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Abstract: The LS89 high pressure axial turbine vane was originally designed and optimized for a
downstream isentropic Mach number of 0.9. This profile has been widely used for computational
fluid dynamics (CFD) validation in the open literature but very few attempts have been made to
improve the already optimized design. This paper presents a sound methodology to design and
optimize the LS89 using computer-aided design (CAD) at design conditions. The novelty of the study
resides in the parametrization of design space, which is done at the CAD level, and the detailed
analysis of the aerodynamic performance of the optimized design. Higher level constraints are
imposed on the shape, such as the trailing edge thickness, the axial chord length, and G2 geometric
continuity between the suction side and pressure side at the leading edge. The gradients used for
the optimization are obtained by applying algorithmic differentiation to the CAD kernel and grid
generator and the discrete adjoint method to the CFD solver. A reduction of almost 12% entropy
generation is achieved, which is equivalent to a 16% total pressure loss reduction. The entropy
generation is reduced while keeping the exit flow angle as a flow constraint, which is enforced
via the penalty formulation. The resulting unconstrained optimization problem is solved by the
L-BFGS-B algorithm. The flow is governed by the Reynolds-averaged Navier-Stokes equations and
the one-equation transport Spalart-Allmaras turbulence model. The optimal profile is compared and
benchmarked against the baseline case.

Keywords: base pressure; profile losses; algorithmic differentiation; adjoint optimization

1. Introduction

Designing and optimizing a turbine vane is a complex iterative design process that can take
significant time and effort. The use of relatively low-cost numerical shape optimization methods
has become more popular and have been widely used in turbomachinery applications. In particular,
the adjoint method enables the efficient computation of the sensitivities required by gradient-based
optimizers, at a cost independent of the number of design variables [1].

Typically, the grid point coordinates have been used as design variables [2]. This approach offers
a very rich design space but has some drawbacks that need to be considered. First, the connection to
the computer-aided design (CAD) geometry is lost. This means that an additional step is required to
transform the optimal shape defined by grid points back to smooth CAD shape. Secondly, although
there are several successful methods that can be used to convert a cloud of grid points to CAD [3,
4], the fitting error can impair the optimality of the shape. Furthermore, this additional step can
take significant time and it is not guaranteed that the final approximated CAD shape will meet the
design requirements and constraints [5,6]. Also, the use of a smoother is inevitable to avoid irregular
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shapes. To avoid these problems, in this study it is proposed to keep the CAD geometry in the
optimization loop.

The advantage of including the CAD model in the design system is that higher level constraints
can be imposed on the shape, allowing the optimized model or component to be manufactured.
Additionally, the adjoint sensitivities are automatically filtered and only smooth shapes can be
produced. One of the limitations of using the CAD in a gradient-based optimization framework
is the computation of the grid sensitivities i.e., the partial derivative of the grid points with respect
to the design parameters. These sensitivities can be approximated by finite differences using the
design velocity approach [7], which is robust against the possible changes in boundary topology of the
model. However, this approach is based on computing shape differences between two surface meshes
and can introduce issues of surface to surface projection when computing the distances between the
two surface meshes. Moreover, finite differences inaccuracies are introduced in the design velocity
approach because of the limited arithmetic precision if the step size is too small and the truncation
error if the step size is too big. The use of inaccurate sensitivities can slow the convergence of the
optimizer. This work aims to circumvent these issues by making use of algorithmic differentiation
(AD) [8] for the CAD kernel and the grid generation [9]. Algorithmic differentiation allows to compute
the derivatives of an output of a program with respect to the inputs by applying the chain rule in an
automatic fashion throughout the evaluation of the code. This means that the grid sensitivities will be
accurate to machine accuracy.

