory and 
empirical correlations derived from experimental data and manufacturing experience. Over the 
years, this knowledge was consolidated and summarized by parameters such as specific speed and 
diameters that represent the flow features on the meridional plane, hiding however the direct 
correlations between all the actual design parameters (e.g., blade number or hub-to-tip ratio). Today 
a series of statistical tools developed for big data analysis sheds new light on correlations among 
turbomachinery design and performance parameters. In the following article we explore a dataset 
of over 10,000 axial fans by means of principal component analysis and projection to latent 
structures. The aim is to find correlations between design and performance features and comment 
on the capabilities of this approach to give new insights on the design space of axial fans. 

Keywords: axial fan design space; data-driven exploration; Balje chart; principal component 
analysis; projection to latent structures 

 

1. Introduction 

Since the 1960s, turbomachinery design has relied on similarity theory and empirical 
correlations based on the regression of experimental data [1]. This has been done by exploiting 
consolidated design experience by means of normalized parameters—namely specific speed (Ns) and 
specific diameter (Ds)—according to the typical design rules defined [2–5]. In this way, it is possible 
to select a fan to reach a specific duty point (axial, mixed, radial) and the best expected efficiency, 
using Balje charts [4] and similar performance maps [1]. However, Ns and Ds, intended to represent 
the meridian flow geometry, hide the contribution the different design parameters have on the final 
performance of the fan. In fact, Ns and Ds, according to their respective definitions, depend upon 
rotating speed, maximum diameter, flow rate, and specific work at best efficiency operations. In 
reality, a larger set of parameters concur to the performance, such as blade aspect ratio, chord and 
twist distributions along the blade span, hub-to-tip ratio, solidity, blade number, and tip gap [6], 
related to the three-dimensional design criterion or even to the manufacturing process of the fan. All 
those parameters need to be selected during the design process, and often this is done by exploiting 
other charts, which were also derived from consolidated empirical manufacturer experiences [7]. In 
these charts, correlations between some of the design parameters are presented and summarized into 
different coefficients and correction factors that can enrich the classic design space given by Euler 
work analysis. Starting from the work of Balje, Lieblein, and Howell [4–6], many scholars derived 
correlations and corrections to account for different design parameters to improve the performance 
of turbomachinery [8]. Still today most of the works are limited to linear regression approaches, and 
often limited to specific classes of fans [9]. 
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In recent years, social networks have overhauled not just social dynamics and media, but also 
the approach to big data analysis. In fact, the formidable amount of data exchanged by users on large 
platforms needs to be classified and correlated to be monetized [10]. This led to the application and 
revamping of old statistical approaches but also to the development of new methods for big data 
analysis [11,12]. One of the key properties of big data analysis lies in the principle that correlations 
and relationships inside the dataset can be unveiled independently from the nature of data [13]. 
Therefore, it is possible to use the same algorithm to classify photos on Instagram [14], customers of 
a bank [15], or classify galaxies inside all-sky surveys [16,17]. This opened new research perspectives 
in finance, astrophysics, molecular chemistry, turbulence modelling, and other fields where large 
dataset are available [18]. Industrial product research and development is in fact another potential 
test bed for the application of data-driven analysis. 

The following article presents preliminary work on the exploration of correlations between axial 
flow fan design parameters and performance carried out on a database of about 4000 individuals. 
The idea is that this procedure can be applied to a dataset that is heterogeneous, incomplete, and 
populated with a significant number of samples, for example the database of a fan manufacturer. 
Once the population has enough samples, in fact, the source of the data is not important. In this work, 
we will refer to a specific class of turbomachinery: Axial flow fans with rotor-only arrangement.  

The aim of this work is to explore the possibilities and limits of big data analytics, through a 
combination of a multi-variate statistical approaches of principal component analysis (PCA) and 
projection to latent structures (PLS) to the design and optimization of industrial turbomachinery. 

In the next sections, the methods used for the analysis are illustrated. Then the process of dataset 
creation is described and correlated to the considerations typical of the axial flow fan design and 
manufacturing process. Results of the analysis of said dataset are then discussed and finally 
conclusions are drawn. 

