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Abstract: There are different area-based factors affecting the COVID-19 mortality rate in urban areas.
This research aims to examine COVID-19 mortality rates and their geographical association with
various socioeconomic and ecological determinants in 350 of Tehran’s neighborhoods as a big city. All
deaths related to COVID-19 are included from December 2019 to July 2021. Spatial techniques, such
as Kulldorff’s SatScan, geographically weighted regression (GWR), and multi-scale GWR (MGWR),
were used to investigate the spatially varying correlations between COVID-19 mortality rates and
predictors, including air pollutant factors, socioeconomic status, built environment factors, and public
transportation infrastructure. The city’s downtown and northern areas were found to be significantly
clustered in terms of spatial and temporal high-risk areas for COVID-19 mortality. The MGWR
regression model outperformed the OLS and GWR regression models with an adjusted R2 of 0.67.
Furthermore, the mortality rate was found to be associated with air quality (e.g., NO2, PM10, and
O3); as air pollution increased, so did mortality. Additionally, the aging and illiteracy rates of urban
neighborhoods were positively associated with COVID-19 mortality rates. Our approach in this study
could be implemented to study potential associations of area-based factors with other emerging
infectious diseases worldwide.

Keywords: spatiotemporal analysis; socio-economic; determinants; air quality; COVID-19 mortality;
air pollution

1. Introduction

COVID-19 infected hundreds of millions of people and killed over 6.6 million by De-
cember 2022, and it continues to impact communities worldwide [1,2]. Since the beginning
of the outbreak, Iran has had the highest number of total cases in the eastern Mediterranean
region (more than 7 million, 9.4% of the total population). Additionally, the country ex-
perienced the highest total COVID-19-associated deaths (144,673; CFR 1.91%) [3,4]. For
example, during the first 20 months of the outbreak of COVID-19 in Tehran, the capital and
the most populated city of Iran, 60,111 infections and 7034 deaths were recorded [5].
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Despite the fact that numerous COVID-19 vaccines are available, the virus continues
to mutate [6,7] and spread as new variants, such as Omicron [8]. In addition, the association
between COVID-19 incidence rates and biological, socioeconomic, and environmental
determinants, such as air pollution, is established in the literature [9]. However, cities
with large populations are economic growth centres with high levels of aggregation and
mobility, making it difficult to control the rate of COVID-19 spread [6,9–13]. Moreover,
social factors that might cause poor health increase the population’s vulnerability during
pandemics [14].

Several COVID-19-related studies have focused on demographics and built environ-
ment determinates [15,16], for instance, the association between the number of patients
and their residence location in terms of population and home, type of land use, and the
role of underlying diseases [17]. The most effective strategy at the individual level was to
limit mobility by spending more time at home and reducing visits to stores, workplaces,
and public transportation [18]. Accordingly, concentrations of microscopic matter, such
as PM10 and PM2.5, and various noxious air gases decreased significantly during the lock-
down, resulting in improved air quality [19,20]. Demographic, socioeconomic, and climatic
factors have been identified as influencing COVID-19 incidence and death rates [21,22].
The COVID-19 mortality rates have been associated with air pollution, highlighting the
importance of investigating COVID-19 spread and mortality in relation to air quality [23].

Geospatial analyses contribute to the empirical study of spatial associations between
the incidence of infectious diseases and socioeconomic and built environments [24] and
also between pathological factors (causes, vectors, hosts, and people) and their spatial and
ecological determinants [25]. Due to the limitations of the COVID-19 and risk factor data,
the application of geospatial techniques was initially limited to cluster analysis via global
and local Moran’s I, hotspot analysis, interpolation, and space-time scan statistics [26,27].
However, according to a recent systematic review by Nazia et al. [21], a variety of spatial
analytic techniques have been used to study COVID-19 in association with various risk
factors, ranging from commonly used descriptive methods (85%) to Bayesian methods
(15%). While the traditional frequentist method uses the likelihood function to derive pa-
rameter estimates, the Bayesian approach incorporates probability to measure uncertainties
in estimates, prediction, or inference on posterior distributions by specifying priors [21].

Compared to other methods, spatial statistical modeling of geographically weighted
regression (GWR) has been widely used to identify the drivers of COVID-19 spatial varia-
tions [21]. For example, ordinary least squares (OLS) regressions ignore spatial autocorrela-
tion and heterogeneity. Spatial regression methods, such as GWR, were used to address
non-stationarity. Ganasegeran et al. [28] and Yilmaz and Ulubaş Hamurcu [29] investi-
gated the spatial relationship between socio-demographic determinants and COVID-19 in
Malaysia and Turkey using GWR. They concluded that gender, household size, the GINI
coefficient [28,29], and population density are significant determinants of COVID-19 occur-
rence. Han et al. [30] investigated the effect of air pollution and meteorological factors on
incidence rates using the generalized linear mixed effect model and GWR. They conclude
that the influence of meteorological factors is greater than that of air pollution factors, and
that the interaction effect of meteorological and air pollution factors on COVID-19 incidence
is greater than their individual effects.

The previous studies investigated the spatial-temporal characteristics of urban neigh-
borhoods and influential urban factors in the spread of COVID-19 in Tehran, Iran, using the
GWR method [12]. They found that population density in health care facilities and public
transportation hubs, such as bus stops, were associated with the spread of the COVID-19
virus. In addition, Nasiri et al. [18] found that COVID cases are more common in crowded
and commercial areas. Notably, patients with co-morbidities had a higher risk of death and
infection with COVID-19 than healthy people [14,18].

Given the number of available influencings area-based factors on COVID-19 mortality
rates, this study aimed to look into the spatial and temporal trends of COVID-19 mortality
rates in Tehran, Iran, and their associations with socioeconomic, air quality, public trans-
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portation, and built environment variables. We believe that a comprehensive examination,
including more possible components, would better reveal each factor’s role, since the
predictors compete. Therefore, our study has compared three different regression models,
including OLS, GWR, and MGWR, to model the association of COVID-19 mortality rates
with the explanatory factors. Finally, our study included 20 months of data, including
four peaks of COVID-19 in Tehran, which was not covered by previous studies. Thereby,
our study poses questions to obtain the objectives of this research. (1) What are the spa-
tial, temporal, and spatiotemporal patterns of the COVID-19 mortality rates in Tehran,
Iran? (2) What risk factors explain the spatially varying COVID-19 mortality rates at the
neighbourhood level in Tehran?

2. Materials and Methods
2.1. Study Area

Tehran is located at latitude 35◦68′92′′ N and longitude 51◦38′90′′ E. It is divided
into 22 districts and 350 neighborhoods and covers an area of 615 km2 [18] (Figure 1).
The population is over 9 million, according to the most recent census in 2016 (4,522,000
females and 4,534,000 males). The average population density in the neighbourhoods is
21,503 people per km2, with a standard deviation (SD) of 12,785 [31].
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Figure 1. Map of Tehran, Iran, showing the spatial distribution of COVID-19 mortality 2019–2021;
EBS = empirical Bayes smoothed mortality rates per 100,000 population at the neighbourhood level. Num-
bers indicate the administrative district division of the city. Each district includes some neighbourhoods.

