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Abstract: Studies have shown that climate may affect the distribution of coronavirus disease
(COVID-19) and its incidence and fatality rates. Here, we applied an ensemble niche modeling
approach to project the climatic suitability of COVID-19 cases in Brazil. We estimated the cumulative
incidence, mortality rate, and fatality rate of COVID-19 between 2020 and 2021. Seven statistical
algorithms (MAXENT, MARS, RF, FDA, CTA, GAM, and GLM) were selected to model the climate
suitability for COVID-19 cases from diverse climate data, including temperature, precipitation, and
humidity. The annual temperature range and precipitation seasonality showed a relatively high
contribution to the models, partially explaining the distribution of COVID-19 cases in Brazil based on
the climatic suitability of the territory. We observed a high probability of climatic suitability for high
incidence in the North and South regions and a high probability of mortality and fatality rates in the
Midwest and Southeast regions. Despite the social, viral, and human aspects regulating COVID-19
cases and death distribution, we suggest that climate may play an important role as a co-factor in
the spread of cases. In Brazil, there are regions with a high probability that climatic suitability will
contribute to the high incidence and fatality rates of COVID-19 in 2020 and 2021.
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1. Introduction

Coronavirus disease (COVID-19) has affected more than 250 million people world-
wide [1]. In Brazil, the first imported case was confirmed on 25 February 2020 in São Paulo.
After two years of the pandemic, Brazil topped fifth in the number of confirmed cases
with 690,000 deaths until December 2022 [2]. A series of public containment policies, both
at national and local levels, have been implemented since the beginning of the country’s
pandemic. However, the pandemic has put pressure on the Brazilian health system, leaving
public and private hospitals overwhelmed [3]. It was observed that emergency and inten-
sive care units focused almost exclusively on patients with COVID-19, and in many cases,
general and outpatient care was stopped to prevent the transmission of the virus [3,4].

The transmission of infectious diseases is determined by several factors, including
social and economic factors, access to medical services, innate immunity, and ecological and
climatic determinants [5]. Climate can influence the growth rate of pathogens [6] because
their survival and reproduction rates depend on a favorable climate that facilitates their
dissemination [7]. Previous studies have discussed the relationship between COVID-19 and
environmental and climatic factors [8]. Most studies were based on climatic characteristics
regarding exposure to the virus with the risk of pandemic propagation and concluded
that the climate influences the spread of the pathogen [9,10]. The authors suggested
that a cool, dry environment in a mesothermal climate is conducive to the spread of the
coronavirus [11]. Recently, studies in Thailand, on the effects of meteorological factors have
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shown that the average temperature, relative humidity, wind speed, and absolute humidity
have significant positive associations with the number of confirmed COVID-19 cases [12].

Environmental, climatic, and air pollution conditions have also been identified as
possible co-factors for the lethality of SARS-CoV-2 [13]. The fatality rate in the Italian
Lombardy region was 12%, while in the rest of Italy, it was 4.5% [14]. Researchers relate
these differences to some of the main co-factors: the early implementation of social isolation
measures, the availability of intensive care unit beds, under-reporting rates, different ways
of notifying the number of deaths and infections between countries, and the proportion
of older adults in the population [15]. However, this is an area of Europe with the highest
air pollution because of its climatic conditions and geographic features, which cause the
stagnation of pollutants [14].

Brazil is known to present complex meteorological scenarios, including equatorial,
tropical, subtropical, temperate, semi-arid, and arid zones, which indirectly affect health
problems related to the spread of several infectious respiratory diseases [4]. This is due to
its extensive territory, population density, biomes, topography, and climate variability [8].
Given this and the need to understand the epidemiology of SARS-CoV-2, associated condi-
tions, and exogenous variables, this study aimed to investigate the influence of regional
climatic characteristics on the cumulative incidence of the period, mortality, and fatality
of COVID-19 in Brazil, since there are no similar studies in the country that make this
association over two years.

