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Abstract: West Nile virus is characterized as a neurotropic pathogen, which can cause West Nile
fever and is transmitted by mosquitoes of the genus Culex. In 2018, the Instituto Evandro Chagas
performed the first isolation of a WNV strain in Brazil from a horse brain sample. The present study
aimed to evaluate the susceptibility of orally infected Cx. quinquefasciatus from the Amazon region of
Brazil to become infected and transmit the WNV strain isolated in 2018. Oral infection was performed
with blood meal artificially infected with WNV, followed by analysis of infection, dissemination,
and transmission rates, as well as viral titers of body, head, and saliva samples. At the 21st dpi, the
infection rate was 100%, the dissemination rate was 80%, and the transmission rate was 77%. These
results indicate that Cx. quinquefasciatus is susceptible to oral infection by the Brazilian strain of WNV
and may act as a possible vector of the virus since it was detected in saliva from the 21st dpi.

Keywords: West Nile virus; flavivirus; Culex quinquefasciatus; arbovirus infections

1. Introduction

Arboviruses are viruses that complete part on their life cycle in arthropod vectors and
thus are transmitted to vertebrates [1,2]. The life cycle of arboviruses involves the feeding
on a viremic animal by a hematophagous arthropod, followed by the replication of the
virus in the arthropod. The virus can be transmitted to other animals and humans when it
reaches the salivary glands [1,3,4].

WNV was first isolated in 1937 from a human sample in West Nile District, Uganda
(strain B956, lineage 2) [5]. In Brazil, the Evandro Chagas Institute (IEC) performed
the first viral isolation from a horse brain sample from Pedra Grande region on the São
Mateus municipality, Espírito Santo state, Brazil, in 2018 [6], and phylogenetic analysis
demonstrated that this WNV strain belongs to the 1A lineage that circulates in the United
States and Mexico [6,7]. As of July 2019, only two human cases have been confirmed, both
in the state of Piauí, between 2014 and 2017, according to the Ministry of Health’s (MOH)
West Nile surveillance report [8].

The WNV is characterized as a neurotropic pathogen that causes the West Nile fever,
febrile illness, encephalitis, and also can cause asymptomatic infections [9]. It is transmitted
by mosquitoes, mainly of the Culex genus [10], and can also be transmitted through contact
with blood and tissues from infected animals [11] and through organ transplants [12,13],
blood transfusions [14,15], and the transplacental pathway [16].
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The enzootic cycle of WNV consists of hematophagous arthropods as vectors, wild
birds as amplification hosts, and mammals (e.g., horses and humans) as accidental hosts [17].
Members of the Culex genus are accepted as the main vectors [18–21].

The Culex quinquefasciatus (SAY, 1823) species is mainly found in countries with warmer
climates and is widely adapted to the urban environment, being easily found in human
and animal dwellings [22,23]. The females oviposit the rafts of eggs in small collections of
stagnant water with a high content of organic matter, making this species resistant to the
effects of water pollution [22,24].

In Brazil, Cx. quinquefasciatus is a cosmopolitan mosquito and has a wide distribution.
Entomological studies in the states of Pará, Mato Grosso, São Paulo, and Rio de Janeiro
between 1968–1976, in Amazonas between 2002–2005 [25–27], and in Rio Grande do Sul
between 2006 and 2008 [22,28], reported the presence of the species, including areas be-
longing to the Amazon Region. In a study conducted in the Brazilian Amazon [29–31],
the largest number of identified species belonged to the genus Culex Linnaeus, with Culex
(Melanoconion) gnomatos being the most abundant species. According to the Cx. quinque-
fasciatus Surveillance Guide [32], this species is associated with high lymphatic filariasis
rates in Recife, Maceió, and Belém. WNV has been detected in 27 species of mosquitoes in
the United States, including Aedes, Anopheles, Mansonia, and Psorophora mosquitoes, and
14 species of Culex, including Culex quinquefasciatus, according to the Centers for Disease
Control and Prevention (CDC) [33].