Tehran’s neighbourhoods’ environmental, economic, and social characteristics are
highly diverse and dissimilar [31]. Air pollution is caused by a high population density,
the dominance of personal mobility, the entry of dust from the South, and the presence
of polluting businesses in the West and Southwest (27 km2 (3.7%) of the city’s total area
is devoted to industrial purposes) [12,32–34]. Tehran is one of the world’s most polluted
cities [33], with levels of O3, NO2, and particular matter of≤2.5-micron size (PM2.5) remain-
ing high throughout the year but reaching the highest levels in the fall and winter [34,35].
Tehran’s annual average air temperature is about 15–18 ◦C [32].

Respiratory disorders have been a leading cause of death in Tehran over the last
decade (2008–2018), accounting for 14% of all deaths [12]. Furthermore, since the outbreak
of COVID-19, Tehran has had the highest COVID-19 mortality rate (20% of all daily deaths)
of any Iranian city [31,36].
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2.2. Data

COVID-19 mortality data were obtained from the Iranian Ministry of Health and
Medical Education’s Hospital Information System (HIS) [36]. We excluded data that were
incomplete or inaccurate (about 50 records). Our analysis was based on data from 7,043 peo-
ple who died due to COVID-19. This dataset spans a period of twenty months, covering
December 2019 to July 2021 and includes the date of death, age, gender, hospitalization
location, and date and home address [36,37].

This study’s administrative geographical data include the most recent municipal
division data (city, region, and neighbourhood boundaries). The built environment and
land statistics were obtained from the Tehran city municipality [36]. Spatial analytic
methods were used to produce additional spatial data, such as spatial density indicators
for our study variables (Supplementary File S1). The study variables were aggregated at
the neighbourhood level using ArcGIS Pro 3.0.2 software (ESRI, Redlands, CA, USA).

The Tehran Air Quality Control Company web portal was used to obtain air quality
index (AQI) data from 2016 to 2021 [32]. The public transport data were obtained from the
municipality of Tehran directly and updated with Open Street Map (OSM) datasets (https:
//www.openstreetmap.org/ accessed on 23 January 2023) using the QGIS platform (https:
//www.qgis.org/ accessed on 23 January 2023). In addition, the Iranian Statistical Centre
provided the socioeconomic characteristics of neighborhoods (including unemployment
rates) of 2016 [38].

2.3. Explanatory Variables

The explanatory variables used in this study are listed in Table 1. Figure 2 shows how
these variables are distributed spatially across the study area.

(1) Built environment, land use, and urban facilities: previous research has found a
relation between the density of various land uses and the COVID-19 epidemic [38,39].
The goal of this study, on the other hand, was to determine the spatial association
between land use categories and COVID-19 mortality rates. As a result, the density of
various uses, such as banks, restaurants, and high-rise residences, was investigated.

(2) AQI: the literature has shown a strong, positive relationship between air pollutants
and COVID-19 transmission and mortality in several geographic regions [40–42].
The major air contaminants considered as initial independent variables in this study
are NO, NO2, O3, CO, and particulate matter PM2.5 and PM10 (NO and NO2 are
collectively referred to as NOx). Some previous studies have used the effects of
these pollutants on respiratory diseases individually or in combination with each
other [23,43–50]. In the present study, both were used, and the most significant
variables were included in the final model. Exposure to air pollution is an essential
risk factor for many of the chronic diseases that cause people to be more likely to
become seriously ill, require intensive care and mechanical ventilation, and die from
COVID-19 [51]. In this study, the average of 5 years (2016 to 2021) for each pollutant
was derived from the pollutant-related data of air pollution monitoring stations.
Then, using the inverse distance weighted (IDW) interpolation technique, data were
calculated in a GIS with pixels of 1× 1 km in size. The 5-year average of pollution was
then calculated for each neighbourhood separately using zonal statistical methods.

(3) Public Transportation: public transportation contributes to the geographic spread of
COVID-19 [47]. Few studies have examined the correlation between these factors and
mortality rates. To analyze the association at the neighbourhood level, we considered
variables such as distance from fuel stations, metro and bus rapid transit (BRT) stations,
and the spatial density of main roadways.

(4) Socioeconomic features: recent research has shown that socioeconomic variables im-
pact COVID-19 transmission and mortality in various settings in developing countries,
such as Iran [52]. In this study, we looked at the spatial correlations between six such
variables (population density, illiteracy, unemployment, older age, having a rented
home, and being an immigrant) and neighbourhood-level COVID-19 mortality.

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.qgis.org/
https://www.qgis.org/
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Table 1. Potential explanatory variables and data sources.

Theme Variable Measure and Unit Descriptions and Rationale Data
Source *

Built-environment,
land use, and facilities

Commercial land use (V1) Spatial density of commercial properties per km2
Locations with high connectivity, high density, and
geographic concentration of economic activity may be at a
relatively higher risk of COVID-19 infection [53].

1

Industrial land use (V2) Spatial density of industrial units per km2
Large numbers of industrial units in a region has a significant
effect on the number of active COVID-19 cases in that region
[53,54].

Land use for social services (V3) Spatial density of social services units per km2 Social service centres may be a place of the spread of infectious
diseases as they attract many people at times of epidemics [12].

Banking (V4) Spatial density of banks per km2 Some studies have shown that banks and automated teller
machines (ATMs) are important for the spread of COVID-19 [55].

Health service (V5)
Spatial density of health service centres (including
special hospitals for COVID-19 patients, public
clinics, and laboratories) per km2

For example, hospitals for COVID-19 patients, public clinics,
and laboratories naturally have an extremely strong
association with the rate of COVID-19 infection [12].

Deteriorated buildings (V6)
The ratio of areas with deteriorated and old
buildings to the total area of each neighbourhood
in km2 * 100 (%)

Low-income and impoverished people generally reside in
worn and inadequately constructed settings, where the houses
are deteriorated leading to a relatively great danger of disease
outbreak [12,56].

High-rise buildings (V7) Spatial density of residential high-rise buildings
per km2

Overcrowding, dense space, and health conditions in high-rise
buildings can increase the risk of COVID-19 outbreaks, which
can affect people in different age groups and individuals who
are suffering from underlying diseases [57].

Distance from the city business
district (CBD) (V8) Distance to the CBD in km Previous studies show that the COVID-19 transmission

decreases with the distance from the city centre [47].

Presence of restaurants (V9) Spatial density of restaurants per km2 Controlling transmission in restaurants is an important
component of public health measures for COVID-19 [58].
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Table 1. Cont.

