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Abstract: The parasitic protozoan Leishmania (Leishmania) infantum is the etiological agent of human
visceral leishmaniasis in South America, an infectious disease associated with malnutrition, anemia,
and hepatosplenomegaly. In Brazil alone, around 2700 cases are reported each year. Treatment failure
can occur as a result of drug, host, and/or parasite-related factors. Here, we isolated a Leishmania
species from a pediatric patient with visceral leishmaniasis that did not respond to chemotherapy,
experiencing a total of nine therapeutic relapses and undergoing a splenectomy. The parasite was
confirmed as L. (L.) infantum after sequencing of the ribosomal DNA internal transcribed spacer, and
the clinical isolate, in both promastigote and amastigote forms, was submitted to in vitro susceptibility
assays with all the drugs currently used in the chemotherapy of leishmaniasis. The isolate was
susceptible to meglumine antimoniate, amphotericin B, pentamidine, miltefosine, and paromomycin,
similarly to another strain of this species that had previously been characterized. These findings
indicate that the multiples relapses observed in this pediatric patient were not due to a decrease in
the drug susceptibility of this isolate; therefore, immunophysiological aspects of the patient should
be further investigated to understand the basis of treatment failure in this case.

Keywords: Leishmania (Leishmania) infantum; visceral leishmaniasis; drug susceptibility

1. Introduction

The parasitic protozoan Leishmania (Leishmania) infantum is the etiological agent of
human visceral leishmaniasis (VL) in South America, the Mediterranean Basin, the Middle
East, and Central Asia, and is transmitted to humans and other mammals through the
bite of infected sand flies. VL is the main clinical form of leishmaniasis that affects the
phagocytic mononuclear system of the liver, spleen, and/or bone marrow, and may be
fatal if untreated in 90% of cases [1,2]. The disease is considered an opportunistic infection
in patients coinfected with human immunodeficiency virus (HIV) and in patients on
immunosuppressive or immunomodulatory treatments for organ transplantation [3]. More
than 90% of VL cases in Latin America occur in Brazil, and, from 2018 to 2020, around
2700 cases were reported each year, with cases occurring in almost all Brazilian states,
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although most were concentrated in the northeast and north regions [2]. Children up to
5 years old and immunocompromised adults are the major risk groups for VL [1]. The main
clinical manifestations of VL are persistent fever, hepatosplenomegaly, and pancytopenia
accompanied by hypergammaglobulinemia and weight loss [1,4]. In endemic areas of Brazil,
seroprevalence of antibodies to L. (L.) infantum can be as high as 34.9% in children [5,6]. In
pediatric patients, risk factors for developing the clinical disease include immaturity of the
immune response, immunosuppressive diseases, and malnutrition [7].

Patients with VL in Brazil are mainly treated with meglumine antimoniate (SbV),
amphotericin B (AmB) deoxycholate, or liposomal AmB (L-AmB), with cure rates of at
least 80% [3,8]. For L-AmB in particular, cure rates of around 87% have been reported for
this clinical form of the disease [8]. Although the antileishmanial drug miltefosine (MF) is
not approved for the treatment of VL in Brazil, it has proven to be highly effective in the
treatment of VL in patients infected with L. (L.) donovani in India, with cure rates higher
than 90% [9,10]. In a clinical trial in Brazil, the effectiveness of MF in patients with VL was
only 60%, with a treatment failure of approximately 52% in pediatric patients and 26%
in adults [11,12]. A deletion in chromosome 31 of L. (L.) infantum isolates obtained from
patients in this trial was identified and correlated with an increased risk of MF treatment
failure [11]. This genomic region contains four genes, 3′-nucleotidase/nucleases (NUC1
and NUC2), helicase-like protein, and 3,2-trans-enoyl-CoA isomerase, and is known as the
miltefosine sensitive locus (MSL) [11,12]. The absence of NUC1 and NUC2 genes was later
shown to be specifically responsible for the reduction of MF susceptibility in parasites, due
to a higher resistance to lipid metabolism perturbations caused by the drug [13].