Culex species, including Culex tarsalis, Culex pipiens, and Culex quinquefasciatus, are
currently recognized as the primary vectors of WNV [10,33–35], and the vector compe-
tence of Culex quinquefasciatus for WNV transmission has been demonstrated in several
studies [21,35–37]. The practice of hematophagy is common among several insects that
parasitize vertebrate animals, since females use blood as a source of amino acids needed
for the maturation of their eggs [38]. Vertebrate blood is rich in several nutrients, and
blood feeding is not only a nutrient source for arthropods but also a rich source of infection,
exposing them to a variety of pathogens including bacteria, fungi, and viruses [39,40].
Therefore, vector competence is defined as the ability of a vector to become infected with a
pathogen (susceptibility), maintain it in tissues (extrinsic incubation period), and transmit
it by saliva [10,34].

Therefore, the present study aims to evaluate the vector competence of the Cx. Quin-
quefasciatus mosquitoes, from the Amazon region of Brazil, to be infected and transmit the
WNV strain (BEAN854747) isolated in Brazil in 2018 (GenBank: MH643887).

2. Materials and Methods
2.1. Mosquito Infection

Two independent experiments were conducted with colonies of Culex quinquefasciatus
from two neighborhoods in the municipality of Ananindeua, Pará state (Northern Region).
The first artificial infection experiment (Group 1) was carried out with F3 generation
females from the Julia Seffer housing complex, Águas Lindas neighborhood, and the
second artificial infection experiment (Group 2) was carried out with F1 generation females
from the Cidade Nova neighborhood (Figure 1).

The rafts of eggs and larvae stages were reared in plastic trays containing 700 mL of
distilled water, supplemented with crushed and sterilized fish feed. Pupae were transferred
to a transparent polypropylene container containing 50 mL of distilled water and placed in a
30 cm3 insect rearing cage. Adult mosquitoes were maintained in insectary, at 28 ◦C ± 1 ◦C,
humidity of 80% ± 10%, with 12:12 h light:dark cycles [35], and constantly received cotton
soaked in sugar solution (10%) ad libitum (12 g of caster sugar diluted in 250 mL of
water) [41].
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Figure 1. Map of the areas of origin of the generations of mosquitoes used in the study. Group 1 from
the neighborhood of Águas Lindas and Group 2 from the neighborhood of Ananindeua.

2.2. Viral Strain

The BEAN854747 WNV strain (GenBank: MH643887) was isolated from the central
nervous system (CNS) sample of an adult horse from Pedra Grande locality, São Mateus
municipality, Espírito Santo state, Brazil. Virus isolation was performed in C6/36 cells,
confirmed by indirect immunofluorescence (IF), which showed, approximately, 75% of
positive cells for antibodies against flavivirus. Supernatant from C6/36 infected cells was
positive for WNV by RT-PCR assay, based on protocols established by Lanciotti et al. [42]
and Lanciotti and Kerst [43], and the phylogenetic analysis characterized as belonging to
the 1A lineage [6].

2.3. Viral Stock Preparation

The WNV virus stock was prepared in Vero cells (ATCC CCL-81), in which 150 µL
of virus, fifth passage, was inoculated, and incubated at 37 ◦C and 5% CO2 for one hour
for adsorption.

After the adsorption period, 25 mL of Medium 199 (Gibco, Grand Island, NY, USA)
was added; such medium contains 2% fetal bovine serum (FBS), penicillin (100 IU/mL),
and streptomycin (100 µg/mL). The infected cells were incubated again for 6 days.

After identification of the cytopathic effect in 90% of the Vero cell monolayer, cell lysis
was performed, by centrifugation, loosening the monolayer from the flask wall, and 10%
(V/V: 2.5 mL) FBS (GIBCO) was added. Aliquots of 2 mL were placed in KMA cryogenic
freezing tubes (Mylabor, Sao Paulo, Brazil) and stored at −70 ◦C. The aliquots to be used
were thawed at ambient temperature and mixed with the blood [44,45].

The WNV viral stock was titrated by the viral titration plaque assay, obtaining a titer
of 1.4 × 108 PFU/mL (plaque forming units per milliliter).

2.4. Mosquitoes Infection

In experimental group one, 150 females were used and, in group two, 189 females; all
were used from 5 to 8 days after emergence.
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The females were separated and starved through sugar-deprivation for 24 h before
the infected blood feeding. The oral infection was performed using a sterile glass artificial
feeder connected to a water bath at 37 ◦C and covered with a bovine liver peritoneum
membrane purchased from a slaughterhouse.