In this study, it is proposed to use a CAD-based adjoint-based optimization method for the
LS89 [10,11] high pressure axial turbine nozzle guide vane profile. The LS89 was originally designed
and optimized at the Von Karman Institute for Fluid Dynamics for a subsonic isentropic outlet Mach
number of 0.9 by the inverse method [11], which is an iterative design method based on both potential
and Euler type solvers that uses the difference between the calculated velocity distribution and the
required one to modify the profile geometry. Montanelli et al. [12] performed both single-point
and multi-point optimizations on the LS89 to reduce the total pressure losses by constraining the
outlet mass flow, while keeping the leading edge (LE) and trailing edge (TE) geometries and the
profile thicknesses fixed and using the L-BFGS-B algorithm to explore different geometries with a
wing parametrization model. This group also solved the Reynolds-Averaged Navier-Stokes (RANS)
equations and the one-equation transport Spalart-Allmaras turbulence model and computed the
gradients assuming that the eddy viscosity and thermal conductivity are constant. They achieved a
total pressure loss reduction below 1% for the nominal case (outlet Mise = 0.927). The question arises
whether the LS89 is indeed optimal, and if it could be optimized further. This paper addresses this
and presents an adjoint optimization of the turbine profile, by using a novel CAD-based approach in
which:

1. The optimal shape remains defined within the CAD tool. The optimization problem herein is
expressed by CAD parameters that are directly used in defining the CAD geometry by means of
Bézier and B-spline curves.

2. The in-house CAD and grid generation tools are automatically differentiated in forward mode
to obtain the exact derivatives of the grid coordinates with respect to the CAD-based design
parameters. This allows for an accurate prediction of the sensitivities and circumvention of the
errors introduced by finite differences.

3. The trailing edge thickness and axial chord length are kept fixed as manufacturing constraints
and the exit flow angle is considered as an aerodynamic constraint.

A computer aided design and optimization tool for turbomachinery applications (CADO) [13] is
used throughout this study.
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2. Computer-Aided Design-Based Parametrization

The construction of the turbine profile shown in Figure 1 is based on the parametrization described
by [14]. The profile is defined by a set of CAD-based or engineering-based design parameters that
are relevant to the aerodynamic performance (e.g., solidity, stagger angle, etc.) and the manufacturing
requirements (e.g., axial chord length, trailing edge radius). First, a camber line is constructed. The points
PLE, Pmid, PTE define the control points of the 2nd order Bézier curve describing the camber line.
The camber line is used to define the position of the control points of the suction side (SS) and pressure
side (PS) B-spline curves relative to it. The profile is constructed by two B-spline curves for the SS and PS
and a circular arc at the trailing edge (TE) to close the profile. The normal distance of the first control point
relative to the camber line is calculated in such a way that G2 geometric continuity (i.e., equal curvature)
is maintained between the SS and PS B-splines at the leading edge.
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Figure 1. Computer-aided design (CAD)-based parametrization of the turbine cascade. (a) Turbine
cascade parametrization; (b) Construction of the suction side by a B-spline curve [9].

3. Optimization

The purpose of the optimization algorithm (Figure 2) is to reduce the entropy generation J1

(Equation (1)) while maintaining the exit flow angle J2 (Equation (2)) above or equal to the baseline
value of J2,re f = 74.83 deg, by modifying the design vector~α. The flow state ~U and the design vector
~α are coupled via the primal flow governing equations. The constrained optimization problem is
handled with the penalty method. The penalty term becomes active only when the exit flow angle is
below the target value. The J2, f lag parameter is either set to 1.0 or 0.0 in order to activate or deactivate
the penalty term respectively. The weighed cost function of the single point JSP optimization problem
is given by Equation (3). The L-BFGS-B algorithm [15] available in the Python SciPy package [16] is
used to find the new design vector.

J1(~α, ~U) =

∫
out pρ1−γVxdy

ṁout
(1)

J2(~α, ~U) = atan

(
Vy

Vx

)
(2)

JSP(~α, ~U) =
J1

J1,re f
+ J2, f lag J2,coe f

(
J2

J2,re f
− 1

)2

(3)
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3.1. Grid Generation

A multi-block structured grid is generated for every optimization iteration. A mesh-independence
study was carried out in order to select an appropriate mesh for the optimization. One O-grid block is
placed around the profile and there are six additional H-grid blocks, four of them distributed around
the profile and the remaining two being used as the inlet and outlet blocks. Torreguitart et al. [9]
describe in more detail how the grid was generated.