Theme Variable Measure and Unit Descriptions and Rationale Data
Source *

Air Quality Index

Particulate matter of size ≤2.5
micron (PM2.5) (V10)

Spatial density of particles ≤2.5 micron (PM2.5) per
m3 of air (µg/m3)

Studies have shown a positive correlation between the effect
of delayed PM2.5 concentration and the number of confirmed
COVID-19 cases, indicating an increased risk of infectious
diseases [59–61].

2

Particulate matter of size ≤10
micron (PM10) (V11)

Spatial density of particles ≤10 micron (PM10) per
m3 of air (µg/m3)

Studies have confirmed that new cases of COVID-19 are
associated with elevated PM10 concentrations in urban areas
[45,46].

Carbon monoxide (CO) (V12) Concentration of carbon monoxide (CO) in parts
per million (ppm)

Most studies confirm that both COVID-19 cases and deaths
are positively associated with almost all pollutants [44].

Nitrogen dioxide (NO2) (V13) Concentration of nitrogen-dioxide (NO2) in parts
per billion (ppb)

Studies have shown that there is a significant association
between NO2 and the risk of COVID-19 infection [23,43].

Nitrogen monoxide (NO) (V14) Concentration of nitrogen monoxide (NO) in parts
per billion (ppb)

Studies have mentioned the role of the NO pollutant in
COVID-19 transmission and death [44–47].

(V15) Nitrogen oxides (NOx ppb) Concentration of nitrogen oxides ((NO+NO2) parts
per billion (ppb)

Some studies have demonstrated that NOx (NO+NO2)
emissions significantly increase the incidence of COVID-19
transmission and death [48–50].

Ozone (O3) (V16) Concentration of ozone (O3) in parts per billion (ppb) Studies have demonstrated that COVID-19 outbreaks and
fatalities are associated with ozone levels [44–47].

Sulfur-oxide (SO2) (V17) Concentration of sulfur oxide (SO2) in parts per
billion (ppb)

This gas is released by airplanes, trains, and other means of
transportation. The importance of reducing it during
quarantine situations have been highlighted [62].

Temperature (V18) Average annual temperature (2011-2021) in degrees
Celsius (◦C)

High temperatures increase the risk of COVID-19 diseases and
are associated with death from respiratory diseases, as well
COVID-19 [47,63,64].
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Table 1. Cont.

Theme Variable Measure and Unit Descriptions and Rationale Data
Source *

Public Transportation

Metro stations (V19) Distance to the metro stations in meters

Many studies highlight the role of public transportation in the
spread of infectious diseases, even in remote areas. Research
shows that public transportation facilities play an important
role in the geographical spread of COVID-19 [23,55,65].

3

Bus rapid transit (BRT) stations
(V20) Distance to the BRT stations in meters Sense places, such as BRT stations, are at risk for many

physical contacts and disease transmission [66,67].

Density of roads (V21) Spatial density of main roads per km2

Where the urban road network creates the most intersections,
individual and collective contacts increase. In the long run,
this increases the spread of the disease in the surrounding
areas [68].

Fuel stations (V22) Distance to the fuel (petrol and gas) stations in
meters

As with other location based public facilities, fuel stops may
increase the transmission and spread of the COVID-19 virus in
nearby areas [55].

Socio-economic
characteristics

Population density (V23) Total population/neighborhood area (km2) =
persons/km2.

There is a significant relationship between population density,
overcrowding, and the spread of COVID-19 virus [64,69].

4

Illiteracy rate in % (V24) Ratio of illiteracy in the total population ≥ 6 years
= illiterate population/population (6+) * 100, (%).

Health literacy enables people to understand the reasons
behind medical recommendations and to become aware of the
possible outcomes of their actions. Instead, higher levels of
adult’s illiteracy rates can be seen as a social risk factor for
rising COVID-19 related deaths [70].

Unemployment rate in % (V25)
Ratio of unemployment in the total population =
unemployed population/active population (15–65
years) * 100 (%).

Areas with a higher unemployment rate positively associated
with COVID-19 high mortality rates [71].

Age rate in % (V26) Ratio of elderly in the total population = elderly
(65+ years) population/total population * 100 (%).

Older age groups experienced higher COVID-19 mortality
rates. Subsequently, areas with a large proportion of elderly
people face a high risk of infection [72,73].

Rate of rented homes in % (V27) Total number of rented houses/total number of all
types of housing units * 100 (%)

Mostly recent studies have examined the correlation between
COVID-19 outbreaks and poor housing condition [74,75].

Rate of Immigrants in % (V28) Ratio of immigrants in the total population =
immigrant population/total population * 100 (%).

Areas with higher rates of immigration appear to have been
more affected by COVID-19 [76,77].

* Sources 1: Municipality of Tehran [78,79]; 2: Tehran Air Quality Control Company (AQCC) [32,33]; 3: Open Street Map [80]; 4: Statistic Center of Iran [38].
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2.4. Methods, Tools, and Procedure
2.4.1. Geographical Smoothing of Mortality Rates

Intrinsic variance instability in estimating death due to population variation in spatial
units has attracted widespread attention in disease mapping [81,82]. The spatial variance
of the COVID-19 mortality rate per spatial unit requires spatial smoothing. To address
this issue, we used empirical Bayesian smoothed (EBS) [82] technique in GeoDa software
(Center for Geospatial Analysis and Computation, Tempe, AZ, USA) to create smoothed
EB rates (per 100,000 people) to reduce random fluctuations due to population size by
calculating risk as the total weighted crude rate for each neighbourhood [69,83].

2.4.2. Spatio-Temporal Analysis

Before conducting a local spatial cluster analysis of COVID-19 deaths, Global Moran’s
I [66] was used to investigate the global spatial distribution pattern of COVID-19 mortality
rates in the study area. Kulldorff’s scan statistics approach [84] was then used to identify
significant temporal, spatial, and spatio-temporal clusters of COVID-19 fatalities. The rela-
tive risk (RR) and the log-likelihood ratio (LLR) were computed. Monte Carlo simulations,
first introduced by Dwass, [83] were utilized to calculate a p-value. Monte Carlo is one of
the constituent methods for interpreting scan statistics results [85]. The maximum window
size for spatiotemporal analysis was set at 50% for the study area and time using SatScan
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software (M Kulldorff and Information Management Services Inc, Cambridge, MA, USA).
A circular shape was chosen to scan and detect all significant spatio-temporal clusters [86].
A Poisson model was used for COVID-19 mortality calculations [85]. For spatio-temporal
and purely temporal models, the time aggregation period was set at one month [83]. No
geographical overlap was defined as the criteria for reporting secondary clusters. The
Supplementary Files S2–S4 explain the purely temporal, purely spatial, and spatiotemporal
results of the scan statistics methodology.