In the first experiment, the infectious blood meal was prepared by mixing 2.5 mL
of defibrinated sheep blood (EBE-FARMA, Cachoeiras de Macacu, Brazil), and 1.5 mL of
WNV stock. In the second experiment, 2 mL of defibrinated sheep blood and 2 mL of WNV
stock were mixed. The females remained exposed to the infected blood meal for 60 min
(final titer of infected blood meal: 7 × 107 PFU/mL).

At the end of the oral feeding period, the females were transferred to an insect rearing
cage, and a transparent polypropylene container containing 15 mL of distilled water was
deposited inside the cages for oviposition [46].

In group one, we obtained 85 engorged and 65 non-engorged females that were frozen
at −20 ◦C for 48 h and then discarded. In the second group, we obtained 108 engorged fe-
males and 81 non-engorged females that were frozen at −20 ◦C for 48 h and then discarded.
We followed the survival of engorged females during post infection days, discarding the
dead. There were 3 deaths at 6th dpi and 2 deaths at 10th dpi in the first group. In the
second group, 3 females died between the 3rd and the 6th dpi, and 35 females died between
the 12th and the 21st dpi. Thus, 27 females were analyzed at 7th dpi, 33 at 14th dpi, and
20 at 21st dpi. In the second group, 25 females died at 7th dpi, 23 at 14th dpi, and 22 at
21st dpi.

The control group was composed of uninfected females belonging to the same genera-
tion used in the infection fed only with uninfected blood [34,47].

2.5. Mosquito Segmentation

The body (thorax and abdomen) and head segmentation and saliva collection were
performed on the 7th, 14th, and 21st days post-infection (dpi). Females in group 1 were
segmented into head and body only, and no saliva was collected, forming pools with more
than one female; in group 2, females were segmented into body, head, and saliva and
samples analyzed individually.

For saliva collection, the proboscis was inserted into a 10 µL micropipette containing
5 µL of FBS (GIBCO), and after 30 min, the medium containing the saliva was transferred to
Eppendorf tubes containing 45 µL of Leibovitz’s L-15 medium (GIBCO) and immediately
stored at −70 ◦C [48,49].

For segmentation of body and head [49], the females were anaesthetized on ice, placed
with the abdomen upwards on a microscope slide, and the wings and legs were removed.
The body and head were separated and transferred to Eppendorf tubes, and 1000 µL
of Dulbecco’s phosphate buffered saline (DPBS) (Life Technologies, Carlsbad, CA, USA)
containing 2% penicillin and streptomycin, 1% fungizone, and 5% FBS was added, as well
as a 3 mm stainless steel bead to perform the maceration in TissueLyser II (Qiagen, Hilden,
Germany), and were stored at −70 ◦C [50].

2.6. Virus Isolation

For virus isolation, the samples were centrifuged (Mikro 220R, Hettich, Föhrenstr, Tut-
tlingen, Germany), and 100 µL of the macerated supernatant of the body and head samples
and 20 µL from the saliva samples were inoculated in C6/36 cells (ATCC: CRL-1660) [51].
The C6/36 cells were incubated at 28 ◦C for one hour, and 1.5 mL of Leibovitz’s L-15
maintenance medium (GIBCO, Grand Island, NY, USA) prepared with 2.95% tryptose
phosphate, nonessential amino acids, penicillin, streptomycin, and 2% SBF was added to
the monolayer [45].

Inoculated cells were incubated (Napco 6100 Water Jacketed Co2 Incubator, Winchester,
VA, USA) at 5% CO2 at 28 ◦C (±2 ◦C) and evaluated for 7 days using an inverted optical
microscope (Olympus CK2 Phase Contrast Microscope, Shibuya-ku, Tokyo, Japan) to verify
the occurrence of cytopathic effect.
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2.7. Indirect Immunofluorescence Test (IF)

In the indirect immunofluorescence test (IF), 25 µL of the inoculated C6/36 cells were
added to the individual holes of the immunofluorescence assay slide, then were immersed
in acetone (−20 ◦C) for 10 min. After, 25 µL of polyclonal antibody (ratio 1:20), with
hyperimmune West Nile ascitic fluid (in house) produced in adult Swiss albino mice (Mus
musculus) by the Arbovirology and Hemorrhagic Fevers Section (SAARB/IEC), was added.

