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Abstract: The aim of this paper is to demonstrate how the harmonic balance method can be used
to predict rotor–rotor and stator–stator interactions in turbomachinery. These interactions occur in
the form of clocking and indexing. Whereas clocking refers to the dependency of the performance
on the relative circumferential positioning of the rotors or stators, the term indexing is used when
different blade (or vane) counts lead to an aperiodic time-averaged flow. The approach developed
here is closely related to the one presented by He, Chen, Wells, Li, and Ning, who generalised the
Nonlinear Harmonic method to zero-frequency disturbances. In particular, configurations with
only one passage per blade row are used for the simulations. We validate the methods by means
of the simulation of a fan stage configuration with rotationally asymmetric inlet conditions. It is
demonstrated that the harmonic balance solver is able to accurately predict the inhomogeneity of
the time-averaged flow field in the stator row. Moreover, the results show that the approach offers a
considerable gain in computational efficiency.

Keywords: harmonic balance; turbomachinery; computational fluid dynamics; clocking; indexing

1. Introduction

Since the development of the nonlinear harmonic (NLH) method by He and Ning [1],
various frequency domain methods have been presented in the literature that allow for an efficient
computational fluid dynamics (CFD) prediction of time-periodic unsteady flows in turbomachinery,
in particular the so-called harmonic balance (HB) method [2,3]. The fact that the flow residuals in an
HB solver are evaluated at discrete time instants means that existing routines from a steady solver
can be employed and the development is greatly simplified, even if robust solution methods and
accurate blade–row interfaces for HB are still challenging. In the NLH approach, the development of
the cross coupling terms between the harmonics can be quite intricate [4]. Therefore, only the nonlinear
coupling through the zeroth harmonic by deterministic stresses is usually taken into account. The NLH
approach, however, has no limitations as to the choice of frequencies. The extension of harmonic
balance solvers for multiple base frequencies is the subject of ongoing research [5–7].

Similar to the issue of multiple base frequencies is the prediction of rotational aperiodicities
in the time-averaged flows, which, in the terminology of frequency domain solvers, can be viewed
as additional harmonics with zero frequency and non-zero interblade phase angle. These occur,
e.g., when rotor–rotor or stator–stator interactions are to be simulated. He et al. [8] have shown that the
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NLH approach can be carried over in a straightforward manner to zero-frequency harmonics. As for
the harmonic balance method, Subramanian et al. [5] use a small, fictitious shift of the rotation speed
and obtain a configuration with several base frequencies. The aim of this paper is to demonstrate that
the harmonic set approach presented by the authors [7] is capable of accurately predicting rotationally
asymmetric time-averaged flows, without introducing fictitious rotational speeds.

The paper is organised as follows. The harmonic set concept used in the present HB solver is
summarised and its generalisation to zero-frequency harmonics is explained. It is shown that the
discrete Fourier transform with respect to the passage index leads naturally to a harmonic balance
formulation of the possibly aperiodic time-averaged flow. One thereby introduces a generalised notion
of sampling points for zero-frequency modes that correspond to circumferential positions rather than
time instants. It is shown that, if the sampling points correspond to the true positions of the blades
(or vanes), then, in contrast to the method of He et al., the zero-frequency harmonic balance system is
derived without using simplifications such as linearisation hypotheses. An academic test case is used
to demonstrate the accuracy of the method. Finally, the method is applied to predict the impact of inlet
distortions in a fan stage. For this configuration, the results are validated against unsteady simulations
in the time domain and HB simulations on full annulus configurations.

2. The Harmonic Balance Method

The methods described below are integrated into the DLR flow solver TRACE [9,10]. TRACE has
several solver modes for the steady, unsteady, linearised, and adjoint RANS equations. In recent
years, it has been extended to solve the HB equations in an alternating frequency time domain (AFT)
framework [7]. The underlying spatial discretisations employed here are based on the finite volume
approach. We use Roe’s upwind scheme [11] in combination with a MUSCL extrapolation to achieve
second order accuracy [12]. In this work, a van Albada type limiter is employed to smoothen the
solutions in the vicinity of shocks [13].