2. Data Mining 

Two different data mining approaches are used: principal component analysis and projection to 
latent structure. The present work advocates the combination of these approaches to characterize the 
features of the dataset, identifying possible clusters within the individuals (PCA) and unveiling 
design rules among an augmented variable set (PLS).  

2.1. Principal Component Analysis  

Principal component analysis is a multivariate statistical method that reduces the dimensionality 
of the feature space, while retaining most of the variance in the dataset [19]. An orthogonal 
transformation allows you to convert a set of N samples, containing possibly K correlated features, 
into a new set of values of linearly uncorrelated variables, defined as p principal components, which 
are linear combinations of the original variables [20]. The first principal component explains the 
largest possible variance, representing the direction along which the samples show the largest 
variation. The second component is computed under the constraint of being orthogonal to the first 
component and to have the second largest possible variance [21]. The following components, 
constructed with the same criterion, account for as much of the remaining variability as possible. 

This means that the original data matrix X is decomposed in two matrices V and U that are 
mutually orthogonal. The V matrix is called the loadings matrix, while U is the scores matrix. 
Loadings are the weights of each original feature when calculating the principal component, while U 
contains the original data in a rotated coordinate system (Figure 1). 
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Figure 1. Principal component method. 

For PCA, we considered up to the third principal component, accounting for 79% of dataset 
variability as shown in the elbow chart (Figure 2). The method is based on the computation of the 
percentage of variance explained as a function of the principal component number. The trend of the 
curve in Figure 2 shows that the higher the number of components, the lower the marginal gain 
obtained by addition of another component. 

 
Figure 2. Data-set variation vs. number of components. 

2.2. Projection to Latent Structure 

Projection to latent structure is a statistical method that acts on the data similarly to the PCA, 
with the main difference being that the features of the original dataset are grouped in input and 
output, and PLS aims to find relationships between these sub-sets. Specifically, PLS will find the 
multidimensional direction in the input variables space X that defines the maximum 
multidimensional variance in the output variables space Y [22]. In its general form, PLS creates 
orthogonal score vectors (also called latent vectors or components) by maximizing the covariance 
between these different sets of variables [9,23]. The influence of each input variable is quantified 
computing the loading vector for each considered component. Similar to the PCA loadings 
interpretation, highly correlated variables have similar weights in the loading vector. Different from 
PCA, PLS shows the influence exerted by the input variables on the selected outputs. Note that, 
before performing PLS analysis, all the variables have been normalized to avoid issues related to 
different variable units. 
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3. Dataset 

The complete set of features considered for each individual are summarized in Table 1, which 
also shows how PCA considers all the features together, while PLS divides them into input and 
output features. 

The dataset for PCA and PLS was populated considering three different families of industrial 
fans generated from three parent individuals labelled as Fan A, B, and C, Table 2. The families are 
labelled in the same way. The parent individuals were selected according to different segments of the 
fan market, considering the same original size and variations in hub-to-tip ratio, blade numbers, 
rotational speed, and design duty point. The geometry of each individual is completely defined, so it 
is possible to derive the chord and twist distributions of the blade, the pitch angle at the hub, and the 
2D profile of the blade at different radii. Chord and twist distributions were characterized using the 
coefficients of a second order interpolating polynomial. Here, the factors that enter the analysis are 
C1, C2, T1, and T2, respectively, the linear and quadratic terms of the chord distribution, and those 
of twist distribution. To these we add C0, the chord at the hub, while T0 is neglected because twist at 
the hub is equal to 0. Admittedly a direct correlation with the work distribution along the blade span 
could be more accurate, yet data on the design of these fans are generally not available, especially 
since fans are usually operated in off-design conditions. 

Table 1. Features of fans inside the dataset, divided into input and output features according to 
projection to latent structures (PLS) analysis. 