2. Materials and Methods
2.1. Health Data

We obtained notification records for COVID-19 cases and deaths for all Brazilian
cities between 4 March 2020 and 31 December 2021 [16], as reported by State and Mu-
nicipal Health Departments with corrections and updates in real time. The collected
data were georeferenced to form pairs of central geographic coordinates (centroids) for
each Brazilian municipality (Figure 1). All data were analyzed using a Microsoft Excel
spreadsheet. For each Brazilian city, the cumulative incidence of COVID-19 (number
of new cases per 100,000 inhabitants), mortality rate (MR) (frequency of death in the
population per 100,000 inhabitants), and fatality rate (FR) (proportion of deaths among
confirmed COVID-19 cases) was estimated for the study period. We distributed the vari-
ables in quartiles to transform the data into a binomial outcome because all algorithms
used to model climate suitability require presence and absence to run as default settings
for all modeling algorithms. Those municipalities that presented the 75% percentile for
incidence, mortality rate, and fatality rate were selected as equivalent to high incidence
(13,157.39/100,000 inhabitants), high mortality rate (294.27/100,000 inhabitants), and high
fatality rate (2.9/100,000 inhabitants) and are described as 1 (one), indicating presence. Mu-
nicipalities below the selected percentile are described as 0 (zero) in the database, indicating
absence. All indicators were mapped.

2.2. Climate Data

Climate data including temperature, relative humidity, and precipitation were ob-
tained from a digital database on the WorldClim website [17]. Information also included
bioclimatic variables, which were derived from monthly values of temperature and precipi-
tation and represented annual and monthly trends, seasonality, and extreme or limiting
environmental factors (temperature of the coldest month or warmest month) that are im-
portant in species modeling analyses, ecological niches, and studies on climate change.
The WorldClim variables include annual mean temperature (BIO1), mean diurnal range
(BIO2), isothermality (BIO3), temperature seasonality (BIO4—standard-deviation 100), the
maximum temperature of the warmest month (BIO5), minimum temperature of the coldest
month (BIO6), annual temperature range (BIO7), mean temperature of the wettest quarter
(BIO8), mean temperature of the driest quarter (BIO9), mean temperature of the warmest
quarter (BIO10), mean temperature of the coldest quarter (BIO11), annual precipitation
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(BIO12), precipitation of the wettest month (BIO13), precipitation of the driest month
(BIO14), precipitation seasonality (BIO15—coefficient of variation), precipitation of the
wettest quarter (BIO16), precipitation of the driest quarter (BIO17), precipitation of the
warmest quarter (BIO18), and precipitation of the coldest quarter (BIO19) [17]. We obtained
georeferenced files with 19 bioclimatic variables corresponding to 1970–2000 in four spatial
resolutions: 30 s to 2.5 min (0.93 × 0.93 = 0.86 km2 at the Equator), 5 min, and 10 min
(18.6 × 18.6 = 344 km2 at the equator). The resolution selected for the model was 10 min
(344 km2). Each download is a “zip” file containing 12 GeoTiff files, one for each month
of the year (January to December), with image dimensions of (2160 × 1080 pixels) and
96 dpi resolution.
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Figure 1. South America political map showing Brazil with international borders, neighboring
countries and states.

2.3. Data Analysis

To generate areas predicted to have a suitable environment for high COVID-19 inci-
dence (HI), MR, and FR, an ensemble niche modeling approach based on seven different
algorithms was implemented using the biomod2 package integrated into R software (R
Foundation for Statistical Computing, Vietna, Austria, https://www.R-project.org/, ac-
cessed on 10 January 2022). Generalized linear regression model (GLM), generalized
additive model (GAM), tree (CTA), flexible discriminant analysis (FDA), regression curve
adaptive multivariate splines (MARS), random forest (RF), and maximum entropy (MAX-
ENT) were used. The algorithms are based on the absence/presence datasets and estimate
the environmental similarity between known places of species occurrence and regions that
are still unknown. Thus, areas with greater similarity to known areas of occurrence were
considered to have a high probability of occurrence.

For the modeling process, HI, MR, and FR were considered binomial outcomes (de-
pendent variables), and bioclimatic variables were considered explanatory variables for
adjusting the models. For each model run for the HI, MR, and FR outcomes, the bioclimatic
variable with the highest percentage contribution to the seven predictive algorithms (GLM,
GAM, CTA, FDA, MARS, RF, and MAXENT) was selected. We used the default settings

https://www.R-project.org/
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for all algorithms with 10,000 pseudo-absences as background data for all algorithms. The
models were created with training sets, and those with the best performance were selected.
After selecting the bioclimatic variables that best fit the model performance, the area under
the curve (AUC) evaluation metric of the receiver’s operational characteristics (ROC) was
calculated AUC values range from 0 to 1, with 0.5–0.7 suggesting poor model performance,
0.7–0.9 indicating acceptable model performance, and >0.9 indicating excellent model
performance. To generate the final ensemble models, we maintained models with ROC
scores ≥ 0.8 [18].