The HB solver is based on the concept of so-called harmonic sets. A harmonic set is defined by a base
frequency f , a base interblade phase angle σ and a set of harmonic indices k1, . . . , kn. Each harmonic
index k j thus corresponds to a harmonic with angular frequency k jω, ω = 2π f , and interblade phase
angle k jσ. There may be several harmonic sets, and different harmonic sets may have some harmonics
in common. Keep in mind that a harmonic is determined by both its frequency and its interblade phase
angle. Thus, when dealing with two harmonic sets with base frequencies ω1, ω2 and interblade phase
angles σ1, σ2, there may exist integers k1, k2 such that both k1ω1 = k2ω2 and k1σ1 = k2σ2. Note that, in
the solver, these harmonics are then treated as one harmonic flow field. In the following, denote by

Si = {(ωik, σik) | k ∈ Ki}, S = S1 ∪S2 ∪ . . .

the i-th harmonic set and the union of all harmonics sets, respectively. The reconstruction in time reads

q(t, r, x, ϑ + l∆ϑ) = Re

 ∑
(ω,σ)∈S ∪(0,0)

q̂(ω,σ)(t, r, x, ϑ)ei(ωt+lσ)

 , (1)

where q̂(ω,σ) denotes the Fourier coefficient associated with the angular frequency ω and interblade
phase angle σ. The harmonics can be defined in two steps. First, the full annulus time harmonic is
given by

q̂ω(x, r, ϑ) = αω lim
T→∞

[
1
T

∫ T

0
e−iωtq(t, x, r, ϑ)dt

]
,
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where α0 = 1 for ω = 0 and αω = 1
2 for ω > 0. Then, the discrete (complex) Fourier transform with

respect to the passage index yields

q̂(ω,σ) =
1
L

L−1

∑
l=0

e−iσl q̂ω(x, r, ϑ + l∆ϑ),

where L denotes the number of passages.
The HB method in TRACE is formulated in the frequency domain, i.e., it solves

iωq̂(ω,σ) + R̂(q)(ω,σ) = 0, (2)

for all harmonics (ω, σ). Here, the second term denotes the discrete Fourier transform of the flow
residual evaluated at an appropriate number of sampling points. When generalising a single base
frequency harmonic balance code to multiple base frequencies, the crucial difficulty is to define the
discrete forward Fourier transform. The HB formulation in TRACE uses, for each base frequency fi,
equidistant sampling points

ti
j =

j
fi Ni

, j = 0, . . . , Ni − 1.

The number of sampling points Ni is set to Ni = (nhh − 1)max Ki + 1. Here, the number of
sampling points per period for the highest harmonic, nhh, must be at least three in order to ensure that
the highest harmonic is smaller or equal to the Nyquist frequency. nhh = 4 is the value defined by
Orszag [14] to guarantee that taking products of two harmonics in Si does not yield a mode that is
indistinguishable from some original harmonic in Si (aliasing). The harmonic balance residual for a
mode (ω, σ) with respect to a certain harmonic set is now defined as

R̂(q)
Si

(ω,σ) =

 2
Nj

∑j e−iωti
j R(qSi (ti

j)), if (ω, σ) ∈ Si,

0, otherwise.

Here, qSi denotes the unsteady flow field using all harmonics of Si, i.e., the sum in Equation (1)
is taken over the modes in Si. The multiple harmonic set approach is to approximate the
(ω, σ)-harmonic of the residual by a weighted sum

R̂(q)
S

(ω,σ) = ∑
i

wiR̂(q)
Si

(ω,σ), (3)

where the HB residual for each harmonic set is computed with an individual, appropriate set of
equidistant sampling points. The weights wi are assumed to satisfy

∑
i

wiχSi
(ω, σ) = 1, for all (ω, σ) ∈ S , (4)

where χSi
is the characteristic function of the set Si. This means that, in Equation (3), a harmonic may

be accounted for more than once, but its weights will add up to 1. As explained in [7], the resulting
total HB residual is accurate up to second order terms, i.e., the error can be estimated by

‖R̂(q)
S

(ω,σ) − R̂(q)(ω,σ)‖ ≤ const ‖q− q̂(0,0)‖2,

where R̂(q)(ω,σ) denotes the exact Fourier coefficient of R(q(t)), viewed as an almost periodic function.
The coupling terms within one harmonic set are even third order accurate, cf. [7].
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2.1. Example 1: Up- and Downstream Disturbances within a Component

To illustrate the concept of harmonic sets, consider the disturbances caused by up- and
downstream stators with NS1 and NS2 blades on a rotor with NR blades.