The Monte Carlo testing was set to calculate test statistics for each random replication
at the p = 0.05 level. Irrespective of the number of Monte Carlo replications chosen, the
hypothesis is unbiased, resulting in a correct significance level that is neither conserva-
tive nor liberal or an estimate. In the standard Monte Carlo method with 999 random
replicas, the lowest p-value the testing can report is 1/(999 + 1) = 0.001, which was set for
calculating p-values in all Spatio-temporal analyses. In this study, a Monte Carlo test with
1,000 iterations was applied to evaluate the spatial variability of each surface of param-
eter estimates produced by the multiscale geographically weighted regression (MGWR)
model [87]. All the spatial results were mapped using QGIS, V.3.26, a free and open-source
GIS package [88].

2.4.3. Linear and Geographically Multivariate Data Analysis

Pearson’s correlation coefficient and R2 correlation were used to explore the global
and linear correlation between COVID-19 mortality rates (per 100,000 population) and
exploratory variables. Mirrored scatter plot matrix was used to visualize the bivariate
relationships between combinations of variables. Each scatter plot in the matrix visualizes
the relationship between a pair of variables [89]. According to Pearson’s coefficient and R2

values, five variables (including V7, V23, V25, V27, and V28) were removed from the list of
explanatory variables (Supplementary Files S5 and S6 for details). Mirrored scatter plot
matrix shows the global relationships between COVID-19 mortality rates and all selected
explanatory variables in Tehran based on Pearson’s correlation test (Supplementary File S6).
The methodology flowchart of this research is shown in Figure 3.

In the following step, exploratory regression was used to model linear relationships
and select the most important variables for the OLS analysis while considering multi-
collinearity. While exploratory regression is similar to stepwise regression, rather than
only looking for models with high adjusted R2 values, exploratory regression looks for
models that meet all of the requirements and assumptions of the OLS model. The variance
inflation factor (VIF) indicates multicollinearity, and values between 5 and 10 are recom-
mended, with 10 as the maximum VIF level [86,90]. The max VIF was set at 7.5, as ESRI
recommended [91,92], and the model was executed eight times to select the final significant
variables. Based on these exploratory regression results, the variables V11 (PM10), V13
(NO2), V16 (O3), V24 (illiteracy rate), and V26 (proportion of elderly) as variables with the
highest significance (≥60%), which explain the highest adjusted R2 (≥0.5), were included
in our OLS model (Supplementary File S7). Based on these values, an OLS multivariate
regression model was examined to explore the spatial autocorrelation of residuals (see
Supplement File S8 for details). The technique assumes a stationary and constant relation-
ship over space [92]. Using Moran’s I, we looked for the presence of OLS residuals and
spatial autocorrelation within the study area. The value of Moran’s I varies between +1
and −1 [64], where a value close to 1 represents strong spatial autocorrelation [93]. We then
employed the GWR model (Supplementary File S9 for details), an extension of the basic
OLS standard regression, reflecting the variables’ distribution’s spatial heterogeneity [94].
The model can estimate and generate a set of local parameters, including adjusted R2,
the corrected Akaike’s information criterion (AICc), local coefficients, and residuals for
each spatial unit to examine the spatial variation of the relationship between response and
explanatory variables [95].
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In the GWR model, the regression parameters of a particular location carry out local
regression estimates based on sub-sample information for adjacent areas. The parameters
of the estimated variables are adjusted as the spatial position changes [95]. GWR provides
advantages to regression modelling and accounts for spatial variations, considering the spa-
tial scale constant over time and space. However, in many cases, a fixed spatial scale is not
valid where phenomena involve numerous spatial processes with various spatial scales [96].
Accordingly, MGWR is used to explore the relation between the response variable and
exploratory variables, whichever vary spatially at different scales (see Supplementary File
S10 for details). Compared to GWR, the MGWR model has several advantages. Particularly,
it can accurately depict spatial heterogeneity, diminish collinearity, and lessen the bias
in the parameter estimates [97]. Each predictor variable has its bandwidth in an MGWR
model, which allows the scale of non-stationary relation to vary for each response to the
predictor variable relation, as described in equation (Equation (1)), assuming that there are
n observations, for observation i∈{1, 2, . . . , n} at location (ui, vi),

yi = β0(ui, vi) +
m

∑
j=1

βbwj(ui, vi)xij + εi (1)

where β0(ui, vi) is the intercept; xij is the jth predictor (independent) variable in the coordi-
nate of each observation (ui, vi); β j(ui, vi) is the jth coefficient; εi is the error term; and yi is
the response variable, while bwj in βbwj indicates the bandwidth used for the calibration
of the jth conditional relationship [98]. The open-source MGWR application (Python) was
used to run the GWR and MGWR models [99]. The Gaussian model was used to run
both models and locations (identified by identification numbers), coordinates variables
(x and y), four independent variables (Supplementary Files S9 and S10), and the EBS
mortality rate as the dependent variable were introduced to the models. To select optimal
bandwidths in both models for comparison purposes, the adaptive bi-square spatial kernel
method [100] was used, and the Golden Section mode [100] was applied as a weighting
scheme for calibrating both models. The AICc was used as an optimization criterion in the
calibration of the GWR and MGWR models. In addition, local VIFs [100] were applied to
evaluate probable multicollinearity among explanatory variables at different spatial units.
It was also possible to test the statistical significance of each surface of parameter estimates
produced by GWR and MGWR via random sampling. In this study, a Monte Carlo test
with 1000 iterations [101] was applied to evaluate the spatial variability of each surface of
parameter estimates produced by the MGWR model. A pseudo-p-value <0.05 indicates
that the observed spatial variability of a coefficient surface is significant at 95% CI (i.e.,
non-random) [100].

This study used Pseudo-t statistics and explanatory variable standardized coefficients
(Beta) to map the spatially varying relationships between COVID-19 mortality rates and
the explanatory variables. Bivariate choropleth maps, which show the quantitative rela-
tion between two variables in a feature layer [100], were used to represent and compare
the MGWR model parameter estimates and original values of the explanatory variables
(Fig.10). This mapping method is useful for finding the local patterns and variations of two
parameters in a single map [92]. The ArcGIS Pro 3.0.2 package (ESRI, Redlands, CA, USA,
2022) was used to visualize our final model results.