Treatment failure in leishmaniasis may be related to drug-, host-, and/or parasite-
related factors [14]. Certain genetic characteristics or the immune status of the patient,
such as HIV coinfection or non-HIV-related immunocompromised states, are the main
host-related factors associated with treatment failure in VL [4,15]. On the other hand, the
main parasite-related factor that may lead to treatment failure is drug resistance, which may
be intrinsic and/or acquired [14,16]. Intrinsic resistance, also known as natural resistance,
is a molecular/biochemical feature that makes the parasite tolerant to the drug, while
acquired resistance is a phenotype selected after exposure of the parasite to the drug used
during treatment [16].

Here, we characterized the in vitro drug susceptibility of a L. (L.) infantum isolate from
a pediatric patient who presented multiple VL relapses, despite undergoing appropriate
treatment regimens with SbV, L-AmB, and MF [17]. Evidence of primary or secondary
immunodeficiencies was not found after seven relapses [17], and the patient underwent a
splenectomy owing to the persistence of hypersplenism and a clinical condition compatible
with the active disease. After a total of nine relapses, parasites were collected from a bone
marrow aspirate to evaluate the in vitro susceptibility to standard antileishmanial drugs.

2. Materials and Methods
2.1. Patient Description and Ethics Statement

A 10-year-old male patient from Itapecuru city, State of Maranhão, Brazil, a highly
endemic region for VL, was initially diagnosed with VL when he was 3 years old. The
patient had experienced a total of nine relapses since the first episode occurred in August
2016 [17]. In the last relapse, the patient presented hepatomegaly, a liver palpable at 10 cm
below the costal margin, pancytopenia (3350 white blood cells/µL; 6.1 g/dL hemoglobin;
and 89,000 platelets/µL), and a myelogram positive for Leishmania species. Bone marrow
aspirates were collected immediately before starting a new treatment scheme with a combi-
nation of L-AmB at 3 mg/kg/day intravenously for 15 days (totaling 50 mg/kg), pentami-
dine (PEN) at 4 mg/kg/day for 15 days (totaling 60 mg/kg), and MF at 50 mg/day orally
for 28 days. The Research Ethics Committee of the Universidade Federal do Maranhão
(protocol ID 3.921.086) approved the procedures involving the collection of bone-marrow-
aspirate samples from the patient, and this procedure was conducted after receiving the
parents’ consent.
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2.2. Isolation of the L. (L.) infantum ME Isolate, Parasite Cultivation and Animals

Bone-marrow-aspirate samples were subjected to initial cultivation in Schneider’s medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 20% heat-inactivated fetal bovine
serum (FBS; Thermo Scientific), 10 U/mL penicillin, and 10 µg/mL streptomycin, incubated
at 25 ◦C. After isolation, promastigotes of the clinical isolate (MHOM/BR/2021/ME) and of
the L. (L.) infantum strain (MHOM/BR/1972/LD) were grown at 25 ◦C in M199 medium
(Sigma-Aldrich) supplemented with 40 mM HEPES (pH 7.4), 0.1 mM adenine, 0.005%
hemin, 10% FBS, 10 U/mL penicillin, 10 µg/mL streptomycin, and 2% sterile male human
urine [18,19]. To type the clinical isolate as L. (L.) infantum, genomic DNA was isolated
using DNAzol (Thermo Scientific), and typing was performed through PCR amplification
followed by sequencing of the internal transcribed ribosomal (ITS) DNA as previously
described [20]. The GenBank accession number of the ITS sequence of the isolate, referred
to as the ME isolate, is ON804484.

Bone-marrow-derived macrophages (BMDMs) were obtained from BALB/c mice, aged
4–6 weeks, which were differentiated and cultured in RPMI 1640 medium (Thermo Scientific)
supplemented with 10% FBS, 0.1 M sodium pyruvate, and 100 µg/mL penicillin/streptomycin
and incubated in a 5% CO2 atmosphere at 37 ◦C, as previously described [21].