The disturbances in the rotor can be represented by the harmonics sets

Si = {(kωi, kσi) | k = 1, 2, 3, . . .}, ωi = |ΩR|NSi, σi = sgn(ΩR)
2πNSi

NR
, i = 1, 2,

which are depicted in Figure 1 by red and violet dots. Here, the circumferential mode order is plotted
instead of the interblade phase angle. Keep in mind that, since two angles that differ by a multiple of
2π are identified, mode orders m, m′ for which m−m′ is a multiple of NR, are represented by the same
mode in S .

Circumferential Mode Order
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u
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cy

-6NS1 -3NS1 0NS1 3NS1 6NS1

-4NS2 -2NS2 2NS2 4NS2

1NS1ωR

3NS1ωR

5NS1ωR

7NS1ωR

1NS2ωR

2NS2ωR

3NS2ωR

4NS2ωR

Rotor StatorStator

Figure 1. Red and violet harmonic sets represent the unsteady disturbances caused by two
neighbouring blade rows with equal rotational speeds, e.g., wakes and potential effects in a rotor
system due to neighbouring stators whose vane count ratio is 2:3.

Note that, since the relative rotational speeds are equal, the disturbances lie on the same line.
S1 and S2 have a mode in common if there are integers k1, k2 such that the ki-th harmonic is in Si
and k1NS1 = k2NS2, i.e., k2/k1 equals the vane count ratio. These considerations carry over almost
verbatim to a rotor–stator–rotor configuration.

2.2. Example 2: Up- and Downstream Disturbances with Different Relative Rotational Speeds

Consider a stator between two rotors with different wheel speeds, e.g., a mid turbine
frame consisting of NS struts that are arranged between high-pressure and low-pressure turbines.
The disturbances coming from the neighbouring rotors can be represented using harmonic sets
with angular base frequencies ωi = |ΩRi|NRi and interblade phase angles σi = − sgn(ΩRi)

2πNRi
NS

.
Observe that the shaft speeds, ΩR1, ΩR2, are no longer equal in this case. Typical harmonic sets are
depicted in Figure 2. This example is a configuration with a turning strut between high and low
pressure turbine blade rows. Here, the high and low pressure components are contra-rotating.

Note that, in Figure 2, a point in the half planes corresponds to a mode rather than to a harmonic.
Two modes with different circumferential mode orders m, m′ are contained in one harmonic (ω, σ) if

m∆ϑ ≡ σ ≡ m′∆ϑ mod 2π.

Hence, two modes (ω, m), (ω′, m′) in these plots correspond to the same harmonic if ω = ω′ and
m−m′ is a multiple of NS. Therefore, even for unequal rotor speeds, the direct disturbance harmonic
sets may intersect.
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Furthermore, note that the method of harmonic sets does not resolve possible modes that are
generated by the interaction of different harmonic sets. Due to the nonlinear terms in the flow
equations, two modes in the plots of Figure 2 will generate modes that correspond to integer linear
combinations of the vectors in the half plane.

Circumferential Mode Order
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5NR2ωR2

7NR2ωR2
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3NR1ωR1

4NR1ωR1

Strut RotorRotor

Figure 2. Green and blue harmonic sets represent the unsteady disturbances caused by two
neighbouring blade rows with different rotational speeds whose blade count ratio is 2:3.

3. Zero-Frequency Harmonics

The aim of this section is to demonstrate that the harmonic set approach can be carried over to
the case where a base frequency vanishes. This allows one to simulate rotor–rotor or stator–stator
interactions on computational domains that consist of a single passage per row. As an example,
consider a blade–row configuration with blade counts NS1, NR, NS2 and rotor speed ΩR. Then, the
transmission and scattering of the wakes of the first stator in the rotor will cause a spectrum of modes
(ωk,l , ml) in the second stator with

ωl = |ΩR|lNR, mk,l = − sgn(ΩR)lNR + kNS1,

where k ∈ Z, l ∈ N. These modes can be resolved by harmonics with angular frequency ωl and
interblade phase angle

σk,l =
2π(− sgn(ΩR)lNR + kNS1)

NS2
.

In particular, if NS1 is not an integer mutliple of NS2, there will be modes with zero frequency
but non-zero m and thus non-zero σk,0. Their interblade phase angles are 2πkNS1/NS2, where k is the
integer corresponding to the k-th higher harmonic of the original wake. Since, for zero-frequency
harmonics, the disturbances with interblade phase angles σ and−σ coincide (their harmonic flow fields
are simply complex conjugates of each other), it suffices to consider positive interblade phase angles.
Therefore, it follows that one can represent the resulting aperiodicity in Stator 2 by zero-frequency
harmonics with interblade phase angle

kσ =
2πkNS1

NS2
, k = 0, 1, . . . , Kmax =

⌊
NS2

2 gcd(NS1, NS2)

⌋
.