The slides were stored in a humidity chamber and in an incubator (Napco 6100 Water
Jacketed Co2 Incubator) for 30 min at 37 ◦C and 5% of CO2. Next, the slides were immersed
in phosphate buffered saline (PBS) pH 7.4 for 10 min, followed by washing with distilled
water. After, 50 µL of fluorescein isothiocyanate-conjugated anti-mouse antibody (Cappel,
catalog: 55499, FITC-conjugated goat IgG, fraction for mouse immunoglobulin IgG, IgA,
and IgM, MP Biomedicals, LLC., Solon, OH, USA), diluted to a ratio of 1:900, was added to
each hole, and Evans Blue (0.5%) was used as a stain [52].

The slides were again placed In a humidity chamber and in the incubator for 30 min,
repeating the immersion in PBS for 10 min and finishing the slide preparation with buffered
glycerin (pH 8.2) in each hole and fixing the coverslip for observation under a fluorescence
microscope (Olympus BX51, uPlanFL N 20X/0.5 lens and WB and U-25nd filters).

Cells inoculated with head, body, and saliva samples from females not exposed to
infective blood were used as negative controls, and the samples that had an indeterminate
IF result were inoculated onto new C6/36 cells in order to increase the viral load or confirm
a negative result.

Images of the samples were acquired at 200× magnification on a fluorescence micro-
scope with a Canon PowerShot G6 camera (Canon, Tokyo, Japan).

2.8. Viral Titration

Positive samples were subjected to the viral titration test. In the viral titration test,
10-fold serial dilution (10−1 to 10−6) of the samples was performed in 225 µL of the Medium
199 (GIBCO) in a 96-well cell culture plate, and 25 µL of the original samples (body, head,
and saliva) were added to the well, then 125 µL were aspirated and transferred to the next
well, repeating this procedure until the last dilution of “−6” [53].

After the dilution process, in a 24-well plate with Vero cells (ATCC CCL-81), 100 µL of
the diluted viral samples were added to each well. Subsequently, the plate was incubated
for one hour, and 3 mL of carboxymethyl cellulose (CMC, 3% in medium 199) supplemented
with 5% FBS, penicillin (100 UI/mL), and streptomycin (100 µg/mL) were added to each
well, followed by a new incubation at 37 ◦C for 5 days. The cells were fixed with 3 mL of
10% formaldehyde and fixed with 3 mL of 0.1% crystal violet dye.

The viral titer was calculated by multiplying the number of plaques obtained from
a given serial dilution by the dilution factor, with the result being expressed in plaque-
forming units per milliliter (PFU/mL) [53].

2.9. Infection, Dissemination and Transmission Rates

The infection rate was calculated from the number of females with infected body
among the total number of engorged females; the dissemination rate was calculated based
on the number of females with an infected head among the females with an infected body;
and the transmission rate was calculated according to the number of females with infected
saliva among females with infected body and head [54].

2.10. Statistical Analysis

The analysis of infection, dissemination, and transmission rates, and the result of the
IF were expressed as percentages and analyzed by the Chi-square trend test (X2) (α = 0.05)
with the aim of evaluating the trend of increasing or decreasing rates. Relationships between
titers in different tissues and post infection days were analyzed using Shapiro–Wilk (W) test
for data distribution analysis and Kruskal–Wallis (H) and Dunn tests because the data were
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not normally distributed. The significance level was α = 0.05 for all tests. Statistical tests
were applied using the statistical program BioEstat 5.3 (Mamirauá Institute, Belém, Brazil).

3. Results
3.1. Infection, Dissemination and Transmission Rates

From the two artificial infection experiments, 150 females were analyzed, 52 on the
7th dpi, 56 on the 14th dpi, and 42 on the 21st dpi (Figures 2 and 3).

Figure 2. Indirect immunofluorescence of Culex quinquefasciatus body and head samples from Águas
Lindas neighborhood (group 1). (a) Positive 14th dpi body sample; (b) Positive 21st dpi head sample;
(c) Positive control; (d) Negative control. Images were taken at 200× magnification.

The infection rate in G1 was 100% in the three dpi analyzed and in G2 was 84% at 7th,
96% at 14th, and 100% at 21st dpi. Thus, the total infection rate was 92% positive bodies on
the 7th dpi, 98% on the 14th dpi, and on the 21st dpi all bodies (100%) were positive for
WNV infection. The Chi-square (X2) test was not performed to analyze the infection rate of
G1. All dpis had 100% positivity. In G2 (p = 0.0344, A = 3.7101), there was an increasing
trend in the number of positive body samples as the day post-infection increased.