3.2. Flow and Adjoint Solvers

The flow solver employs a cell-centered finite volume discretization on multiblock structured
grids. The three dimensional compressible RANS equations are solved with an implicit time integration
scheme accelerated by local time-stepping and multigrid. The fluid is considered as a calorically perfect
gas and the eddy-viscosity hypothesis is used to account for the effect of turbulence. Convective fluxes
are computed using Roe’s approximate Riemann solver [17] with a monotonic upstream-centered
scheme for conservation laws (MUSCL)-type reconstruction [18] of primitive variables to attain
second order accuracy. Oscillations near shocks are suppressed by a van-Albada type limiter [19].
The numerical dissipation of the scheme is controlled by the entropy correction by Harten and
Hyman [20] for both linear and non-linear eigenvalues. Viscous fluxes are calculated with a central
discretization scheme, while the negative Spalart-Allmaras turbulence model [21] is used for the
turbulence closure problem assuming fully turbulent flow from the inlet (Reinlet ≈ 2 × 105). Boundary
conditions are imposed weakly by utilizing the dummy cell concept [22]. The hand derived discrete
adjoint solver uses constant eddy viscosity assumption which is a valid approach for engineering
design applications. The flow solver and its discrete adjoint counterpart use the stabilization scheme
described by [23].

3.3. Gradient Computation

Torreguitart et al. [9] showed the first results of differentiating the CAD kernel and grid generation
tools using the AD tool Automatic Differentiation by OverLoading in C++ (ADOL-C) [24]. In the
work herein, the optimization algorithm computes the grid sensitivities d~X/d~α for every optimization
step, using the forward vector mode as opposed to the forward scalar or reverse modes as it allows to
compute d~X/d~α in one single evaluation of the primal at a relatively low cost.

The performance sensitivities dJ/d~α for each cost function J1 or J3 are computed by doing a
scalar product of the adjoint calculated sensitivities dJ/d~X (i.e., the derivative of the cost function with
respect to the grid coordinates ~X) with the grid sensitivities d~X/d~α. A suitable step-size for each design
variable was selected to compute the gradients with finite differences and compare them against the
gradients obtained by the discrete adjoint. Figure 3 shows a good agreement with finite differences for
both the entropy generation and exit flow angle. The largest sensitivities shown in Figure 3 correspond
to the design variables αj = 1 (cax) and 4 (RTE), which do not change during the optimization because
they are considered manufacturing constraints.
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Figure 3. Objective gradients compared to finite differences. (a) Entropy generation (J1); (b) Exit flow
angle (J3).

4. Results

Figure 4a shows significant shape differences between the baseline and the optimal shape, the latter
being a more aft-loaded profile than the baseline design. The isentropic Mach number distributions
are shown in Figure 4b, which shows a fairly good agreement between the Mise predicted by CFD
and the experimental data (MUR45 test condition, with downstream Mise = 0.875, see [10]) for the
baseline geometry.
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Figure 4. Baseline and optimal profiles and isentropic Mach number comparison. (a) Baseline
and optimal profiles; (b) Isentropic Mach number (Mise) comparison versus the axial chord (cax)
non-dimensionalized distance.

The L-BFGS-B algorithm converges within 20 optimization iterations. More cycles were performed
but no further decrease in the objective function was obtained. Despite the fact that the mass flow
for the optimal geometry has increased slightly by 1.2%, the entropy generation is reduced by 11.6%,
while maintaining the exit flow angle within ±0.1% of the baseline value. As the aft-loaded profile has
significant rear suction side curvature, the flow is rapidly accelerated towards a higher peak Mach
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number than the baseline design. This is followed by a deceleration from X/cax = 0.8 to 0.88 and a
small acceleration from X/cax = 0.88 to 0.91. At X/cax = 0.91 the flow is rapidly decelerated again and
leaves the trailing edge at a significantly lower exit isentropic Mach number. The strong deceleration
towards the end of the suction side suggests that the boundary layer will be thicker and one would
expect higher profile losses.

The total pressure loss reduction between the inlet and the fully mixed-out flow at the outlet
plane, expressed via P01 − P02 or by the ζ2 coefficient (see Equation (4)), is of the order of 16.3%.

The downstream total pressure loss profile, at the plane X/cax = 1.433, is shown in Figure 5.
In the vertical axis the total pressure loss P01 − P0X between the inlet and a downstream plane at
x/cax = 1.433 is expressed as a a percentage of the downstream dynamic head qX at the X/cax = 1.433
plane. This figure shows that the total pressure loss generated in the wake is reduced significantly.
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Figure 5. Total pressure loss downstream at X/cax = 1.433.

To understand why the optimal shape is more efficient than the baseline, the following subsections
will look into the loading, boundary layer parameters, base pressure and profile losses for each profile.