Features PCA PLS 𝐷  Fan tip diameter  

features 

input features 

χ hub-to-tip ratio  
σ midspan solidity  
Z blade number  
ω rotational speed  

C0, C1, C2 chord distribution  c(r) = C0 + C1∙r + C2∙r2 
T1, T2 twist distribution twist (r) = T1∙r + T2∙r2 

Subscripts 

output features 
Q volume flow rate pp: at peak pressure 
ΔP total pressure rise pe: at peak efficiency 
η total efficiency zs: at zero static pressure rise 

Table 2. Parent individuals for of the dataset. 

 FAN A FAN B FAN C 
Dtip 1 m 1 m 1 m 
χ 0.4 0.5 0.54 
Z 10 16 12 
Ω 3000 rpm 3000 rpm 1800 rpm 

QDES 18.63 m3/s 13.34 m3/s 9.12 m3/s 
ΔPDES 2240 Pa 500 Pa 1210 Pa 

Starting from the three parent individuals, a population of three families with more than 1300 
individuals per family was generated. The approach followed a process of scaling and cutting of 
different blades, to exploit one design to cover a wide operating envelope. In practice, it is possible 
to adjust the same design to a different fan size by scaling in similitude. Additionally, to extend the 
operating range and save in manufacturing process, the same blade can be cut at the tip to fit a higher 
hub-ratio. The possible variations of all the input parameters are summarized in Table 3. The 
performance of each fan was calculated using AxLab, an in-house axis-symmetric code [8]. All the 
information was stored inside a MySQL database and then processed through an in-house Python 
tool. Figures 3 and 4 show the overall population of individuals, respectively, on the Q-ΔP plane and 
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the Dtip-χ plane, which will be used for discussion of the results. The Q-ΔP plane shows the fan 
performance, and the Dtip-χ plane is related to the size of the device.  

Table 3. Characterization of the families of individuals for data analysis. 

FAMILY A Level 0 Level 1 Level 2 Level 3 Level 4 
Dtip [m] 0.3 1.00 1.2 1.6 1.7 
χ [-] 0.3 0.4 0.5 0.6 0.7 

ω [rpm] 1500 3000 3600   

Z [-] 8 10 12   

C1 from original value up to +1.6%  
C2 from original value up to −1.2%  
T1 from original value up to +4  
T2 from original value up to +2 

FAMILY B Level 0 Level 1 Level 2 Level 3 Level 4 
Dtip [m] 0.4 1.00 1.4 1.6  
χ [-] 0.4 0.5 0.6 0.7 0.8 

ω [rpm] 1500 3000 3600   
Z [-] 12 16 18   
C1 from original value up to +1.6%  
C2 from original value up to −1.0%  
T1 from original value up to +4 
T2 from original value up to +1 

FAMILY C Level 0 Level 1 Level 2 Level 3 Level 4 
Dtip [m] 0.4 0.96 1.6   
χ [-] 0.45 0.54 0.65 0.7 0.75 

ω [rpm] 1500 3000 3600   
Z [-] 8 10 12   
C1 from original value up to +1.6%  
C2 from original value up to −1.2%  
T1 from original value up to +8 
T2 from original value up to −4 

 
Figure 3. Dataset population on Q-ΔP plane. Different boxes show the sub-set for data analysis. 
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Figure 4. Dataset population on size chart Dtip-χ. Different boxes show the sub-set for data analysis. 

4. Results 

Like all the statistical techniques used for data analysis, PCA and PLS can work on very large 
datasets and provide insights on the correlations between parameters of all the design space. Of 
course, this means that applying the analysis to all the data, results are likely to distillate general 
rules, valid on the whole design space. Since the possible application of this approach is to drive an 
optimization algorithm, it makes more sense to focus on correlations that apply to specific design 
sub-spaces. These can be identified in different ways, and here we decided to focus on the design 
point of the fan in terms of flow rate and pressure rise, and to the size of the fan, identified by the tip 
diameter and the hub-to-tip ratio. Then we went back to the respective charts, shown in Figures 3 
and 4, and here divided the design space in different sub-spaces with grids of different sizes and 
partially overlapping, to derive results linked to that specific subset. For example, here we report on 
analyses carried out for (i) fans operating at low flow-rate/low pressure-rise, (ii) fans operating at 
high flow-rate/high pressure-rise, and (iii) 0.3 m < Dtip < 0.7 m. On each sub-dataset we applied PCA 
to identify clusters of individuals with similar features. Then we carried out a PLS analysis on each 
sub-dataset to derive correlations between input and output features and derive design rules. A final 
summary of the rules derived from all the sub-dataset is given in the conclusions. 