We mapped the binary (0 and 1) distributions of the crude values of the dependent
variables. After the modeling process using the seven algorithms, we obtained consensus
maps with the ensemble models, where the climatic suitability was evaluated through an
index ranging from 0 to 1, where 0 indicates regions with a low predicted probability of
suitable climatic conditions (blue color) and 1 indicates regions with a high probability of
suitable conditions (red color) for HI, MR, and FR. RStudio software version 1.4 was used
with the packages biomod2 raster, rgdal, and ncdf4 [19]. Maps were generated using QGIS
software version 3.16.

3. Results

The contribution analysis of bioclimatic variables to HI indicated that the annual
temperature range (BIO7), precipitation seasonality (BIO15), annual precipitation (BIO12),
temperature seasonality (BIO4), and mean annual temperature (BIO1) were the most im-
portant variables shaping the incidence distribution in the models (all algorithms averaged)
BIO7 made the highest relative contribution to this model (Figure A1). The contribution
analysis of the MR indicated that the annual temperature range (BIO7), annual precipita-
tion (BIO12), and temperature seasonality (BIO4) were the most important variables, with
BIO7 showing the highest relative contribution (Table 1). Precipitation seasonality (BIO15),
temperature seasonality (BIO4), and annual precipitation (BIO12) contributed the most to
FR, with BIO15 exhibiting the highest relative contribution to the model.

Table 1. Values of the relative contribution of bioclimatic variables to modeling HI, MR, and FR by
COVID-19 in 2020 and 2021, Brazil.

Dependent Variables Bioclimatic Variables
Statistical Algorithms

GLM GAM CTA FDA MARS RF MAXENT

High incidence
(HI)

Annual temperature range
(BIO7) 0.647 0.519 0.326 0.323 0.519 0.361 0.550

Precipitation seasonality
(BIO15) 0.164 0.359 0.486 0.166 0.420 0.339 0.488

Annual precipitation
(BIO12) 0.206 0.303 0.436 0.141 0.390 0.272 0.448

Temperature seasonality
(BIO4) 0.010 0.177 0.524 0.629 0.087 0.280 0.045

Mean annual temperature
(BIO1) 0.081 0.118 0.510 0.128 0.120 0.202 0.097

Mortality Rate
(MR)

Annual temperature range
(BIO7) 0.709 0.320 0.359 0.283 0.286 0.499 0.333

Annual precipitation
(BIO12) 0.119 0.418 0.458 0.219 0.474 0.501 0.436

Temperature seasonality
(BIO4) 0.011 0.146 0.607 0.460 0.142 0.639 0.078

Fatality Rate
(FR)

Precipitation seasonality
(BIO15) 0.760 0.366 0.744 0.636 0.597 0.591 0.550

Temperature seasonality
(BIO4) 0.569 0.306 0.768 0.375 0.283 0.719 0.246

Annual precipitation
(BIO12) 0.478 0.286 0.541 0.274 0.372 0.532 0.380
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The map of COVID-19 HI, MR, and FR between 2020 and 2021 is shown in Figure 2A.
The areas highlighted in red (cities) are those with values above the 75% percentile repre-
senting HI, MR, and FR. HI mapping showed an accumulation of COVID-19 notifications
in the North, Midwest, South, and Southeast regions. The MR map highlights areas located
in the North, Midwest, and Southeast regions. The FR map revealed that the country has
areas with high fatality rates in different regions, mainly in the Midwest, Southeast, and
Northeast (Figure 2B).
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We observed a good fit for the models using the three outcomes (HI, MR, and FR).
The average climate suitability consensus model for HI had an ROC value of 0.85 with
a sensitivity of 84% and specificity of 72%. The mortality rate (MR) model had an ROC
value = 0.88 for the modeling mean with a sensitivity of 76% and specificity of 83%. The FR
model had an ROC = 0.82 for the modeling mean, with a sensitivity of 83% and specificity
of 63% (Table 2).

Table 2. Evaluation of the modeling concerning the sensitivity and specificity of the ROC test for
the period’s high incidence, mortality rate, and the fatality rate for COVID-19 in the years 2020 and
2021, Brazil.