The dissemination rate for G1 was 0% at 7th dpi, 33% at 14th dpi, and 100% at 21st
dpi. In G2, it was 29% at 7th dpi, 33% at 14th dpi, and 62% at 21st dpi. Thus, the total
dissemination rate was 13% at 7th dpi, 33% at 14th dpi, and 80% at 21st dpi (Figure 4b). X2

showed an increasing trend (G1: p = 0.0001, A = 22.7125; G2: p = 0.0279, A = 7.0000) in the
number of positive head samples with increasing dpi in both groups.
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Figure 3. Indirect immunofluorescence of Culex quinquefasciatus body, head, and saliva samples from
Cidade Nova neighborhood (group 2). (a) Positive 7th dpi body sample; (b) positive 21st dpi body
sample; (c) positive 21st dpi head sample; (d) positive 21st dpi saliva sample; (e) positive control;
(f) negative control. Images were taken at 100× magnification.

Saliva infection evaluation was only for Group 2 samples. The X2 showed no trend
(p = 0.7309, A = 0.6923) in the number of positive saliva samples with increasing dpi,
obtaining 17% positive saliva on the 7th dpi, 14% on the 14th dpi, and 77% on the 21st dpi
(Figure 4c).

3.2. Viral Titration

Comparative analysis of viral titers of G1 body samples showed statistical significance
(p = 0.069, H = 9.9622), indicating that body viral titers were directly related to post infection
day, and Dunn’s test showed a greater difference in titers between 14 and 21 dpi (p < 0.05).
Comparative analysis of G2 body samples was not statistically significant (p = 0.0690,
H = 5.3487), meaning that the variation of viral titers obtained in body samples of this
group is independent of post infection day.

When comparing the variation of viral titers of head samples between dpi’s, both
G1 and G2 showed no statistical significance (G1: p = 0.2219, H = 3.0111; G2: p = 0.0535,
H = 5.4553), demonstrating that the variation of viral titers of such samples is independent
of the post infection day analyzed.

Regarding the viral titers of the G2 saliva samples, there are no positive salivas at
dpi 7. There is only one positive saliva at dpi 14 and a higher quantitative saliva at dpi 21,
making a comparative analysis between post-infection days impossible. The viral titer of
the 14th dpi saliva was 200 PFU/mL. On the 21st dpi, the titer ranged from 100 PFU/mL to
3 × 106 PFU/mL.
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Figure 4. Percent parameters of vector competence of Culex quinquefasciatus strains from the Julia



Trop. Med. Infect. Dis. 2023, 8, 217 9 of 13

Seffer and Cidade Nova neighborhoods infected with WNV. At 7th, 14th, and 21st days after a
blood meal containing WNV (7 × 107 PFU/mL). Experimental groups were represented with the
letter G (G1 and G2), (“n” indicates total samples analyzed per dpi). (a) Graphical representation
in percentage of infection rate; (b) graphical representation in percentage of dissemination rate;
(c) graphical representation in percentage of transmission rate.

4. Discussion

The analysis of the susceptibility of vectors to arbovirus infection is extremely impor-
tant for the study of the vectorial competence of arthropods, determining their participation
in the transmission cycle. Thus, we used mosquitoes from two sites in the Amazon region
to identify whether they have the ability to acquire and transmit WNV.

In our work, the viral stock was produced by virus inoculation of Vero cells, which
resulted in a final titer of 108 PFU/mL, a relatively high titer. However, this value is similar
to that used in another paper, which obtained a titer of 7.52 log10 of the stock also produced
in Vero cells [55].

The population of Cx. quinquefasciatus used in the study has high susceptibility to
infection by the BEAN854747 (GenBank: MH643887) strain of WNV, since our results
demonstrated the presence of the virus in 92% of body samples at 7th dpi, 98% at 14th dpi,
and 100% at 21st dpi, corroborating the data presented by Sudeep et al. [56], who evaluated
populations of Cx. quinquefasciatus from India for transmission of three different strains of
WNV, which also showed susceptibility of the species to the virus, and Micieli et al. [57]
demonstrated that Cx. quinquefasciatus from the USA showed an infection rate of 95.5%
when fed with strain NY99-3356.