4.1. Q-ΔP Analysis 

In Figure 5, the PCA score plots corresponding to the sub-sets of low flow rate–low pressure rise 
and high flow rate–high pressure rise are shown. The first plot is characterized by three clusters and 
as expected these can be directly linked to the three families of fans of the dataset. This is indirect 
proof of the capability of this approach to find correlations between sparse data. The second score 
plot in the same figure, with individuals working at high flow rates, shows two clusters of data, one 
with individuals from the A family, the other populated with fans belonging to the A and C families. 
In this case of extreme performance, a low number of individuals is present and therefore there is no 
direct link to the original families.  
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Figure 5. Principal component analysis (PCA) score plots for the subset of individuals with low flow 
rate-low pressure rise (I) and high flow rate/high pressure rise (II) working conditions. Fan ID: 
number of individual. 

From PLS analysis of individuals working at lower flow rates, Table 4, it follows that the first 
four latent variables have a strong correlation between input and output scores. This means that it is 
possible to find correlations between the loading coefficients of the original values in all the four 
latent variables, Figure 6. From the plot coefficient of LV1 we can see that there is a direct correlation 
between midspan solidity, chord at the hub (C0), and peak efficiency. As for chord and twist 
distributions, the increase of quadratic terms C2 and T2 has a direct correlation with the same peak 
efficiency, while there is an inverse proportionality between the linear terms C1 and T1. All the other 
loadings are lower than the threshold value (dashed red line) and therefore must be interpreted as 
not significant. Here, threshold values are calculated according to the correlation coefficient that 
refers to the observed latent component according to: 𝑇𝑟(𝐿𝑉i) = min (abs(wi,𝑐i)) + [max (abs(wi,𝑐i)) − min (abs(wi,𝑐i))]∗[1 − CM(𝑡i,𝑢i)]  

where LVi is the i-th latent component, wi and ci are the loadings of input and output features, and ti 
and ui are the scores of input and output features. CM is the correlation matrix between scores of 
input and output features. 

Table 4. Correlations between latent variables. 

Latent Variable Correlation between X and Y Scores 
1st 85% 
2nd 76% 
3rd 54% 
4th 52% 

If we look at the coefficients for LV2 we can see that increasing Dtip leads to an increase of ΔPpe, 
ηpe, and Qzs: The whole stable range of operations shifts to higher flow rates and pressures. Loadings 
in LV3 show that an increase in χ and ω leads to increases of ΔPpp and ΔPpe and also in ηpe. 

Basically, we can see that from the loadings of LV1, an increase in efficiency at peak efficiency 
can be achieved by changing the chord and twist distribution of the blade increasing C0, C2, and T2, 
while decreasing C1 and T1. Keeping C0 fixed to simplify, a fan increases in efficiency as the rotor 
twist and chord distributions are changed according to Figure 7. 
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Figure 6. PLS loadings for the subset of individuals (I) in Figure 5. 

 
Figure 7. LV1 PLS loadings for lower flow rates (top) and corresponding changes in chord (bottom 
left) and twist distributions (bottom right) that result in increase of efficiency at peak efficiency and 
peak pressure. 

Computing the scores from the sub-dataset of fans working at high flow rates—high pressure 
ratio, Table 5, all these four latent variable loadings appear to be influential. The loading plots in 
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Figure 8, however, suggest that the only relevant relationships between inputs X and output Y are 
explained by the third and fourth latent variables, as the loadings of outputs in the first two are below 
the threshold. In LV3, however, we can see that an increase in efficiencies at peak pressure and peak 
efficiency is achieved, increasing the rotational speed of the fan or decreasing the number of blades 
or the midspan solidity. The fact that in this case no clear indication is given about chord and twist 
distributions is probably to be related to the lower number of samples in this sub-dataset.  