The resulting harmonic set, together with a harmonic set for the downstream disturbance of the
rotor, is depicted schematically in Figure 3. For a harmonic set of the form

S = (0, 0), (0, σ), (0, 2σ), . . .,
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the reconstructed flow field solves the steady flow equations in all passages if and only if

R

(
Re

[
∑
k

q̂(0,kσ)e
ilkσ

])
= 0 (5)

for all passage indices l = 0, . . . , NS2 − 1. For this, it suffices to require Equation (5) for the passage
indices l = 0, . . . , NS2/ gcd(NS1, NS2) − 1. The crucial observation is that this is equivalent to the
standard harmonic balance equation (Equation (2)) for ω = 0. Moreover, the notion of a sampling
point tj is replaced with the corresponding sampling phase ϕl . Instead of ϕj = ωtj for ω > 0, one sets

ϕl = 2π
lNS1

NS2
= lσ.

This implies that the flow, reconstructed at the l-th sampling point,

Re

[
∑
k

q̂(0,kσ)e
ikϕl

]
,

equals the mean flow in the l-th passage. This approach is therefore exact in that, for the time-averaged
flow, it is equivalent to the full annulus nonlinear steady equations.

Circumferential Mode Order

A
n
g
u
la
r
F
re
q
u
en
cy

-6NR -4NR -2NR 0NR 2NR 4NR 6NR
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5NRωR

7NRωR

Rotor StatorStator

Figure 3. Two harmonic sets representing the disturbances caused by a rotor and a stator. The blade
count ratio of the first two rows is 2:3.

Elementary algebra shows that the ϕl corresponds to an equidistant distribution of
NS2/ gcd(NS1, NS2) points in the interval [0, 2π]. To reduce the computational costs, however, one can
also approximate the aperiodicity by a harmonic set with K < Kmax higher harmonics and use
N = 2K + 1 equidistant sampling phases ϕj = 2π j/N. It should be pointed out that the interactions
with other harmonic sets are not incorporated in this approach. In particular, the influence of indexing
or clocking on the propagation of unsteady disturbances is not captured.

3.1. Mode Coupling and Solution Method

The blade row coupling method outlined in [7,15] is based on circumferential Fourier
coefficients. In this algorithm, modes with equal frequency but different interblade phase angles
can be distinguished. The generalisation to zero frequency modes is therefore straightforward.
Similarly, the implicit time-marching procedure to solve the resulting harmonic balance systems
is formulated on the basis of decoupled complex linear systems for the harmonics and thus generalises
to the case ω = 0.
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3.2. Numerical Example

The harmonic set approach for zero-frequency harmonics is illustrated by means of a numerical
test case consisting of three two-dimensional duct segments through which an artificial jet-like axial
velocity disturbance,

u(ϑ) = ū + ∆u(ϑ), ∆u(ϑ) = u0 × ∑
l∈Z

e−
1

2σ2 (
ϑ

∆ϑ−l)
2

,

with amplitude u0 = 10 m/s is propagated. The duct segments consist of empty cylinder segments
and mimic a stator–rotor–stator configuration. The Fourier coefficients of δu can be computed from
the Fourier transform of the Gaussian distribution and are given by

1
∆ϑ

∫ ∆ϑ

0
δu(ϑ)e−imϑdϑ =

√
2π × σ× e−

1
2 m2σ2∆ϑ2 × u0,

where m is an integer multiple of 2π/∆ϑ. The unsteady velocity and its reconstruction with up to
four harmonics are depicted in Figure 4a. The harmonic balance solver is tested with two harmonic
set configurations, summarised in Table 1. The results of the harmonic balance computations are
plotted in Figure 4b,c, which show the velocity disturbance at the entry (Row 1), the “rotor” exit
(Row 2) and the second “stator” exit (Row 3). The plots for the limited harmonic set (Figure 4b) show
that, as expected, the resulting disturbance at the rotor exit corresponds to the reconstruction with
two harmonics, whereas, at the second stator exit, it merely consists of the first harmonic. It can
be seen that the velocity disturbance is propagated very accurately if it is fully resolved (Figure 4c).
It should be pointed out that the harmonic set in the rotor filters the modal content of the disturbance.
Hence, it is necessary to resolve the unsteady disturbance accurately in the rotor.
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Figure 4. Density distribution over circumferential coordinate at inlet, outlet, and third interface.
analytic solution (a); numerical solutions with HB configuration 1 (b); and HB configuration 2 (c).