3. Results
3.1. COVID-19 Mortality Rates

Figure 1 shows the spatial distribution of Tehran’s COVID-19 EBS mortality rates (per
100,000 population) in Tehran. Among the 350 neighbourhoods investigated, the lowest
EBS rate was about 11, and the highest was about 350 (mean = 85 and SD = 50). This map
shows that most high-rate neighbourhoods are located in the central and southern parts of
the study area.
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During the 20-month study period, 60,111 individuals reportedly contracted COVID-
19 in the study region. In addition, data analysis reveals that COVID-19 caused the deaths
of 7043 people (an average of 78 per 100,000 population). The monthly distribution of the
mortality rate per 100,000 population by gender is depicted in Figure 4a. This graph depicts
the variation in mortality rates between the two sexes over twenty months. In certain
months (e.g., February 2019, September and October 2020 and March 2021), the monthly
mortality rate for both groups reached as high as 8 per 100,000 inhabitants. Importantly,
male mortality rates (4.57 per 100,000 men on average) were higher than female rates
(3.27 per 100,000 women on average). Figure 4b displays the COVID-19 mortality rate
by gender and age group. Men still account for 58.9% (91 deaths per 100,000 men) of the
total COVID-19-related deaths, whereas women account for 41.1% (64 deaths per 100,000
women). However, the mortality rate was 68% higher among those aged ≥65 years, while
those under 25 years had the lowest COVID-19 mortality rates in Tehran, with less than
one death per 100,000 population.
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Figure 4. (a): Monthly distribution chart of the mortality rates (per 100,000 population) by number
and sex; (b): percentage of COVID-19 related deaths by number, sex, and age group.
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3.2. Spatio-Temporal Distribution Patterns and Clusters
3.2.1. Retrospective Purely Temporal Analysis

The purely temporal pattern of COVID-19 deaths is shown in Figure 5. Four peaks
of COVID-19 deaths over the study period were observed. COVID-19 deaths peaked
in September and October 2020 and from March to April 2021. In addition, statistically
significant clusters (LLR value = 523.4, p < 0.05) were formed during the months of February
2020 to November 2020.

Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW 15 of 33 
 

 

 
Figure 5. Purely temporal significant clusters of COVID-19 deaths during 2019 to 2021 in the study 
area. 

3.2.2. Global and Local Purely Spatial Analysis 
The results of Moran’s I (I = 0.143 and p < 0.05, z-score = 4) show that the COVID-19 

mortality rates (from 2019 to 2021) were spatially clustered in the study area. This result 
allowed us to enter local-scale spatial analyses more confidently. Based on purely spatial 
statistical analysis, seven significant spatial clusters (p < 0.05) were identified, which are 
given in Table 2 and Figure 6. According to these results, with a highest LLR value of 
242.88 and a RR value of 1.85, cluster number one has been identified as the most likely in 
the study area. This cluster formed in the centre of the study area and consisted of 71 
neighbourhoods with a population just above 1.5 million (number of cases = 1956 and 
number of expected cases = 1210). As illustrated in Table 2 and Figure 6, cluster number 3 
(LLR = 26.2 and RR = 1.47) is another important cluster formed in the northern part of the 
city covering 14 neighbourhoods and 421 deaths. 

  

Figure 5. Purely temporal significant clusters of COVID-19 deaths during 2019 to 2021 in the study area.

3.2.2. Global and Local Purely Spatial Analysis

The results of Moran’s I (I = 0.143 and p < 0.05, z-score = 4) show that the COVID-19
mortality rates (from 2019 to 2021) were spatially clustered in the study area. This result
allowed us to enter local-scale spatial analyses more confidently. Based on purely spatial
statistical analysis, seven significant spatial clusters (p < 0.05) were identified, which are
given in Table 2 and Figure 6. According to these results, with a highest LLR value of
242.88 and a RR value of 1.85, cluster number one has been identified as the most likely
in the study area. This cluster formed in the centre of the study area and consisted of
71 neighbourhoods with a population just above 1.5 million (number of cases = 1956 and
number of expected cases = 1210). As illustrated in Table 2 and Figure 6, cluster number 3
(LLR = 26.2 and RR = 1.47) is another important cluster formed in the northern part of the
city covering 14 neighbourhoods and 421 deaths.
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Table 2. Purely spatial detected clusters based on a Poisson scan statistic model for areas with high rates of COVID-19 deaths in Tehran, Iran.

Cluster Neighbourhood Coordinates/Radius Population Cases
(No.)

Expected
Cases (No.)

Annual
Cases/100,000 (No.)

Observed/Expected
Cases (No.)

Relative
Risk

Log Likelihood
Ratio

Monte Carlo
Rank p-Value

1
Includes

seventy-one
neighbourhoods

(35.671100◦ N,
51.403600◦ E)/4.63 km 1,551,335 1956 1210.76 2192.9 1.62 1.85 242.78 1/1000 <0.001

2 Includes one
neighbourhood

(35.723200◦ N,
51.357100◦ E)/1.3 km 27,371 66 21.36 4193.9 3.09 3.11 29.95 1/1000 <0.001

3 Includes fourteen
neighbourhoods

(35.776700◦ N,
51.402900◦ E)/3.17 km 374,205 421 292.05 1956.7 1.44 1.47 26.25 1/1000 <0.001

4 Includes one
neighbourhood

(35.695400◦ N,
51.486500◦ E)/0.8 km 20,374 47 15.90 4012.2 2.96 2.97 19.9 1/1000 <0.001

5 Includes one
neighbourhood

(35.726200◦ N,
51.520600◦ E)/1.87 km 56,873 87 44.39 2660.6 1.96 1.97 16.06 1/1000 <0.001

6 Includes one
neighbourhood

(35.772600◦ N,
51.468100◦ E)/2.6 km 22,574 41 17.62 3158.9 2.33 2.33 11.28 3/1000 <0.001

7 Includes two
neighbourhoods

(35.702800◦ N,
51.228200◦ E)/2.05 km 18,598 34 14.52 3179.6 2.34 2.35 9.48 25/1000 <0.001

A cluster is statistically significant when its log likelihood ratio is greater than the critical value, which is, for the significance level: Gumbel Critical Values: 0.00001: 18.16; . . . 0.0001: 15.57;
. . . 0.01: 5.21. Standard Monte Carlo Critical Values: 0.001: 12.545047; 0.01: 10.568609; 0.05: 8.628534.
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3.2.3. Retrospective Space-Time Analysis

As Figure 7 shows in more detail, we identified only one significant space-time cluster
(LLR = 467.31 and RR = 2.29, p < 0.05). This cluster consists of 75 neighbourhoods with a
population of about 3,567,000. In addition, this cluster formed from February to October
2020 (nine months), which corresponds to the temporal clustering pattern (Figure 5). This
cluster extends from the centre to the south and southeast areas of the city.
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3.3. Modeling Spatial Associations
3.3.1. OLS Model Results

The results of the OLS model show that, with an AICc value of 3,455.82, and R2 value
of 0.57 and an adjusted R2 value of 0.56, our model accounts for about 57 and 56% of the
COVID-19 mortality rates in the study area. Furthermore, the results demonstrate that
the probability and robust probability coefficients of our independent variables (selected
by exploratory regression) were also statistically significant (p < 0.01) in the OLS model
(Supplementary File S7). When Moran’s I was applied to ensure that the OLS model
residual values really were spatially random, the result showed that the autocorrelation
was significant, and residuals were spatially clustered (Moran’s I = 0.160. z-score = 6.5,
p < 0.05). However, as follows, GWR and MGWR can solve the problems of non-stationarity
and problems with heteroscedasticity. In addition, these models enabled us to improve the
reliability of the predictions [92].