Table 5. Correlations between latent variables. 

Latent Variable Correlation between X and Y Scores 
1st 79% 
2nd 69% 
3rd 65% 
4th 60% 

 
Figure 8. PLS loadings for the subset of individuals (II) in Figure 5. 

4.2. Dtip-χ Analysis 

The same data processing can be applied selecting the fans according to their size, and here we 
focus on those fans that have Dtip between 0.3 m and 0.7 m. The PCA score plot, shown in Figure 9, 
highlights the presence of three clusters. One of them is clearly composed of fans belonging to the C 
family, while the other two include fans that belong to both A and B families. This kind of clustering 
seems to be related to the original rotating velocity of the fans, that for family C is half of that of 
families A and B. The low number of individuals in this dataset is reflected by the low level of 
correlations found in the PLS analysis, Table 6. In this case the loading plots, Figure 10, shows that 
for LV1 there is an inverse correlation between peak efficiency and rotational speed, a direct 
proportionality between peak efficiency and midspan solidity, and, in general, a strong correlation 
between peak efficiency and chord and twist distributions. 



Int. J. Turbomach. Propuls. Power 2019, 4, 11 10 of 14 

 

 

 

Figure 9. PCA score plots for the subset of individuals with 0.3 m < Dtip < 0.7 m. 

 
Figure 10. PLS loadings for the subset of individuals with 0.3 m < Dtip < 0.7 m. 

The second latent variable loadings show a direct proportionality of rotational velocity with 
efficiency at peak pressure and peak efficiency operations. The third and fourth latent variable 
loadings are not significant, as they are below threshold values. 

Table 6. Correlations between latent variables. 

Latent Variable Correlation between X and Y Scores 
1st 43% 
2nd 51% 
3rd 35% 
4th 8% 
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5. Conclusions 

Big Data Methods (PCA and PLS) were applied to a dataset of ~4000 individuals belonging to 
three fan families. The analysis was carried out on a series of sub-datasets corresponding to different 
ranges of fan performance and different fan sizes, aiming at discovering hidden correlations among 
design parameters and fan performance. Correlations already present in literature were found, as 
pressure increased alongside increases of blade number, confirming the validity of the method. Other 
findings emerged from a deeper analysis of PLS loadings.  

As it was not possible to show all the relationships for all the sub-datasets analyzed, we 
summarize our findings in Figures 11–14. In Figure 11 we summarized the relationship between 
midspan solidity and efficiency at peak pressure and peak efficiency in different regions of the Q-ΔP 
plane. In particular, the region in green, corresponding to low flow-rate/low pressure rise is 
characterized by a direct proportionality between σ and ηpp and ηpe. For individuals in the orange 
region the proportionality is limited to ηpp. Finally, in the blue region an inverse proportionality 
between σ and ηpe is found. 

 
Figure 11. PLS: Correlations of midspan solidity and fan efficiency according to the fan operating 
point. 

 
Figure 12. PLS: Correlations of blade number and fan performance according to the fan operating 
point. 
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In the same way, Figure 12 shows the relationships between blade number and different fan 
performance, for individuals belonging to different regions, while other relationships between design 
parameters and fan performance are presented in Figure 13. The same analysis, carried out on the 
size chart Dtip-χ led to results summarized in Figure 14.  

Finally, the possible biases in the dataset must be highlighted: In fact, all the individuals 
originated from a process of scaling and cutting applied to three parent individuals. The fact that 
PCA highlights the presence of three clusters strongly related to the parent individuals, is indirect 
proof that the method works, but also that some relationships could be related to this generating 
mechanism. Furthermore, some sub-datasets used have a low number of individuals and it is possible 
that the low correlations that emerged from PLS were derived from an insufficient number of 
samples. 

 
Figure 13. PLS: Correlations of hub ratio, blade number, and fan performance according to the fan 
operating point. 

 
Figure 14. PLS: Correlations of fan design parameters and fan performance according to the fan size. 
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