ζ2 = 1 −
1 − (

p2

P02
)

γ − 1
γ

1 − (
p2

P01
)

γ − 1
γ

(4)

4.1. Zweifel Loading Coefficient

The total loading, which can be expressed as the integral of the pPS − pSS over the axial chord length,
has increased by 1% for the optimal shape as a result of the 1% increase in the pitch and having the same
exit flow angle. The Zweifel loading coefficient Zw [25] is a measure of how efficiently the profile is
loaded. An efficient loaded profile would be one in which the pressure is stagnated over the pressure
side and the velocity on the suction side is constant and equal to the downstream velocity. The Zweifel’s
design rule says that loss is minimized for 0.8 < Zw < 1. Equation (5) was used to calculate the Zweifel
loading coefficient, which increased from 0.636 for the baseline to 0.646 for the optimal.

Zw =

∫ 1
0 (pPS − pSS)

dx
cax

(P01 − p2)cax
(5)

4.2. Boundary Layer Parameters

The state of the boundary layer close to the trailing edge is deemed to have an impact on the profile
losses (see Equation (6)). Table 1 compares the boundary layer parameters between the baseline and
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optimal shapes for two locations on the suction side: at the peak Mise location and very close to the TE
(approximately at x = 0.03 m and x = 0.037 m respectively, see Figure 4b). The latter location is defined
herein as the point of the suction side slightly upstream of the TE circle. The boundary layer velocity
profiles are shown in Figure 6 for both locations, showing that there is no boundary layer separation.
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Figure 6. Boundary layer profiles on the suction side. (a) Suction side at peak Mach number location;
(b) Suction side close to the trailing edge (TE).

Table 1. Boundary layer parameters.

Units Baseline at Mise,max Optimal at Mise,max Baseline at XSS,TE Optimal at XSS,TE

δ/DTE [-] 0.501 0.390 0.939 1.11
δ∗/DTE [-] 0.104 0.079 0.206 0.346
θ/DTE [-] 0.0557 0.0405 0.1186 0.1780
H [-] 1.86 1.96 1.74 1.95

At the peak Mise location, the boundary layer thickness δ for the optimal design is smaller than
for the baseline, as expected due to the higher acceleration. When the flow decelerates from the peak
Mise location to the point just upstream of the trailing edge circle, the boundary layer thickness almost
doubles for the baseline and triples for the optimal profile. The resulting δ of the optimal shape is 18%
thicker than the baseline. The shape factor H is higher for the optimal than for the baseline design in
both locations, which means that the optimal profile has stronger adverse pressure gradient. The shape
factor for both designs are between the typical laminar Blasius boundary layer value (H = 2.59) and
the turbulent values (H = 1.3–1.5).

From a boundary layer perspective, the optimal design would have higher profile losses due
to the higher thickness displacement and momentum thickness. However, there is at least one more
factor to be considered when determining the profile losses: the base pressure.

4.3. Base Pressure

The base pressure, which is the static pressure at the mid point of the trailing edge, is known to
play an important role in the profile losses. Higher base pressures contribute to the reduction of the
profile losses. The trailing edge pressure distribution shown in Figure 7a shows that the optimal shape
has a 10% higher base pressure. It is generally thought that higher values of boundary layer thickness
result in higher values of base pressure [26]. Higher base pressures are expected of an aft-loaded
profile with significant rear suction side curvature and higher values of unguided or uncovered
turning [27]. The angle between tangents to blade suction side in the throat and at the TE increased by
6.76 degrees when going from the baseline to the aft-loaded optimal profile. According to the base
pressure correlation given by Sieverding et al. [27], the optimal profile is expected to have 3% higher
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base pressure than the baseline. The percentage increase predicted by the correlation is mainly due to
the higher suction side rear curvature because the trailing edge wedge angle difference between the
baseline and optimal profiles is negligible. However, Sieverding et al. [27] also showed that, for 80% of
the tested blades, there was a discrepancy between the predicted base pressures (using the correlation)
and the measured ones of the order of ±5% of the downstream pressure. Although there are no
measurements available for the optimal profile yet, by taking this error into account the minimum
and maximum values for the base pressure of the optimal profile can be estimated to be 5% lower and
16.7% higher than the baseline respectively. The RANS prediction for the base pressure falls inside this
range, since the base pressure of the optimal design is predicted to be 10% higher than the baseline.
However, only unsteady analysis and experimental tests will be able to provide enough evidence to
support these results.
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Figure 7. Trailing edge (TE) pressure distributions for the pressure side (SS) and suction side (SS).
(a) Optimal vs. Baseline trailing edge pressure distributions; (b) Trailing edge pressure distribution with
the blade tested by [28]. Large eddy simulation (LES) results are from [29].