Regarding the titer analysis of body samples, our data showed that the variation in
viral titer was directly related to the increase in dpi in G1, but the same did not occur in the
G2 samples. The differences in the behavior of the virus titers in the two groups could have
been influenced by a number of factors, including the strain of the mosquitoes, the differ-
ence in the proportion of blood plus virus provided to each of the groups, and the number
of samples in each of the groups. Vogels et al. [35] demonstrated that higher temperatures
increase the rate of WNV transmission by Cx. pipiens, and Richards et al. [58] also empha-
sizes the existence of complex relationships between environmental and biological factors
that influence the susceptibility of mosquitoes to viruses, such as the age of the mosquito,
the extrinsic incubation temperature, the dose of the virus, and the colony analyzed.

Comparison of oral infection of Cx. quinquefasciatus with two strains of WNV, WNV144
and NY99, at doses of 5.56 log10/5 µL and 3.88 log10/5 µL, respectively, found that lower
oral doses reduced the proportion of mosquitoes that could be orally infected with the
virus [59]. Additionally, in a study of field-collected Cx. quinquefasciatus, WNV was detected
at a dose of 5.33 log10/5 µL [60]. In our study, the infectious dose was 7.84 log10/mL
(7 × 107 PFU/mL), mosquitoes behaved as expected, and virus was detected in body
samples from dpi 7 because the infectious dose was higher than the minimum reported in
other studies.

Our study obtained a dissemination rate of 13% at the 7th dpi, 33% at the 14th dpi,
and 80% at the 21st dpi, indicating a trend of growth in the number of positive heads with
increasing dpi, and the titer analysis showed there was a greater correlation between titer
growth and increasing dpi. Richards et al. [58] emphasized the importance of considering
environmental and biological interactions in analyses of vector competence, given the intra-
and interpopulation variability in vector interactions with the environment.

We identified the presence of WNV in a saliva sample from the 7th dpi in the second
experimental group but could not titrate the sample to a 1:10 dilution in the viral titration
plate test. This observation may indicate a rapid dissemination of the virus in the vector
organism, reaching the saliva region, but with a low viral titer, hampering its transmission
by hematophagy. In the second experimental group (G2), a positive saliva sample was
detected on the 14th dpi with a titer of 200 PFU/mL.
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Saliva also showed a tendency to increase as dpi increased (4% at the 7th and 14th
dpi, and 48% at the 21st dpi), but the correlation between the variables’ viral titer and
day post infection was not statistically significant. Schneider et al. [61] emphasize that
the action of intrinsic factors of the vectors influence the pathogenicity and virulence of
infections, since salivary proteins can alter the trajectory of viral infection in mosquitoes,
and Sanchez-Vargas et al. [62] highlights the action of the saliva gland infection and escape
barriers (SGIB and SGEB, respectively) as modulators of arbovirus transmission.

In our study, viral titers in positive saliva were 200 PFU/mL on day 14 and on day 21
ranged from 100 PFU/mL to 3 × 106 PFU/mL. These data corroborate findings from
previous in vitro studies indicating that mosquitoes inoculated viral titers range from 101.2

to 104.3 PFU/mL [63,64]. However, a study using in vivo assays showed that Cx. tarsalis
species inoculated an average of 104–105 PFU and Cx. pipiens 105.9–106.1 PFU, suggesting
that viral doses inoculated into live hosts are higher than those obtained by artificial
salivation [65].

5. Conclusions

This study showed that Culex quinquefasciatus, from Brazil, proved to be susceptible
to artificial oral infection by the BEAN854747 strain of WNV and can be considered as a
potential vector of WNV in Brazil.

It is notable that although arthropods have several tissue and immunological barriers
that act to mitigate viral spread from the midgut to other tissues, the WNV strain analyzed
was able to overcome such barriers, as we identified WNV in saliva samples on the 21st
dpi in all groups analyzed.

We emphasize that the present study is the first conducted in Brazil to evaluate
the susceptibility to oral infection and the vectorial competence of Culex quinquefasciatus
mosquitoes for WNV transmission, considering that the virus has already been detected
in several Brazilian states in different hosts, such as horses, domestic birds, humans, and,
more recently, in a pool of Culex spp. collected in the Carajás region, southeastern Pará state,
indicating the circulation of WNV in the country, thus demonstrating the risk of occurrence
of arbovirus outbreaks, symptomatic cases of West Nile fever in humans, as well as the
occurrence of zoonotic transmission cycles involving wild and domestic animals.
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