Table 1. Harmonic set configurations for the numerical experiment of jet propagation through
duct segments.

Stator1 Rotor Stator 2

# Segments 400 400 720
Rotational Speed 0 ΩR 0
Base frequency, ω 0 720 ΩR 0
Base interblade phase angle, σ 0 0 160◦

Harmonic Set (Conf. 1) (0, 0) (0, 0), (ω, 0), (2ω, 0) (0, 0), (0, σ)
Harmonic Set (Conf. 2) (0, 0) (0, 0), (ω, 0), . . . , (7ω, 0) (0, 0), (0, σ), . . . , (0, 4σ)
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4. Fan Simulation with Inlet Distortion

In the following, the above methodology is applied to predict the impact of inhomogeneous inflow
conditions on a fan stage. The motivation for such a CFD simulation is due to the fact that boundary
layer ingesting propulsion systems offer considerable advantages regarding system efficiency and
mission fuel burn [16]. Whereas in these configurations the rotor is subject to a periodic variation of
the inflow condition, the stator has a fixed relative position with respect to the inflow distortion and
therefore exhibits indexing.

Here, a modern low pressure fan for a civil aero-engine, derived from a previous DLR design
study [17], is used. The fan features a meridional inflow Mach number of 0.65 and a design total
pressure ratio of Πt = 1.30. Both rotor and stator are comprised of 15 blades/vanes. The inflow
distortion (depicted in Figure 5b) models an ingested boundary layer of an airplane fuselage and is
similar to the ones presented by [18,19]. It has the form of an ideal turbulent boundary layer that covers
50% of the inlet duct height in the lower part of the annulus. The highest total pressure distortion in
this boundary layer is 12% relative to the far-field inflow total pressure.

(a) (b)

Figure 5. Full annulus setup of the fan stage (a) and distorted relative total pressure distribution on fan
stage inlet plane (a).

For this numerical study, a setup consisting of three domains is used: inlet duct, fan rotor and
fan stator (see Figure 5a). To obtain reference results for the HB solver, a time domain full annulus
simulation is performed using the BDF2 time integration scheme with 64 time steps per rotor pitch
rotation. Two harmonic balance simulations are run, both using a full annulus inlet duct and a single
rotor passage. The setups differ in the stator row where the first one consists of a full annulus while
the second one uses a single passage mesh in combination with an additional zero-frequency harmonic
set. Harmonic convergence studies have shown that a reasonable agreement between time-integration
and HB results can be expected as long as eight harmonics are used for the downstream disturbances.
For the upstream disturbances, four harmonics have proven to be sufficient. The meshes used are
suitable for wall function boundary layer models and are, up to the number of passages, identical for
all setups. The numbers of cells and the computational efforts for the different setups can be found
in Table 2. Compared to both time-domain and HB full annulus simulations, the harmonic balance
setup with a single passage stator shows a significant reduction in computational time. It should be
pointed out, however, that the authors expect further speed-ups of the HB simulations from the use of
fast Fourier transformations. In contrast to single passage HB setups, the numerical computation of
the circumferential Fourier coefficients at the blade row interfaces can turn into a serious bottleneck
when many passages are simulated.

Figure 6a shows the design characteristic with undistorted inflow, together with one operating
point under distorted inflow conditions, as predicted by the different simulation methods.
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For comparison, results obtained with a steady mixing plane approach with and without inlet distortion
are added. Figure 6b,c show a well-known influence mechanism of ingested boundary layers on fan
stages: due to reduced inflow velocity in the distorted area, the overall mass flow rate is reduced while
the global total pressure ratio rises due to an increased inflow and hence incidence angle [20]. For the
same reason, the distorted inflow reduces the isentropic efficiency of the fan stage [18]. The results
show that the decrease in mass flow and the increase in total pressure ratio are predicted correctly by
the HB simulations as well as by the mixing plane results with inlet distortion. Moreover, the drop in
efficiency predicted by the HB simulations is roughly the same as the one obtained from the unsteady
reference results. It is slightly overpredicted by the mixing plane simulations.