3.3.2. GWR Model Results

Diagnostic indicators of the GWR model showed that, with the AICc value of about
661, the R2 value of 0.67, and the adjusted R2 value of 0.65, our GWR model accounts for
about 67 and 65% of the COVID-19 mortality rates within the study area (Table 3). The
statistics for the GWR model are summarized in Table 4, which demonstrates that the
GWR model predicts changes in local coefficients at the local scale but within the same
bandwidth. The MGWR model can address this weakness of the GWR model by allowing
various bandwidths (Table 4). The column “Mean” in Table 4 shows the general coefficients
of both GWR and MGWR models. For instance, NO2 had the strongest association with
COVID-19 mortality rates in the whole city, regardless of any specific geographical area.

Table 3. Model specifications and diagnostic metrics for the fitted GWR model.

Diagnostic Name Value Value

Residual sum of squares 114.911 AICc 660.788
Effective number of parameters (trace(S)) 25.428 BIC 758.252
Degree of freedom (n–trace(S)) 324.572 R2 0.672
Sigma estimate 0.595 Adj. R2 0.646
Log-likelihood −301.718 Adj. alpha (95%) 0.012
Degree of dependency (DoD) 0.753 Adj. critical t value (95%) 2.531
AIC 656.293 -

Table 4. Summary statistics of the GWR and the MGWR coefficients.

GWR Model

Variable Bandwidth Mean STD Minimum Median Maximum
Intercept 172 −0.108 0.176 −0.399 −0.125 0.217
PM10 172 0.118 0.046 0.001 0.124 0.222
NO2 172 0.332 0.164 0.055 0.340 0.616
O3 172 0.319 0.123 −0.136 0.318 0.559
Illiteracy rate (%) 172 0.139 0.129 −0.074 0.126 0.377
Ageing rate (%) 172 0.369 0.084 0.195 0.368 0.654

MGWR Model
Variable Bandwidth Mean STD Minimum Median Maximum

Intercept 59 −0.049 0.280 −0.545 −0.070 0.620
PM10 348 0.115 0.008 0.103 0.113 0.129
NO2 335 0.375 0.030 0.311 0.384 0.408
O3 253 0.327 0.053 0.236 0.317 0.422
Illiteracy rate (%) 196 0.125 0.065 0.013 0.130 0.241
Ageing rate (%) 348 0.374 0.004 0.365 0.374 0.383
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3.3.3. MGWR Model Results

The diagnostic metrics of the MGWR model are provided in Table 5. The results of the
MGWR model showed that, with the AICc values of about 661 and the R2 value of 0.69, an
Adj R2 value of 0.66 in our model accounts for about 69 and 66% of the COVID-19 mortality
rates within the study area (Table 5). In addition, as indicated in Table 4, the MGWR model
improved the predictions of the estimate of the explanatory variable’s coefficient in the
local linear regression model by varying the bandwidth of each explanatory variable [92].

Table 5. Model specifications and diagnostics metrics for the fitted MGWR model.

Diagnostic Name Value Value

Residual sum of squares (RSS) 108.666 AICc 641.051
Effective number of parameters (trace (S)) 25.352 BIC 738.247
Degree of freedom (n–trace (S)) 324.648 R2 0.690
Sigma estimate 0.579 Adj. R2 0.665
Log-likelihood −291.940
Degree of dependency (DoD) 0.754
AIC 636.583 -

3.3.4. Model Performance (Validation)

The summary of the model’s diagnostics shows that the adjusted R2 value increased
from 0.56 (OLS) and 0.64 (GWR) to 0.66 (MGWR). Moreover, selecting the most parsi-
monious model, AICc and the residual sum of squares (RSS) with the lowest values are
preferred [92]. As Table 6 shows, AICc decreased from 3455.81 (OLS) and 660.788 (GWR) to
641.051 (MGWR). The MGWR model produced a better AICc (641.051), which indicates that
the MGWR model provides significantly better goodness-of-fit than OLS and GWR mod-
els when assessing the relationship between the explanatory variable and the COVID-19
mortality rates.

Table 6. Model comparison and performance diagnostics.

Model RRS Log-Likelihood AIC AICc R2 Adj. R2

OLS 151.110 −349.642 1027.85 3455.81 0.568 0.561
GWR 114.911 −301.718 656.293 660.788 0.672 0.64
MGWR 108.666 −291.940 636.583 641.051 0.690 0.665

Furthermore, to compare the difference in the goodness of fit of the GWR and MGWR
models for different spatial units, the local R2 values were mapped for the GWR and MGWR
models (Figure 8). These maps indicate that the GWR and MGWR models accurately explain
the local relationship between COVID-19 mortality rates and dependent variables all over
the city (local R2 > 0.6). Two models were best fitted to the city’s western, south-western,
and north-western parts (Figure 8A,B). However, as shown in Figure 8, the highest local R2

values in the MGWR model (mean of R2 = 0.68) covered more neighbourhoods in the city.
Therefore, this study identified the MGWR model as the best model to visualize and interpret
the spatial associations between COVID-19 mortality rates and dependent variables.
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Figure 8. Spatial distribution of local R2 values for GWR and MGWR models. (A): Map of the
GWR local R2 values, (B): Map of the MGWR local R2 values, (C): Histogram chart depicting the
distribution of GWR R2 values; and (D): Histogram chart depicting the distribution of MGWR R2

values in the study area.

To examine whether the residuals of the MGWR model as the best-fitted model were
autocorrelated, Anselin Moran’s I statistic was used. The results showed no significant
autocorrelation in the MGWR residuals (I = −0.031, z-score = −1.12, p > 0.05), which is a
random pattern confirming their independence. While the difference between the results
of the GWR and MGWR models was not remarkable, it is reasonable that we represent the
results of the best model. After selecting the best-fitted model, the estimated coefficients
for each explanatory variable were mapped to display their effects on COVID-19 mortality
rates across Tehran.