2.3. In Vitro Drug Susceptibility of Promastigotes and Intracellular Amastigotes

Drugs used in the present study were AmB deoxycholate, trivalent antimoniate (SbIII),
PEN, MF (Sigma-Aldrich), SbV (Sanofi-Aventis), and paromomycin sulfate (PM; Gold
Biotechnology). All drugs were diluted in Milli-Q ultrapure water to give stock solutions of
10–100 mM, which were then filter-sterilized (0.22 µm pore size) and stored at −20 ◦C until
use, with the exception of AmB deoxycholate, which was diluted in DMSO (Sigma-Aldrich).

The drug susceptibility of the ME isolate and the LD strain promastigotes was deter-
mined using the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide]
colorimetric assay after 2 × 106 parasites per well in 96-well plates were incubated for
24 h with the serially diluted (1:2) drugs: 200 to 3.12 nM for AmB deoxycholate; 1000 to
15.6 µM for SbIII; 25 to 0.39 µM for PEN; 200 to 3.12 µM for MF; and 800 to 12.5 µM for PM,
as previously described [22]. At least three independent experiments were performed in
triplicate. The optical density was determined in a plate reader (Multiskan Sky, Thermo
Scientific) using a reference wavelength of 690 nm and a test wavelength of 595 nm. The
50% effective concentration (EC50) was determined from a sigmoidal regression of the
concentration-response curves generated in GraphPad Prism 7.

For the drug susceptibility of the intracellular amastigotes, BMDMs were first plated
at a density of 3 × 105 macrophages per well in complete RPMI 1640 medium on round
glass coverslips in 24-well plates and incubated in a 5% CO2 atmosphere at 37 ◦C for 24 h.
Following this, macrophages were infected with stationary-phase promastigotes of the
ME isolate and the LD strain at a ratio of 20:1 (parasites:macrophage) and incubated in
a 5% CO2 atmosphere at 37 ◦C. After 3–4 h, non-internalized parasites were removed
by washing with warmed phosphate-buffered saline (PBS), and the drugs in RPMI 1640
were added: AmB deoxycholate serially diluted (1:2) from 50 to 0.78 nM; MF serially
diluted (1:2) from 20 to 0.31 µM; PM at 0.4, 0.2, 0.1, 0.075, 0.05, 0.025, and 0.01 µM; and
PEN at 200, 100, 50, 10, 1, 0.5, and 0.1 µM. Infected macrophages were maintained for
72 h in a 5% CO2 atmosphere at 37 ◦C. SbV susceptibility assays with amastigotes were
performed using drug concentrations of 1000, 750, 500, 250, 100, 50, and 25 µM, and
infections were incubated for 6 days, with a replacement of medium containing SbV
after 3 days. Macrophages were fixed in methanol (Sigma-Aldrich), and the Panoptic
hematological method (Laborclin, Brazil) was used to stain the cells. The percentage of
infection and the number of amastigotes per macrophage were determined by counting
100 macrophages in three independent experiments, which were subsequently used to
determine the EC50 values.
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All drug susceptibility assays were performed within ten in vitro passages for the
ME isolate. Statistical significance was determined using the Student’s t-test in GraphPad
Prism 7. Significance was considered as p < 0.05.

2.4. PCR for the Presence/Absence of Miltefosine Sensitive Locus (MSL)

To confirm the presence or absence of the MSL in L. (L.) infantum ME isolate, a pre-
viously described PCR protocol was used [11]. As control for the presence of the MSL
genes, genomic DNA of L. (L.) donovani DD8 strain was used in PCR reactions. Primers
targeting the genes LinJ.31.2370 and LinJ.31.2400 that encode the 3′-nucleotidase/nuclease
(NUC1) and 3,2-transenoyl-CoA isomerase, respectively, were used, as these genes are
located inside the MSL. These PCR protocols amplify fragments of 1.42 kb and 1.56 kb,
respectively. As a positive control for the PCR reaction, a protocol targeting the hsp70
gene was performed, which amplifies a fragment of 1.28 kb [23]. The primers and PCR
conditions used for the amplification of the MSL and LinJ.31.2370, LinJ.31.2400, and hsp70
genes were previously described [11,23].