Dependent Variables Test ROC Sensitivity Specificity

High Incidence (HI) 0.851 84.321 72.167
Mortality Rate (MR) 0.881 76.723 83.490

Fatality Rate (FR) 0.821 83.067 63.098
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The HI climate suitability model showed areas highlighted in red on the map with
points of high climate suitability (i.e., the greater likelihood that climate factors contribute
to HI) mainly in the North and South regions and at some points in the Midwestern region
(Figure 3). In the MR modeling, areas highlighted in red were observed, which were
considered areas with high rates of climate suitability, mainly in cities in the Midwest,
South, and Southeast regions (Figure 4). The FR model highlighted areas in cities in the
Midwest, Southeast, and Northeast regions, and some in the North and South regions
(Figure 5).
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4. Discussion

Our results showed that predictive modeling for the three outcomes performed well,
with an ROC curve > 0.80. The bioclimatic variable that performed best and influenced HI
and MR analyses was the annual temperature range. This variable may contribute to the
high incidence of COVID-19 in the North and South regions and the high mortality rate in
the Midwest and Southeast regions. These regions have distinct climatic characteristics,
suggesting that both warmer and colder areas may favor higher mortality outcomes from
COVID-19, as they influence exposure, susceptibility, and the demands for emergency
services [20]. The bioclimatic variable that achieved the best performance and influence in
the FR model was precipitation seasonality, mainly covering the Midwest, Northeast, and
Southeast regions. The seasonality of precipitation marks periods of drought and rain and
is related to the regional temperature.

The economic development of some regions, mainly in the North and Midwest,
with activities related to plant and mineral extraction and industrial and agro-industrial
activities, has generated several environmental impacts, such as deforestation, fires, mining,
logging, and artisanal gold mining, mainly in the Brazilian Amazon and Pantanal, which
directly impact biome and its ecosystem services [21]. Such impacts have repercussions
on climate change, human health, and the quality of life of affected populations, as they
can influence the spread of several respiratory infectious diseases, such as SARS, influenza,
and tuberculosis [22], which may explain the influence of the annual temperature range in
the COVID-19 modeling of HI and MR.

A Brazilian study reported a cluster of cases in Manaus in the Amazon region in which
the P.1 variant was identified in 42% of the specimens sequenced by the end of December
2020. In this region, approximately 75% of the population was infected with SARS-CoV-2 in
October 2020. However, since mid-December, the number of cases has increased [23]. This
mutation may be associated with the region’s impact on climate change and air pollution. In
our study, we observed that predictive modeling for high incidence identified the Northern
region of Brazil as the region with the highest probability that climatic factors, mainly
annual changes in temperature, contributed to the increase in cases in that region. These
changes not only directly affect the spatial distribution of zoonoses, introducing their hosts
to new areas, but also lead to changes in species composition and ecology, which may result
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in new host–pathogen interactions that may create new transmission pathways or facilitate
the evolution of harmful disease variants [24].

We highlight the South and Southeast regions when modeling climatic suitability.
The economies of these regions are mainly based on industrial activities, mining, and
agricultural production. The industrial sector is diversified, with greater expression in agro-
industrial, metalworking, textiles, ceramics, machinery, and electronic equipment [25]. The
South region is the leader in intensive pig and poultry farming in Brazil and has the largest
herds in the country. The Southeast region has the most significant industrial sectors in
the country, including automobiles, steel, petrochemicals, shipbuilding, and oil [26]. These
activities cause major environmental impacts such as water, soil, and atmospheric pollution,
deforestation of large areas, soil erosion, reduction of natural habitats, and extinction
of fauna and flora species [27]. They produce an environmental transformation in the
landscape that may directly impact climate and population health, which can cause diseases
such as hepatitis, leptospirosis, and respiratory diseases such as flu and tuberculosis. They
may contribute as an additional factor to the high incidence and mortality of COVID-19 [26].

Studies on climate suitability are necessary to analyze respiratory diseases because the
effects of climate change can significantly impact people’s health status. Climate variability
is an important factor in the spread of respiratory diseases as it influences the biological
behavior of several disease-causing agents [28]. Changes in air pollution levels and climatic
variables affect urban environmental health and often increase the likelihood of viral
infection [29]. The key physical climate variables that are generally considered to affect
the persistence of SARS-CoV-2 outdoors include air temperature, precipitation, relative
humidity, wind speed intensity and direction, and solar radiation [30]. Air temperature is a
leading environmental factor affecting seasonal and regional variations. The temperature
has been shown to affect the duration of survival and transmission of SARS-CoV-2 through
droplets, aerosols, and bioaerosols [31]. The modeling results of this study show that the
annual temperature range is an important variable that contributes to the prediction that
climate change may be an additional factor for the increase in the incidence of cases and
mortality rate of COVID-19 in areas with different climates. Our study shows that despite
presenting a complex meteorological scenario, temperature is an important co-factor for
the spread of the virus in the environment. A study in China indicated a significant
association between temperature and the daily incidence of COVID-19 based on local
weighted regression and nonlinear models [32]. Research conducted in Madrid revealed
that cold weather makes people more susceptible to daily viral infection transmission [33].
In Indonesia, a study of the population of Jakarta reported similar results, showing that the
mean temperature was significantly correlated with the spread of COVID-19 [34]. A study
conducted in seven metropolitan cities and nine provinces in South Korea also supported
the link between COVID-19 incidence and temperature [35]. The studies described above
demonstrate that temperature is an important co-factor in the spread of the virus, and our
results reinforce this hypothesis.