Table 2. Numerical setups and computational efforts for time-domain and HB simulations.

Time Domain HB Full Annulus Stator HB Single Passage Stator

mesh size (cells) 8.7× 106 4.5× 106 1.2× 106

relative computational effort 16.1 11.7 1
inlet duct full annulus full annulus full annulus
rotor row full annulus single passage single passage
stator row full annulus full annulus single passage

speed line clean inflow

mixing plane clean inflow

mixing plane /w distortion

time domain full annulus

HB full annulus

HB single stator passage
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Figure 6. Compressor map for design speed (a) and impact of the inlet distortion on the operating
point. Zoom of total pressure ratio (b) and isentropic efficiency (c) characteristics.

In order to assess the capability of the HB method to predict local flow phenomena, the specific
entropy distributions are compared in a blade-to-blade cut at 90% relative radial height. Figure 7 depicts
the part of the slice in which the ingested boundary layer interacts with the fan stage. The distorted
inflow appears in the form of increased entropy levels and is deflected in the direction of rotation of
the rotor. Furthermore, the increased profile loading in both rotor and stator results in an increased
entropy production in the profile boundary layers during the interaction with the distorted inflow.
This results in thicker and more intense entropy wakes. These phenomena are correctly reproduced by
the HB simulations.
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(a) (b) (c)

Figure 7. Entropy distribution at 90% relative radial height for time domain simulation (a);
harmonic balance simulation with full annulus stator (b); and harmonic balance simulation with
single stator and zero-frequency harmonic set (c).

The fact that the single stator passage HB simulation does not take into account the impact of the
indexing on the unsteady part of the flow in the stator can be seen by comparing Figure 7b,c. There are
small differences in the rotor wakes in the middle of the inflow distortion. While in the full annulus
simulations (unsteady and HB) the local reduction in axial velocity results in shorter distances between
the wakes, this effect is missing in the harmonic balance simulation with a single passage stator.

5. Conclusions

The harmonic balance approach can be generalised to zero-frequency harmonics in order to
resolve rotational aperiodicities of the time-averaged flow in turbomachinery. The harmonic set
approach, developed by the authors in recent years, is capable of simulating simultaneously the
zero-frequency and unsteady disturbances. While this approach neglects the nonlinear interactions
between different harmonic sets, it captures correctly the nonlinear coupling terms within one harmonic
set. The approach allows harmonic balance simulations of configurations including two stators
or two rotors with different blade counts to be performed using only one passage per blade row.
Thereby, computational costs can be reduced considerably. In this paper, it is demonstrated that the
approach can also be used to accurately predict the indexing effect of a fan inlet distortion on the mean
flow in a fan stage. Comparisons with time-domain and harmonic balance simulations on full annulus
configurations show that the time-averaged flow in the stator row as well as the decrease in isentropic
efficiency and increase in total pressure ratio are accurately predicted.

Author Contributions: The numerical methods presented in this paper have been developed and implemented
by Christian Frey, Graham Ashcroft, and Hans-Peter Kersken. The numerical test case has been studied by
Christian Frey. Dirk Schönweitz and Maximilian Mennicken have set up, run, and analysed the simulations of the
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Abbreviations

CFD Computational Fluid Dynamics
HB Harmonic Balance
NLH Nonlinear Harmonic
BDF2 (Second order) Backward Differencing Scheme
MUSCL Monotonic Upstream-Centered Scheme for Conservation Laws

Nomenclature

f frequency
i complex unit
k harmonic index
l passage index
m circumferential mode order
ṁred. mass flow reduced to ISA conditions
q vector of conservative flow variables
q̂ω Fourier coefficient of q

w.r.t. the angular frequency ω

s specific entropy
tj sampling point
(x, r, ϑ) cylindrical coordinates
F Fourier transform
K number of higher harmonics
Ni number of sampling points
NR (NS) number of blades (vanes)
R flow residual
Si, S harmonic sets
σ interblade phase angle
ηis isentropic efficiency
∆ϑ pitch
ω angular frequency
Πt total pressure ratio
Ω shaft speed

References

1. He, L.; Ning, W. Efficient approach for analysis of unsteady viscous flows in turbomachines. AIAA J. 1998,
36, 2005–2012.

2. Hall, K.C.; Thomas, J.P.; Clark, W.S. Computation of unsteady nonlinear flows in cascades using a harmonic
balance technique. AIAA J. 2002, 40, 879–886.