Predicting the absolute values of the base pressure correctly can be very difficult due to the highly
complex nature of the flow in the trailing edge. Vagnoli et al. [29] showed that steady state simulations
usually predict the wrong shape or distribution of pressure around the trailing edge, whereas large
eddy simulation (LES) or Unsteady Reynolds-Averaged Navier-Stokes (URANS) capture much better
the shape and the pressure values when compared to experimental data. The pressure distribution
shown in Figure 7a is a nearly-uniform pressure around the trailing edge, which is suspected to be
different to the real pressure distribution profile. However, it is believed that the base pressure delta
difference between two steady state simulations, one for the optimal and the other for the baseline
profiles, is a fairly good estimate of the real difference. The validity of this assumption has been
investigated by performing two RANS simulations for the turbine profile that was tested by [28] at
Mise = 0.79 and 0.97 and comparing the base pressure delta between these two operating conditions
against the experimental data and the LES results performed by [29] (Figure 7b). The base pressure
delta, which is taken at S/DTE = 0 from Figure 7b, is 0.18 for both the experiments and RANS
and 0.20 for LES. This confirms that, despite the limitations of CFD in predicting the base pressure
absolute values, RANS is able to capture very well the relative differences in base pressure between
two operating conditions.

4.4. Profile Losses

Denton et al. [30] showed that the profile losses for incompressible flow can be related to the
base pressure coefficient and the boundary layer parameters, as shown in Equation (6). The relative
effect of the base pressure coefficient is increased in compressible flow [31]. For blades operating in
the transonic range from 0.8 to 1.2 the major source of loss is the trailing edge loss at these speeds
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and the base pressure plays a dominant role in determining the loss [26]. The profile loss split is
shown in Table 2. The higher δ∗ and θ values of the optimal shape contribute to increasing the profile
loss. However, the reduction in profile losses due to the 302.2% increase in the trailing edge loss term
dominates and explains the overall 30% reduction in profile losses. Still, if the base pressure increase
was equal or below 6.54%, the optimal shape would have similar or higher profile losses than the
baseline, respectively. The question arises whether using RANS for the optimization of an axial turbine
operating at transonic speeds is a valid approach, since the base pressure plays such a dominant effect
on the profile losses for such speeds and the flow field around the TE of a transonic turbine blade is too
complex to be captured by RANS. Future LES simulations and or experimental tests are going to be
necessary to support or reject the aerodynamic improvements reported herein for the optimal shape.

ζp =
−CbDTE

t
+ 2

θSS + θPS
t

+

(
δ∗SS + δ∗PS + DTE

t

)2

(6)

Table 2. Profile loss contribution for the baseline and optimal.

Units Baseline Optimal Variation
−Cb DTE

t [-] −0.0016 −0.0065 302.2%
2 θSS+θPS

t [-] 0.0066 0.0095 43.5%(
δ∗SS+δ∗PS+DTE

t

)2
[-] 0.0010 0.0012 21%

ζp [-] 0.0060 0.0042 −30%

4.5. Off-Design Performance

The 16% reduction in total pressure loss shown in Table 3 was achieved for an outlet isentropic
Mach number of 0.9 while keeping the axial chord length and trailing edge radius fixed and exit flow
angle above 74.83 deg. However, the performance of the optimal profile is deemed to deteriorate
significantly at off-design conditions. Figure 8 shows the total pressure loss coefficient for different
outlet isentropic Mach numbers for the baseline and optimal profiles, which is defined as the total
pressure difference between the inlet and outlet divided by the dynamic head at the outlet plane.
At off-design conditions, the aerodynamic improvements of the optimal are reduced as the downstream
isentropic Mach number is increased. Beyond Mise,2 = 0.94, the baseline would have lower total
pressure losses than the optimal profile. A detailed aerodynamic performance study of the baseline
and optimal geometries at off-design conditions is outside the scope of this work but can be found in
the multi-point optimization study carried out by Torreguitart et al. [32], where the performance of the
LS89 is significantly improved at off-design conditions.