In France, the emergence of the second COVID-19 wave coincided with a gradual drop
in temperature despite the fall in social distancing and tended to reinforce the hypothesis
of a significant effect of temperature on the incidence and death rate of COVID-19 [36].
Holtman et al. (2020) found that ambient temperature played a significant role in the
spread of COVID-19 by promoting viral survival in low-temperature environments [9].
A study conducted in the temperate regions of the United States in 2022 demonstrated
that above-average temperatures are consistently associated with a decrease in the relative
risk (RR) of COVID-19 infection [37]. A Brazilian study found no correlations between
daily maximum temperature and cumulative incidence or daily death rate of COVID-19
in Brazil [38], showing that the relationships between climate and COVID-19 and or other
communicable diseases may not be so obvious as to be represented by simplistic linear
models, something this study sought to avoid. Another Brazilian study showed that solar
radiation, mean temperature, and wind speed were negatively correlated with the incidence
of new cases [10]. Both studies analyzed climatic variables over a short period, which may
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have hindered the presence of a positive correlation with incidence and mortality. This
does not corroborate the findings of this study, as the analyses were conducted considering
the entire years of 2020 and 2021 and suggested a relationship between the selected climatic
variables with cases and deaths of COVID-19. Other findings in Brazil have revealed that
the coronavirus can adapt to Brazil’s subtropical and tropical climates [39]. Precipitation is
positively associated with the incidence of COVID-19 [40]. Here, we observed the influence
of seasonal precipitation on fatality rates in the Midwest and Southeast regions. These
regions have a high rainfall index with two well-defined seasons (rainy summer and dry
winter) and a semi-humid tropical climate. Seasonal cyclicity is an important feature of
acute infectious diseases and is commonly observed in viral respiratory illnesses [41]. The
authors reported that the same factors that drive the seasonality of flu-like illnesses cause
the seasonality of COVID-19, such as temperature and relative humidity [42], corroborating
the study. The predictive modeling analyses for the three outcomes included temperature
seasonality and precipitation seasonality as explanatory variables, which performed well
against bioclimatic variables.

First, it was not possible to conduct more in-depth analyses of groups, age groups,
and susceptible populations once we adopted a binary analysis for species niche modeling
of COVID-19 cases, transforming data of presence and absence into high or low incidence,
mortality, and fatality rates. Second, under-reporting at the beginning of the pandemic and
other limiting factors of secondary databases, such as the reliability of records collected at
a hierarchical level (city, state, country), may have somehow affected the findings of this
study or under- or overestimated the probabilities estimated in this study. Third, the data
are mapped based on mathematical models of climate variables and zones of likely climate
suitability. However, other factors were not controlled, such as social vulnerability, the
ability of the virus to mutate, the degree of social isolation, the proportion of elderly in
the population, and the number of available hospital beds, among others. Further studies
are needed on the effects of climate change on the dynamics of SARS-CoV-2, considering
the various dimensions of the multi-causal universe of a pandemic. Although COVID-19
spread and its impact on population survival in recent years have been known to be
influenced by social distancing, the presence of comorbidities, frequent viral mutations, use
of masks, and PPE, factors such as geographical location, temperature, and precipitation
may play an important role in disease transmission. Epidemiological evidence suggests
that SARS-CoV-2 transmission risk is higher at lower ambient temperatures and lower
humidity [43], and the climatic conditions observed in this study may affect virus survival,
seasonal immunity, and population interaction.

5. Conclusions

Our study provides initial information on the influence of weather conditions on
the transmission of COVID-19. Our results showed that the predictive modeling for
the three outcomes performed well with an ROC curve > 0.80. The bioclimatic variable
that performed best and influenced HI and MR analyses was the annual temperature
range. This study reinforces the importance of more research involving climate factors,
as temperature and rainfall regimes associated with pollution, UV radiation, and extreme
weather events are significant factors affecting COVID-19 transmission in metropolises and
must be included in future prediction models.
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