3. Results and Discussion

After a total of nine therapeutic VL relapses, bone marrow aspirates were collected
from the patient for parasite isolation and confirmation of the Leishmania species. The full
ITS nucleotide sequence of the ME clinical isolate displayed at least 99.52% identity with
the ITS of other L. (L.) infantum strains and isolates deposited in GenBank, and 99.91%
identity with the L. (L.) infantum LD strain.

To determine whether the relapses were due to drug resistance, we evaluated the
in vitro susceptibility of both the promastigote and amastigote forms of the parasite to
various antileishmanial drugs, SbV, AmB deoxycholate, and MF, to which the patient had
previously been exposed, and PEN and PM, two drugs that the patient had not been
previously exposed to. The EC50 values for all drugs were determined in parallel with
the LD strain that was originally isolated from a patient with VL in the Amazon region,
and which has been used as a laboratory strain for several years [24,25]. This strain is
considered to be susceptible to all these drugs.

Firstly, the ME isolate presented a similar pattern of promastigote growth in vitro as
the LD strain (data not shown). In the susceptibility assays, the promastigote form of the
ME isolate had a similar sensitivity to all tested drugs (AmB deoxycholate, PEN, PM, MF,
and SbIII) as the LD strain (Table 1).

Table 1. In vitro activity of antileishmanial drugs against promastigotes and intracellular amastigotes
of the L. (L.) infantum LD strain and the ME clinical isolate.

Drugs
Promastigotes c Intracellular Amastigotes c

CC50
d

LD ME LD ME

AmB a 19.83 ± 4.39 26.34 ± 3.87 5.17 ± 0.95 8.84 ± 2.32 127.36 ± 0.94
SbV b - - 269.40 ± 7.23 314.93 ± 5.84 >2000
SbIII b 131.06 ± 2.60 163.10 ± 2.06 - - -
MF b 16.15 ± 1.36 13.28 ± 1.65 1.53 ± 0.45 1.46 ± 0.21 49.52 ± 2.93

PEN b 4.04 ± 1.12 2.47 ± 0.28 0.11 ± 0.01 0.10 ± 0.013 0.36 ± 0.02
PM b 78.71 ± 3.15 74.28 ± 4.45 1.71 ± 0.62 2.05 ± 0.60 536.60 ± 27.1

a Concentrations in nM; b Concentrations in µM; c EC50 mean values ± standard deviation; d Toxicity on BMDM.
CC50 values for AmB, MF, SbV, and PM were previously reported [22,26,27]. CC50 for PEN was determined as
described by Coser et al. [26]. (-) Data not determined.

The ME isolate and the LD strain also had similar rates of infection in BMDMs, with
69 ± 4% and 62 ± 6% infection rates, respectively; in addition, the number of amastigotes
per macrophage was 5.39 ± 1.45 for the ME isolate and 6.41 ± 0.86 for the LD strain
(Figure 1). The amastigote form of the ME isolate was similarly susceptible to SbV, AmB
deoxycholate, and MF as the LD strain, with no significant difference in the EC50 values
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(Table 1), despite the patient being refractory to these treatments [17]. Differently, laboratory-
selected SbV- and AmB-resistant L. (L.) infantum and L. (L.) donovani lines exhibit a minimum
of a 3-fold increase in EC50 values, reaching more than a 10-fold increase when compared
with their corresponding parental strains [28–32]. Finally, the LD strain and the ME isolate
were also uniformly susceptible to PEN and PM (Table 1).
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Figure 1. In vitro infection of (A) L. (L.) infantum LD strain and (B) the ME clinical isolate. BMDMs
were infected with stationary-phase promastigotes at 37 ◦C and 5% CO2 on coverslips in 24-well
plates. After 3 h, the wells were washed to remove non-internalized parasites, and the plate was
incubated further under the same conditions. After 72 h, infected macrophages were fixed in methanol
(Sigma-Aldrich), stained by the Panoptic hematological method (Laborclin, Brazil), then visualized
on a light microscope. Bar: 10 µm.