Table 3. Comparison between the baseline and optimal.

Acronyms Units Baseline Optimal Variation

Entropy generation J1 [Pa/(kg/m3)] 826.7 731.0 −11.6%
Exit flow angle J3 [deg] 74.89 74.89 −0.01%
Mass flow ṁ [kg/s] 0.008 0.009 +1.2%
Total pressure losses P01 − P02 [kPa] 2.47 2.07 −16.3%
Downstream loss coeff ζ2 [-] 0.02986 0.02500 −16.3%
Profile losses ζp [-] 0.0060 0.0042 −30%
Zweifel coefficient Zw [-] 0.67 0.81 +21.2%
Solidity σ [-] 1.118 1.108 −0.9%
Pitch g [m] 0.0575 0.0580 +0.9%



Int. J. Turbomach. Propuls. Power 2018, 3, 20 10 of 13

Mise,2 [-]

(P
01
-
P
02
)/
q 2
[-
]

0.9 0.92 0.94 0.96 0.98 1 1.02

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Baseline
Single Point Optimal

Figure 8. Total pressure loss coefficient for different downstream Mise,2.

5. Conclusions

This paper presents an single point optimization of the LS89 axial turbine cascade vane profile
for the design downstream isentropic Mach number of 0.9. The parameterization is done at the
CAD level, which allows the imposition of higher level constraints on the shape, such as the axial
chord length, the trailing edge radius and G2 geometric continuity between the suction side and
pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only
smooth shapes are produced. The use of algorithmic differentiation for the CAD kernel and grid
generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic
precision and the truncation error of finite differences. The optimization results show that the total
pressure losses and entropy generation can be reduced by 16% and nearly 12% respectively by going
from a front to a rear loaded profile and by keeping the exit flow angle fixed. Despite the increase
in mass flow, loading, boundary layer thickness displacement and momentum thickness, the base
pressure coefficient plays a dominant role herein and reduces the profile losses by 30%. The substantial
aerodynamic improvements reported have not been observed previously, probably due to the fact that
the current CAD-based parametrization allowed the exploration of a richer design space. The relative
delta in base pressure predicted by the steady simulation between the optimal and baseline profiles is
deemed to be representative of the real value, as RANS tends to capture well the relative differences
between two designs. However, future unsteady studies or experimental investigations would be
beneficial in order to confirm these findings.
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Nomenclature

Roman Symbols

cax Axial chord length
p2 Outlet (downstream) static pressure
Cb Base pressure coefficient
pb Base pressure

http://ioda.sems.qmul.ac.uk
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DTE Trailing edge thickness
pPS Pressure side static pressure
g Pitch
pSS Suction side static pressure
H Shape factor
qx dynamic head downstream at the X coord. plane
J1 Entropy generation
RLE Leading edge radius
J2 Exit flow angle
RTE Trailing edge radius
JSP Single point pseudo cost function
t Throat height
ṁ Mass flow
tPS PS thickness
Mise Isentropic Mach number
tSS SS thickness
P01 Inlet total pressure
~X Grid x,y,z coordinates
P02 Outlet (downstream) total pressure
Zw Zweifel coefficient

Greek Symbols

~α Design vector
dJ
d~X

Adjoint sensitivity vector
βin Inlet angle
d~X
d~α Grid sensitivity vector
βout Outlet angle
ϕPS Pressure side trailing edge wedge angle
δ Boundary layer thickness
ϕSS Suction side trailing edge wedge angle
δ∗ Displacement thickness
σ Solidity
∆inl Distance to the inlet of the grid domain
θ Momentum thickness
∆oul distance to the outlet of the grid domain
ζ2 Downstream loss coefficient
γ Stagger angle
ζp Profile losses
dJ
d~α Performance sensitivity vector

Abbrevations

AD Algorithmic Differentiation
ADOL–C Automatic Differentiation by OverLoading in C++
CAD Computer Aided Design
LES Large Eddy Simulation
PS Pressure Side
RANS Reynolds–averaged Navier–Stokes
SS Suction Side
TE Trailing edge
URANS Unsteady Reynolds-averaged Navier-Stokes
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