3. McMullen, M.S. The Application of Non-Linear Frequency Domain Methods to the Euler and Navier-Stokes
Equations. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2003.

4. Vasanthakumar, P. Three Dimensional Frequency-Domain Solution Method for Unsteady Turbomachinery
Flows. Ph.D. Thesis, Durham University, Durham, UK, 2003.

5. Subramanian, V.; Custer, C.H.; Weiss, J.M.; Hall, K.C. Unsteady simulation of a two-stage cooled high
pressure turbine using an efficient non-linear harmonic balance method. In Proceedings of the ASME Turbo
Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013.

6. Guedeney, T.; Gomar, A.; Gallard, F.; Sicot, F.; Dufour, G.; Puigt, G. Non-uniform time sampling for
multiple-frequency harmonic balance computations. J. Comput. Phys. 2013, 236, 317–345.

7. Frey, C.; Ashcroft, G.; Kersken, H.P.; Voigt, C. A Harmonic Balance Technique for Multistage Turbomachinery
Applications. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition,
Düsseldorf, Germany, 16–20 June 2014.

8. He, L.; Chen, T.; Wells, R.G.; Li, Y.S.; Ning, W. Analysis of Rotor-Rotor and Stator-Stator Interferences in
Multi-Stage Turbomachines. J. Turbomach. 2002, 124, 564–571.



Int. J. Turbomach. Propuls. Power 2017, 3, 1 12 of 12

9. Yang, H.; Nürnberger, D.; Kersken, H.P. Towards Excellence in Turbomachinery Computational Fluid
Dynamics. J. Turbomach. 2006, 2006, 390–402.

10. Becker, K.; Heitkamp, K.; Kügeler, E. Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery
Flows. In Proceedings of the Fifth European Conference on Computational Fluid Dynamics ECCOMAS
CFD 2010, Lisbon, Portugal, 14–17 June 2010.

11. Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 1981,
43, 357–372.

12. Van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s
method. J. Comput. Phys. 1979, 32, 101–136.

13. Van Albada, G.D.; van Leer, B.; Roberts, W.W., Jr. A comparative study of computational methods in cosmic
gas dynamics. Astron. Astrophys. 1982, 108, 76–84.

14. Orszag, S.A. Elimination of aliasing in finite-difference schemes by filtering high-wavenumber components.
J. Atmos. Sci. 1971, 28, 1074.

15. Frey, C.; Ashcroft, G.; Kersken, H.P. Simulations of Unsteady Blade Row Interactions Using Linear and
Non-Linear Frequency Domain Methods. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical
Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015.

16. Plas, A.; Sargeant, M.A.; Madani, V.; Crichton, D.; Greitzer, E.M.; Hynes, T.P.; Hall, C.A. Performance of a
Boundary Layer Ingesting (BLI) Propulsion System. In Proceedings of the 45th AIAA Aerospace Sciences
Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007.

17. Lengyel-Kampmann, T.; Otten, T.; Schmidt, T.; Nicke, E. Optimization of an Engine with a Gear Driven
Counter Rotating Fan PART I: Fan Performance and Design. In Proceedings of the 22nd International
Symposium on Air Breathing Engines, Phoenix, AZ, USA, 25–30 October 2015.

18. Gunn, E.; Hall, C. Aerodynamics of Boundary Layer Ingesting Fans. In Proceedings of the ASME Turbo
Expo 2014, Düsseldorf, Germany, 16–20 June 2014.

19. Kim, H.; Liou, M.S. Flow Simulation of N2B Hybrid Wing Body Configuration. In Proceedings of the 50th
Aerospace Science Meeting, Nashville, TN, USA, 9–12 January 2012.

20. Fidalgo, V.J.; Hall, C.A.; Colin, Y. A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic
Stage. In Proceedings of the ASME Turbo Expo 2010, Glasgow, UK, 14–18 June 2010.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article
is an open access article distributed under the terms and conditions of the
Creative Commons Attribution NonCommercial NoDerivatives (CC BY-NC-ND) license
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/.

	Introduction
	The Harmonic Balance Method
	Example 1: Up- and Downstream Disturbances within a Component
	Example 2: Up- and Downstream Disturbances with Different Relative Rotational Speeds

	Zero-Frequency Harmonics
	Mode Coupling and Solution Method
	Numerical Example

	Fan Simulation with Inlet Distortion
	Conclusions
	References