3.4. Mapping and Spatial Analysis of the MGWR Model
3.4.1. Local t-Values

Figure 9 shows the spatial distribution map of the pseudo t-values of significant posi-
tive local estimates based on the MGWR model for five significant covariates. The PM10
variable (min = 2.6, mean = 2.85, max = 3.1, and p < 0.05) explains the most significant
correlation with mortality rates in the western parts of the city (Figure 9-V11). The NO2
variable (min = 4.8, mean = 5.9, max = 6.5, and p < 0.05) explains the significant correlation
with COVID-19 mortality rates in the western half of the city (Figure 9-V13). The relation-
ship between O3 and COVID-19 mortality rates was significant (min = 3.9, mean = 5.6,
max = 6.9, and p < 0.05) in the central neighbourhoods, which stretch toward the southern
parts of the city (Figure 9-V16). As the map shows, the most associated illiteracy rate (%)
(min = 0.226, mean = 2, max = 3.55, and p < 0.05) was observed in the south-eastern to the
central and northern parts of the city (Figure 9-V24). The relationship between the age rate
and COVID-19 mortality rate was (min = 6.2, mean = 6.5, max = 6.7, and p < 0.05) positively
significant with high values in and around the central parts of the city (Figure 9-V26).
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3.4.2. Local Parameter Estimates

Figure 10 shows the spatial distribution bivariate maps of the local spatially varying Beta
coefficients (standardized parameter estimates) and the values of the explanatory variables
aggregated at the neighbourhood scale. These bivariate maps show that the correlation
between each variable and the dependent variable was not constant across the city.

Figure 10-V11 shows the estimated coefficients for the PM10 (min = 0.103, mean = 0.115,
max = 0.13, and p < 0.05). According to this map, the Beta values are high in 43.4% of
neighbourhoods located in the north-eastern and eastern parts of the city, which indicates a
strong association between PM10 and COVID-19 mortality rates. Although the PM10 values
were higher in the city’s northern parts, the coefficients are low in these areas.

Figure 10-V13 shows the coefficients for the NO2 variable (min = 0.31, mean = 0.37,
max = 0.41, and p < 0.05). Beta values of NO2 were higher than the mean in 88.6% of the
neighbourhoods, with most of them in the eastern parts of the city. In the neighbourhoods
located in the south-eastern and central neighbourhoods, the higher values of NO2 and
Beta increased in parallel. However, the northern and eastern neighbourhoods of the city
represent different spatial patterns. While NO2 values were higher in these areas, the
corresponding Beta values were lower, which indicate weak correlations.

Figure 10-V16 shows the coefficients for the O3 variable (min = 0.236, mean = 0.33,
max = 0.42, and p < 0.05). Beta values of O3 are higher than the mean in 28.2% of the
neighborhoods, most of which are in the central parts of the city. Central neighborhoods
had the higher values of O3 and Beta increased in parallel. However, the northern and north-
western neighbourhoods of the city represent different spatial patterns. While O3 values
were higher in these areas, the corresponding Beta values were lower, which indicates weak
correlations in these neighbourhoods.

Figure 10-V24, shows the coefficients for the illiteracy rate (%) variable (min = 0.013,
mean = 0.125, max = 0.24, and p < 0.05). Beta values of the illiteracy rates (%) were higher
than the mean in 51.7% of the neighbourhoods, with most of them in the central parts
toward the northern parts of the city. In the neighbourhoods located in the south-eastern
neighbourhoods, the higher percentages of illiteracy rates and Beta increased in parallel.
However, eastern neighbourhoods of the city represent different spatial patterns, too. While
illiteracy rate values are higher in these areas, Beta values for the illiteracy rates (%) were
lower, which shows the weak correlations in these neighbourhoods.

Figure 10-V26 shows the coefficients for the aging rate (%) variable (min = 0.365,
mean = 0.374, max = 0.38, and p < 0.05). Beta values of the age rate were higher than the
mean in 51.4% of the neighbourhoods in the central part of the city. In the neighbourhoods
located in the central part of the city, the higher age groups and Beta increased in parallel.
However, the northern and north-eastern neighbourhoods of the city represent different
patterns. While ages are higher in these areas, Beta values for this variable were lower,
which shows the weak correlations in these neighbourhoods. In fact, age had a strong
correlation with COVID-19 mortality rates in the central neighbourhoods.
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4. Discussion

We identified one purely temporal cluster of COVID-19 mortality rates in the research
area between February and November of 2020 (Figure 5). Similar temporal groupings
during that era have been observed in previous studies, for example, in Brazil [102]. Iran
has previously dealt with a variety of diseases, but COVID-19 stunned the system with its
severity, rapid spread, and pathological consequences [103]. COVID-19 vaccination did
not begin until late February 2021. As a result, many people died during the following
three disease peaks [104]. We discovered seven significant spatial mortality clusters, the
most significant of which were Cluster 1 in the city’s center and Cluster 3 in the north. In
addition, there was a significant central space-time cluster that expanded in the south and
southeast (Figure 7). This cluster was formed from February 2020 to October 2020, which
is extremely comparable to the COVID-19 purely temporal cluster in the research region
(Figure 5). As a result of this variability and clustering, COVID-19 mortality clusters might
have been influenced by the particular characteristics of the various metropolitan districts
that were our second aim in this study.

Previous research indicates that environmental problems, such as air pollution con-
centration in Tehran, can increase COVID-19 mortality rates in big cities [36]. This is in
accordance with our findings. However, the MGWR model (the best-fitting model) showed
that the COVID-19 mortality rates associated with explanatory variables varied substan-
tially across the study area. Most of the factories (e.g., industrial sand and cement factories)
are in the west. Therefore, PM10 levels are higher in the west. This higher PM10 levels are
also strongly associated with COVID-19 mortality in the west. However, there are some
areas in the northern part of the city in which the amount of PM10 is not very high but
is highly associated with COVID-10 mortality. Lowering the PM10 in these areas might
also help reduce the COVID-19 mortality rate. Although the lockdowns reduced the PM10
levels in Tehran between 20 and 30 percent [105], this short-term drop did not diminish
the citywide long-term detrimental consequences of PM10. Indeed, the industrial plants
surrounding the city increased their production of detergents and hygiene products during
the COVID-19 pandemic, which account for the continued city pollution [106]. In addition,
the predominant wind direction in Tehran is from the west and south, which may carry
PM10 and other pollutants from their sources (e.g., industrial sources, construction sites,
landfills, and desert areas in the south of the city) [107]. In addition, as shown in Figure 1,
South Tehran borders the country’s central deserts from where the wind carries dust and
air pollutants. At the same time, the northern part of the city is surrounded by mountains,
which prevent any further discharge of pollution.

In our investigation, NO2 was most strongly related to COVID-19 mortality rates in
the eastern half of the city (Figure 9), where the concentration of this gas also is greater
than in the rest of the city (Figure 10). Previous research has validated the association
between NO2 and COVID-19 mortality rates [108,109]. Over 75% of Tehran’s residents use
non-standard fuel-powered automobiles, which account for 40% of the city’s air pollution,
including NO2 [105,109,110]. Except for the northern portion of the city, bus terminals
are another source of NO2 across the city [106]. The long-term exposure of Tehran’s
residents to air pollution has resulted in a considerable increase in the mortality rate from
respiratory disorders, according to earlier research [105] and we can now see how this
has exacerbated the COVID-19 situation. Several research results indicate that during the
COVID-19 pandemic, public transit usage did not drop. Instead, the use of private cars
grew leading to a rise in pollution levels [63,107]. For example, the Tehran Air Quality
Control Company (AQCC) confirmed that from March 2021 to November 2021, Tehran was
one of the most polluted cities in Iran [32].