An increased risk of MF treatment failure in VL caused by L. (L.) infantum was recently
associated with a deletion in chromosome 31 in this species [11]. Considering that the
pediatric patient presented a relapse after MF treatment using 50 mg/day orally for 28 days,
we investigated whether the MSL was also absent in the ME isolate. The absence of the
MSL is demonstrated by the presence of a 1.2 kb PCR-amplified fragment, rather than a
14 kb PCR product corresponding to the complete MSL (Figure 2A). This 1.2 kb fragment
was amplified from the ME clinical isolate, indicating that the MSL had been deleted
(Figure 2B) [11]. The MSL was also absent in the LD strain (Figure 2B), as previously
described [22]. The absence of the MSL in the ME isolate was confirmed by PCR targeting
two genes located within this locus, LinJ.31.2370 and LinJ.31.2400, that code for NUC1
and 3,2-trans-enoyl-CoA isomerase, respectively (Figure 2A). No amplification for these
genes was observed in the ME isolate and the LD strain, while the expected fragments
were detected for the L. (L.) donovani DD8 strain (Figure 2C), which contains the MSL, as
previously described [22]. Brazilian L. (L.) infantum isolates with the MSL deletion were
recently identified across the country [33]. Although the patient experienced MF treatment
failure and the ME isolate was lacking the MSL, this isolate was highly susceptible to MF
in vitro and thus does not corroborate the previously reported association between the
absence of the MSL and low susceptibility in vitro [12]. Similar findings were described by
Espada et al. [34] who, after the evaluation of almost 50 L. (L.) infantum isolates, did not
find a correlation between the deletion of the MSL and MF resistance in vitro.
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Figure 2. Investigation of the MSL in the L. (L.) infantum LD strain and ME clinical isolate, using PCR
protocols previously described by Carnielli et al. [11]. (A) Schematic representation of the MSL of
approximately 14 kb. In the absence of the MSL, a 1.2 kb DNA fragment is amplified. (B) PCR for the
presence (~14 kb) or absence (~1.2 kb) of the MSL in the LD strain (lane 1) and the ME isolate (lane
2). (C) PCR amplification of the MSL genes LinJ.31.2370 (that encodes NUC1) and LinJ.31.2400 (that
encodes 3,2-trans-enoyl-CoA isomerase). The size of amplified PCR products is indicated above the
figure. As a control, all genomic DNAs were also evaluated by a PCR protocol that amplifies a 1.28 kb
product of the hsp70 gene, as previously described by Montalvo et al. [23]. MW—molecular weight in
kilobase (kb); (−) negative control for PCR (absence of genomic DNA); (+) positive control for PCR
(genomic DNA of L. (L.) donovani DD8 strain); (1) L. (L.) infantum LD strain; (2) L. (L.) infantum ME
clinical isolate.

After parasite isolation, the patient received a course of treatment using a combina-
tion of L-AmB at 3 mg/kg/day intravenously for 15 days (totaling 50 mg/kg), PEN at
4 mg/kg/day for 15 days (totaling 60 mg/kg), and MF at 50 mg/day orally for 28 days. No
toxicity related to the treatment was observed, and the patient responded well, with clinical
improvement and no other episode of relapse reported after 2 years of follow-up. Impor-
tantly, this patient underwent a splenectomy after the seventh relapse [17], a procedure that
may be useful for the reduction of parasite burden in refractory cases and cases of treatment
failure [35,36]. The spleen is one of the most important organs of the reticuloendothelial
system, being considered the main parasite reservoir in VL [1]. The successful use of a
triple-combination drug therapy (L-AmB, PEN, and SbV) has already been reported in a
1-year-old child, after no clinical response to two courses of L-AmB treatment [37].

The parasite isolated after multiple courses of treatment in the pediatric patient did
not appear to have acquired resistance to any antileishmanial drug. Our findings indicate
that the treatment failure is probably due to genetic and/or immunophysiological aspects
of the patient, which should be further investigated.
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