In accordance with earlier studies that revealed the association between ozone and high
COVID-19 mortality rates [33,45,108], our study demonstrated that this gas is positively
associated with COVID-19 mortality rates, which we particularly noted in the central and
southern parts of the city (Figure 9). In these parts of Tehran, the annual temperature is high
(Figure 2), and private vehicles are commonly used due to inadequate public transportation
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and traffic congestion [111], which contributes to the levels of ozone, a secondary pollutant
associated with high levels of other climatic factors, such as temperature and nitrogen
oxides [50,112]. In addition, another study conducted in Tehran revealed that the O3
concentration did not decrease during the lockdowns, and this gas is recognized as one of
the risk factors that raises the likelihood of COVID-19 mortality [12].

In addition to the air quality indices, our data revealed a varied positive associa-
tion between illiteracy and COVID-19 mortality rates. Previous research has proven the
positive correlation between socioeconomic statuses, such as illiteracy, and COVID-19
mortality [105]. While we found a correlation between COVID-19 mortality and illiter-
acy, which was exceptionally high in the south-western and the central regions of the
city (Figure 2), there was an even higher correlation in the centre and the south-eastern
neighbourhoods extending into additional northern locations (Figure 10). Two studies
conducted in the United States found that a lower level of literacy led to less awareness
about the risk of COVID-19 [113,114]. As a result, preventive measures are less prevalent in
those populations [113]. Other research has demonstrated that COVID-19-related mortality
rates are twice as high in disadvantaged areas of major cities in developing countries [114].

Men were more likely to die from COVID-19 than women [115–118]. This general
gender distribution was also seen in Tehran, with about a 60 to 40% difference between
males and women, respectively, throughout the twenty-month research period. According
to most research, men’s COVID-19 mortality rates are affected mainly by smoking and
alcohol, which affect the lungs. In addition, recent studies have shown that women have a
better immune system against infections than men [119]. In addition, numerous studies
demonstrate that oestrogen is a protective factor against numerous viral infections [120,121],
and this hormone has been shown to suppress SARS-CoV replication by modulating cell
metabolism [113]. Our findings also reveal that approximately 68% of the total COVID-19
deaths occurred in the elderly (Figure 4). Numerous prior studies indicate that older age is
one of the risk factors for increased COVID-19 mortality rates [116,122–124]. Our findings
also indicate that older age is substantially linked to COVID-19 mortality rates (Figure 9).
This was particularly seen in the centre of the city where people are generally of an older
age (Figure 10). Our survey reveals that 8% of the city’s population is currently ≥65 years,
with the majority residing in the city’s northern regions (Figures 2 and 10). Many older
adults cannot take care of their health properly and are also subject to the harmful air
quality in central Tehran. The elderly also suffer from a higher rate of chronic diseases
(diabetes, blood pressure, lung problems, etc.), which are associated with a higher risk of
death due to COVID-19 [118].

4.1. Policy Implications

The following long-term urban health policy proposals can help to reduce mortality
rates associated with pandemics such as COVID-19.

(1) While achieving sustainable urban growth without air pollutants may be difficult,
the level of urban pollution must be reduced to prevent additional respiratory illnesses and
COVID-19-related deaths. A network of environmentally friendly transportation should be
developed. The number of private automobiles that use fossil fuels might be reduced and
replaced with electric vehicles.

(2) The old polluting industries that surround Tehran must be upgraded with cutting-
edge technology and, if possible, partially replaced by "green industry." The green industry
is an emerging concept that aligns industrial development with global sustainable develop-
ment toward a green economy [125].

(3) It is critical to prevent the spread of respiratory disorders induced by PM2.5 and
PM10 pollution in southern and western Tehran. Additionally, certain health interventions
should be implemented in areas with a high probability of PM10 concentration. The use of
facemasks, for example, is an excellent short-term solution.

(4) The elderly are more likely to suffer from COVID-19 symptoms. Therefore, short-
and long-term health strategies for protecting the elderly and providing health care in
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high-risk areas deserve special consideration. In addition, a better urban infrastructure, par-
ticularly in the health and medical sectors, would reduce the deaths caused by pandemics
like COVID-19.

(5) It is critical to reduce illiteracy and raise public awareness as it is associated with
the number of deaths caused by epidemics like COVID-19. This would be critical for
Tehran’s southern half, where illiteracy is prevalent.

4.2. Limitations and Futures Research Strategy

This study has a few limitations. The COVID-19 mortality data were obtained from
the Ministry of Health’s Health Information System (HIS). COVID-19 disease was initially
difficult to recognize, and its specifics were not documented in hospitals. As a result,
some of the first patients may have yet to be fully documented. Furthermore, due to a
lack of health care during the peak of the COVID-19 epidemic, many patients may have
died outside of hospitals and were not recorded in the Ministry of Health’s HIS system.
Another limitation is the need for more local household income data. We attempted to
avoid this issue by examining other socioeconomic indicators, such as the unemployment
rate. Additionally, due to sanctions and economic difficulties, most of Tehran’s power
plants have used low-quality fuel oil for decades [121]. The use of this oil might release
other air pollutants that we have not considered in this study since monitoring stations
have never measured other potential air pollutants in Tehran. Instead, we looked at other
significant air pollution indicators. Additionally, it is worth mentioning that we had not
controlled for the number of days to calculate the monthly mortality rates to create Figure 4.

Furthermore, the deceased’s geographic coordinates were not recorded. As a result,
aggregated statistics were used at the neighborhood level. Future research could employ
GIS techniques to predict COVID-19 mortality rates in Tehran and develop a mortality
risk map based on neighborhood characteristics. In addition, more research is needed
to determine how COVID-19 mortality rates in metropolitan areas are associated with
determinants, such as underlying conditions, employment type, income level, place of
work address, and other information about the deceased’s health status.

5. Conclusions

A spatiotemporal pattern of the COVID-19 mortality rate in Tehran was investigated,
with neighborhoods having higher mortality rates at different times. COVID-19 mortality
rates were found to be significantly related to the Air Quality Index, age, and illiteracy
rates, and these associations varied across Tehran neighborhoods. The MGWR model
showed the best performance among the different regression models used to identify
factors associated with COVID-19 mortality rates. Our approach could be useful for future
COVID-19 mortality rate modeling and other infectious diseases. Finally, the findings have
implications for COVID-19 mortality rate reduction initiatives in long-term urban health
plans that promote healthy and resilient cities.
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